Dung Fixed Point Theory and Applications 2013, 2013:48 ® Fixed Point Theory and Applications
http://www.fixedpointtheoryandapplications.com/content/2013/1/48 a SpringerOpen Journal

RESEARCH Open Access

On coupled common fixed points for mixed
weakly monotone maps in partially ordered
S-metric spaces

Nguyen Van Dung’

“Correspondence:
nvdung@dthu.edu.vn;
nguyendungtc@gmail.com
Department of Mathematics, Dong
Thap University, Cao Lanh, Dong
Thap, Vietnam

@ Springer

Abstract

In this paper, we use the notion of a mixed weakly monotone pair of maps of Gordji et
al. (Fixed Point Theory Appl. 2012:95, 2012) to state a coupled common fixed point
theorem for maps on partially ordered S-metric spaces. This result generalizes the
main results of Gordji et al. (Fixed Point Theory Appl. 2012:95, 2012), Bhaskar,
Lakshmikantham (Nonlinear Anal. 65(7):1379-1393, 2006), Kadelburg et al. (Comput.
Math. Appl. 59:3148-3159, 2010) into the structure of S-metric spaces.

1 Introduction and preliminaries

There are many generalized metric spaces such as 2-metric spaces [1], G-metric spaces [2],
D’ -metric spaces [3], partial metric spaces [4] and cone metric spaces [5]. These notions
have been investigated by many authors and various versions of fixed point theorems have
been stated in [6—23] recently. In [24], Sedghi, Shobe and Aliouche have introduced the
notion of an S-metric space and proved that this notion is a generalization of a G-metric
space and a D'-metric space. Also, they have proved some properties of S-metric spaces
and some fixed point theorems for a self-map on an S-metric space. An interesting work
that naturally rises is to transport certain results in metric spaces and known generalized
metric spaces to S-metric spaces. In this way, some results have been obtained in [24—-26].

In [27], Gordji et al. have introduced the concept of a mixed weakly monotone pair
of maps and proved some coupled common fixed point theorems for a contractive-type
maps with the mixed weakly monotone property in partially ordered metric spaces. These
results give rise to stating coupled common fixed point theorems for maps with the mixed
weakly monotone property in partially ordered S-metric spaces.

In this paper, we use the notion of a mixed weakly monotone pair of maps to state a
coupled common fixed point theorem for maps on partially ordered S-metric spaces. This
result generalizes the main results of [6, 27, 28] into the structure of S-metric spaces.

First we recall some notions, lemmas and examples which will be useful later.

Definition 1.1 [24, Definition 2.1] Let X be a nonempty set. An S-metric on X is a function
§: X% — [0, 00) that satisfies the following conditions for all x,y,z,a € X:
1. S(x,y,2)=0ifandonlyifx=y=2z.
2. S(x,9,2) <S(x,x,a) + S(y,y,a) + S(z,z, a).
The pair (X, S) is called an S-metric space.
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The following is an intuitive geometric example for S-metric spaces.
Example 1.2 [24, Example 2.4] Let X = R? and d be an ordinary metric on X. Put
S, y,2) =d(x,y) + d(x,z) + d(y,2)

for all x,7,z € R?, that is, S is the perimeter of the triangle given by x, y, z. Then § is an
S-metric on X.

Lemma 1.3 [24, Lemma 2.5] Let (X,S) be an S-metric space. Then S(x,x,y) = S(y,y,x) for
all x,y € X.

The following lemma is a direct consequence of Definition 1.1 and Lemma 1.3.

Lemma 1.4 [25, Lemma 1.6] Let (X, S) be an S-metric space. Then
S(x,%,2) <28(x,%,9) + S, 9, 2)

and
S(x,%,2) <28(x,x,9) + S(z,2,9)

forall x,y,z€ X.

Definition 1.5 [24, Definition 2.8] Let (X, S) be an S-metric space.

1. A sequence {x,} C X is said to converge to x € X if S(x,, x,,x) — 0 as n — o0o. That is,
for each ¢ > 0, there exists ng € N such that for all # > 1y we have S(x,,,x,,, %) < . We
write x,, — x for brevity.

2. A sequence {x,} C X is called a Cauchy sequence if S(x,,, x5, x,,) — 0 as n,m — oo.
That is, for each ¢ > 0, there exists 7o € N such that for all #,m > ny we have
S, Xy Xpn) < €.

3. The S-metric space (X, S) is said to be complete if every Cauchy sequence is a
convergent sequence.

From [24, Examples on p.260] we have the following.

Example 1.6
1. Let R be a real line. Then

Sw.y,2) = lx -zl + ]y -2
for all x,y,z € R is an S-metric on R. This S-metric is called the usual S-metric on R.
Furthermore, the usual S-metric space R is complete.
2. Let Y be a nonempty subset of R. Then

S@x,y,2) = lx —z| + |y - 2|

for all x,y,z € Y is an S-metric on Y. Furthermore, if Y is a closed subset of the usual
metric space R, then the S-metric space Y is complete.
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Lemma 1.7 [24, Lemma 2.12] Let (X, S) be an S-metric space. If x, — x and y,, — y, then
S(xnrxn;yn) - S(xrx,y)'

Definition 1.8 [24] Let (X,S) be an S-metric space. For r > 0 and x € X, we define the
open ball Bs(x,r) and the closed ball Bs[x, r] with center x and radius r as follows:

Bg(x,r) = {y eX:S(y,yx) < r},

Bglx,r] = {y eX:S(y,y,x) < r}.

The topology induced by the S-metric or the S-metric topology is the topology generated
by the base of all open balls in X.

Lemma 1.9 Let {x,} be a sequence in X. Then x, — x in the S-metric space (X, S) if and
only if x,, — x in the S-metric topological space X.

Proof It is a direct consequence of Definition 1.5(1) and Definition 1.8. O
The following lemma shows that every metric space is an S-metric space.

Lemma 1.10 Let (X,d) be a metric space. Then we have
1. Sy(x,y,2) =d(x,2) + d(y, z) for all x,y,z € X is an S-metric on X.
2. x, > x in (X, d) if and only if x, — x in (X, Sz).
3. {xu} is Cauchy in (X, d) if and only if {x,} is Cauchy in (X, S4).
4. (X,d) is complete if and only if (X, Sz) is complete.

Proof
1. See [24, Example (3), p.260].
2. %, — xin (X, d) if and only if d(x,,x) — 0, if and only if

Sa(Xu, %0, %) = 2d (%, %) — 0,

that is, x, — x in (X, Sy).
3. {x,} is Cauchy in (X, d) if and only if d(x,, x,,) — 0 as n,m — oo, if and only if

Sd(xmxmxm) = 2d(xmxm) -0

as n,m — 00, that is, {x,} is Cauchy in (X, Sz).
4. It is a direct consequence of (2) and (3). a

The following example proves that the inverse implication of Lemma 1.10 does not hold.

Example 1.11 Let X =R and S(x,y,2) = |y + z — 2x| + |y — z| for all x,,z € X. By [24, Ex-
ample (1), p.260], (X, S) is an S-metric space. We will prove that there does not exist any
metric d such that S(x, y,z) = d(x,z) + d(y,z) for all x, 7,z € X. Indeed, suppose to the con-
trary that there exists a metric d with S(x,y,z) = d(x,z) + d(y,2) for all x,7,z € X. Then
dx,z) = %S(x, x,2) = |x — z| and d(x,y) = S(x,y,y) = 2|x — y| for all x,y,z € X. It is a contra-
diction.
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Lemma 1.12 [27, p.7] Let (X,d) be a metric space. Then X x X is a metric space with the
metric Dy given by

Da((x,9), (w,v)) = d(x,u) + d(y,v)
forall x,y,u,veX.

Lemma 1.13 Let (X,S) be an S-metric space. Then X x X is an S-metric space with the
S-metric D given by

D((x,y), (u,v), (2, w)) =S(x,u,z) + S(y, v, w)
forall x,y,u,v,z,w € X.
Proof For all x,y,u,v,z,w € X, we have D((x,y), (4, v), (z,w)) € [0,00) and
D((x,9), ,v),(z;w)) =0 ifand onlyif S(x,u,2)+S(y,v,w)=0
ifand only if x = u =z, y = v = w, that s, (x,y) = (&, v) = (z,w); and

D((), (u,v), (z,w)
= S, 1,2) + Sy, v, W)
< S(,x,a) + S, 1,a) + S(z,2,a) + S3,9,b) + S, v,b) + S(w, w, b)
= D((%,9), (%,), (a, b)) + D((, ), (,v), (@, b)) + D((z, W), (z, W), (a, b)).

By the above, D is an S-metric on X x X. g

Remark 1.14 Let (X, d) be a metric space. By using Lemma 1.13 with S = S;, we get
D((x,9), (%,9), (@, v)) = Saloe, %, 1) + Sa (3,3, v) = 2(d(x, u) + d(y,v)) = 2Da((%,), (u, v))
forall x,y,u,v e X.

Lemma 1.15 [17, p.4] Let (X, X) be a partially ordered set. Then X x X is a partially or-
dered set with the partial order < defined by

(x’y) = (u; V) lf&md Only {f x<u, v ﬁy'

Remark 1.16 Let X be a subset of R with the usual order. For each (x1,%3), (y1,52) € X x
X, put z; = max{x;,y1} and zy = min{xy, 52}, then (x1,%2) < (21,22) and (y1,52) =< (z1,22).
Therefore, for each (x1,x2), (y1,72) € X x X, there exists (z1,22) € X x X that is comparable
to (x1,%2) and (y1,%2).

Definition1.17 [27, Definition 1.5] Let (X, <) be a partially ordered setandf,g: X x X —
X be two maps. We say that a pair (f,g) has the mixed weakly monotone property on X if,
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for all v,y € X, we have

x=f(x9).f(y,x) <y implies f(x,9) < g(f(x1).f3,%)),g(f3,%).f(x,9) =f (%)

and

x=<g(xy),g0,%) <y implies g(x,y) <f(g(x),8(%).f(g1,%),g(x,9) < g, ).

Example 1.18 [27, Example 1.6] Let f,g:R x R — R be two functions given by

fry)=x-2y, gy =x-y.
Then the pair (f,g) has the mixed weakly monotone property.

Example 1.19 [27, Example 1.7] Letf,g:R x R — R be two functions given by

fl,y)=x—y+1,  glxy) =2x-3y.

Then f and g have the mixed monotone property but the pair (f,g) does not have the
mixed weakly monotone property.

Remark 1.20 [27, Remark 2.5] Let (X, <) be a partially ordered set; f : X x X — X be a
map with the mixed monotone property on X. Then for all # € N, the pair (f*,f") has the

mixed weakly monotone property on X.

2 Main results
Theorem 2.1 Let (X, <,S) be a partially ordered S-metric space; f,g: X x X — X be two
maps such that
1. X is complete;
2. The pair (f,g) has the mixed weakly monotone property on X;
%0 = f (%0, 0).f o, %0) = ¥y or xo < g(x0,¥0), 8o, %0) < yo for some x9,y0 € X;
3. There exist p,q,r,s > 0 satisfyingp + q +r+2s <1 and

S(f (% p).f (x,3), g, v))
< D((x,y) (®x,9), (u,)) + D( ®,2), (%, 9), (f(x,),f (%))

+ =D((,v), (u,v), (g(,v), g(v,m))) + ED((x,y), ), (g, v),g(v,u)))

+

D((w,v), (u,v), (f (x,9),f (5,%)) ) (2.1)

N N

forall x,y,u,v € X withx < u and y > v where D is defined as in Lemma 1.13;
4. f or g is continuous or X has the following property:
(@) If {xn} is an increasing sequence with x,, — x, then x,, < x for all n € N;
(b) If {x,} is an decreasing sequence with x,, — x, then x < x,, for all n € N.
Then f and g have a coupled common fixed point in X.
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Proof First we note that the roles of f and g can be interchanged in the assumptions.
We need only prove the case x < f(x0,%0) and f(y0,%0) < yo0, the case xg < g(x0,y0) and
2(¥0,%0) < o is proved similarly by interchanging the roles of f and g.

Step 1. We construct two Cauchy sequences in X.

Put x; = f(x0,%0), Y1 =f (¥0,%0). Since (f, g) has the mixed weakly monotone property, we
have

x1 = £ (x0,0) =< g(f (%0, ¥0).f W0, %0)) = g(x1,y1)
and

91 =f (50, %0) = &(f 00, %0),f (%0,50)) = g1, %1).
Put x5 = g(x1,91), ¥2 = g1, %1). Then we have

%y = g(x, 1) < f (g1, 31), g1, %1)) = f (%2, 72)
and

y2 = g x) = f (g, x1), 861, 1)) = f (72, %2).
Continuously, for all #n € N, we put

Xon+l =f(x2m)/2n), Yon+1 =f()/2mx2n),

(2.2)
X2ne2 = (X241, Yone1)s Yans2 = &Wans1s ¥ans1)
that satisfy
o 2w X Zx, X and Yoz zyaz oo (23)

We will prove that {x,} and {y,} are two Cauchy sequences. For all n € N, it follows
from (2.1) that

S(X241) %2415 X242)
= S(f(xZn,y2n):f(x2myZn):g(x2n+1,y2n+1))

S gD((meyzn)y (x2nxy2n)¢ (x2n+1:y2n+1))

+ D((xZn»yZn): (%211 Y2n)» (f(xZn:yZn)’f()/Zn’xZVt)))

+

D((x2n+lxy2n+l)v (x2n+17 y2n+1)r (g(x2n+1,y2n+1))g(y2n+lr x2n+1)))

+
Nl Nl NI NS

D((me y2n)’ (x2n,y2n); (g(x2n+1»)’2n+1):g(y2n+l; x2n+1)))

+ D((x2n+1:y2n+l)v (x2n+17y2n+1)r (f(xanyZn):f(yZm x2n)))

Page 6 of 17
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By using (2.2) we get

S(®2n415 %2n415 Xans2) < gD((me/zn), (200 Y2n)s (B2ns1> Y2ns1))

+

D (x2n;y2n) (xZn:yZn) (x2n+1;y2n+1))

D((%21415 Y2n41)» K241 Yans)s K242, Yans2)

+

+

(
(

D((%205 Y2n)s @2 Yan) (Xame2, Yans2))
(C

D((%21415 Y2n41)» @241 Y2ns1)s (B2s15 Y2ni1))

+
T ol v N NS

S
N

= D((x2my2n), (x2n1y2n); (x2n+1;y2n+l))

\}

r
+ ED((x2n+1:y2n+l)r (x2n+1ry2n+l): (x2n+2:y2n+2))

s
+ ED((x2n1y2n)> (%211 Y2n)s (x2n+2:y2n+2))

p+q+s
2

r+s
+ TD((xan,yznu) (%2041, Yone1)s K2ms2s Yanse2))-

=

D((me yZn)r (x2nry2n)1 (x2n+17 y2n+1))

That is,

S(x2n+1; X2n+1s x2n+2)

+q+s
< a 2q (S(2> %2 X241) + SY2ms Yans Yans1))

r+s
+ — 2 (S(x2n+l) x2n+1;x2n+2) + S(y2n+1’y2n+1,y2n+2)) (24‘)

Analogously to (2.4), we have

S(y2n+lry2n+1r y2n+2)

+q+s
< % (SG20s Y2 Yans) + S X2 ¥2041))

r+s
+ — 2 (S(y2n+1’y2n+1;y2n+2) + S(x2r1+1: X2n+1» x2n+2)) (25)

It follows from (2.4) and (2.5) that

S(X41 X241 X2142) + SW2n+1s Vonets Yans2)
tq+s
_p+a

=1 t+s) (S X2 X2s1) + SB205 Vo> Yons1)) - (2.6)

For all n € N, by interchanging the roles of f and g and using (2.1) again, we have

S(X20+2, %2042, X2043)

= S(g(x2n+1’y2n+1)rg(x2n+1;y2n+1),f(x2n+2,y2n+2))

< gD((xZVH-l? y2n+1)r (x2n+1¢y2n+1)1 (x2n+2¢y2n+2))

Page 7 of 17
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+

D((%2141, Y2n41)s X241, Y2n1)s (g(x2n+1xy2n+1) g@2n+lyx2n+l)))

+

+

D((%21415 Y211), (K241, Y2n11), (f(x2n+2»y2n+2),f(y2n+2;x2n+2)))

“+
Nl N NI NI

(

D((2n425 Y2ns2)s ®2ms2s Yans2)s (F F2mszs Yans2)of Gamezs Xans2)) )
(
(

D x2n+2¢y2n+2)7 (x2n+2yy2n+2)’ (g(x2n+1,y2n+1))g(y2n+1’ x2n+1)))-

By using (2.2) we get

p
S(®ans2) X2ns2, X2143) < ED((xZVHI;yZnH): (%2041, Y2ne1)s K2m20 Yone2))

+

D (x2n+11y2n+1 x2n+1’y2n+l); (x2n+2¢y2n+2))

+

+

D (x2n+11y2n+1) x2n+1’y2n+l) (x2n+3¢y2n+3))

o Nl NI NI

+
>l

(

D((%212, Yan+2)s %202 Yan+2), (%243, Yan+3))
(
(

(X2142s Y2n+2)s (K21425 Y2ns2)s (x2n+2:y2n+2))

N
+ o
»Q

= ((x2n+lr y2n+l); (x2n+1: y2r1+1)¢ (x2n+2: y2n+2))

(X2142s Y2n+2)s (K2425 Y2ns2)s (x2n+3,y2n+3))

+ Nlcn l\JI\: N

N

D(
((x2n+1ry2n+1) x2n+1’y2n+l) (x2n+3¢y2n+3))
+

S

AN

IA

D((x2n+1;y2n+1) (%2141, Y2ne1)s (x2n+2:y2n+2))

\)

r+s
+ TD((x2n+2)y2}’l+2) (x2n+2¢y2n+2) (x2n+3)y2n+3))

That is,

S(X20+2, %2042, X2043)

ptq+s
S D) (S(x2n+1) X2n+1» x2n+2) + S(y2n+17 y2n+11y2n+2))

r+s
+— D) (S(x2n+2; X242, X2n43) + S(y2n+2,y2n+21y2n+3))

Analogously to (2.7), we have

S(y2n+2;y2n+2ry2n+3)
< p+q+s
- 2
r+s
+ — 2 (S(y2n+2ry2n+27y2n+3) + S(x2n+2: X2n+2s x2n+3))

(50/2n+1,y2n+1,y2n+2) + S(x2n+1;x2n+lrx2n+2))

It follows from (2.7) and (2.8) that

S(x2n+2r Xon+2s x2n+3) + S(y2n+2:y2n+21y2n+3)
+qg+s
_Pp+q

Y (S(x2n+1rx2n+1:x2n+2) + S(y2n+1:y2n+1;y2n+2))'
1-(r+s)

(2.7)
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Forall n € N, (2.6) and (2.9) combine to give

S(x2n+2r X2n+2s x2n+3) + S(y2n+2;y2n+2ry2n+3)
+g+Ss
_r+q

=1_ (r N S) (S(x2n+1; x2n+1,x2n+2) + S(y2n+1;y2n+lvy2n+2))

<

<p+q+s

2
(S(e2ms %2 X2m41) + SY2s Y2ms Yans1))-
1-(r+s)

Now we have

S(X41 X241 X2142) + SW2n+1s Vonets Yans2)
+qg+s
_ptq

— (S 13 X211, X2+ S 1> Y2 Yon+
_1—(r+s)( (%20 %2 X2111) + SW2s Yo Yans1))

3
p+q+s
Y S(2n-2, %212, %20 SW2n-2sY2n-2sY2n-
<1—(r+3)) (SCean-2: %2, 1) + SOom-2, n-2 Y1)

2n+1
p+q+s
< _ S 3 ) S ) )
= <1—(r+s)> ( (%0, %0,%1) + S(¥0, 0 yl))

and

S(x2n+2r X2n+2s x2n+3) + S(y2n+2’ y2n+21y2n+3)

2
p+tq+s
<1 — (}" + S)) (S(x2n’x2n;x2n+1) + S(y2n7y2n1y2n+1))

<

4

+q+s

< (2212 (S(¥2n-2, %202, %20-1) + S(V2n-2 Y2n-2:Y2n-1))
1-(r+s)

2n+2

+q+s

S pL (S(xoyx();xl) +S(y();y0:yl))'
1-(r+s)

For all n,m € N with n < m, by using Lemma 1.4 and (2.11), (2.12), we have

S@2n41, X211, X2m+1) + SY2041 Y2n41, Yams1)

< (251, %2me1 Xanr2) + 28 Vanats Yone1, Yane2))
+ (S(x2n+2,x2n+21x2m+l) + 5()’2n+2,y2n+2,y2m+1))

< (2821, %2me1 Xanr2) + 28Vanats Yone1, Yans2))
+ (2822 X2ns2s X2n43) + 28(Vans2, Yanss Yone3))
o+ (28 (o1 Xam—1s ¥2m) + 28 Vam—1s Y215 Yom))
+ (S(eams Xams am1) + SW2ms Yams Yams1))

< (2S(ans1s X2ne1 X2ms2) + 28 V2me1s Yanss Yans2))

+ o+ (28Co2ms Xams Xome1) + 28 Vams Yams Yams1))

2n+1 2m
p+q+S p+q+S
S[(1—(r+s>) +"'+<1—(r+s>> }

(2.10)

(2.11)

(2.12)
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X (S(xo,xo,xl) + S(Vo,yo,)q))

P+q+s \2n+l
(m) n+

< W(S(xo,xo,xﬂ +S(0,¥0,1))-

1-(r+s)

Similarly, we have

S X2ns X2m41) + SW2m Yons Yom1)

2n 2m
- [(&) - (&) ](S(xo,xo,xl) + S00,30.21))

1-(r+s) 1-(r+s)
(17+q+5))2n
1-(r+s
= l_l;ﬁ(s(xo,xo,xl) + S0, %0,31))

and

S(me X215 me) + S(y2n1y2my2m)

2n 2m-1
+g+s +g+s
= [(i) teet <&> ](S(WO,xo,xﬂ + 5(}’00’00’1))

1-(r+s) 1-(r+s)
(p+q+s 2n
1
= 1— V;i)qﬂ (S(xo,xo,aq) +S(y0,y0,y1))
1-(r+s)

and

S(X41 X241 X2m) + SY2415 Yon+1, Yom)

2n+l 2m-1
+q+s +q+s
< [(&) +oet (&) ](S(xo,xo,xl) + 80,0, ¥1))

1-(r+s) 1-(r+s)
(17+4+S )2n+1
1
= %(S(xo:xo,xl) + S()/o,yo,yl))~
1-(r+s)

Hence, for all n,m € N with n < m, it follows that

P+q +5 \2n
—(r+s)

S(@s Xy Xm) + SWws Y Ym) < W (S(x0, %0, %1) + S0, Y0, 1))
T 1-(r+s)

Since 0 < {715 <1, taking the limit as n,m — oo, we get

lim (S(x,,,x,,,xm) + S(ymyn:ym)) =

n,m— 00

It implies that

lim S(x,,%4,%,) = lim SOy, Y Ym) = 0.
n,m— 00 n,m—> 00

Therefore, {x,} and {y,} are two Cauchy sequences in X. Since X is complete, there exist

%,y € X such that x,, - x and y,, — y in X as n — oo.

Step 2. We prove that (x, y) is a coupled common fixed point of f and g. We consider the

following two cases.
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Case 2.1. f is continuous. We have
x = 1lim xy,,1 = lim f (%2, y24) = f ( lim x,, lim y2n> =f(x,7)
n—00 n—00 Hn— 00 n—o0
and
y= nli)rgoy2n+l = nli)rgof()ﬁmx%) =f<nli)r20y2n:nli)rgox2n> =f(,%).
Now using (2.1) we have

S(f ). f (%,9),8,9)) + S(f O, %),f (3, %), g, %))
D((@,3),(5,9), (03) + 2D((5.9), (59), (F @90, 0,)

=

[N

+ 2D((x%,y), (5,7), (206, ), 80, %)) + %D((x,y), ®,9), (g(x,9),g,%)))

2
+2D((5.9),(59), (F ()£ 0,9))
+ £ D(072), 0,0, 00) + 3 D(0,), 0,2), (£ 0,20, :)))
+ 2 D((1%), 0,0, (601 2).g(6.))) + 5 D(0:), (), (6 ), 85,))
+2D((,), 002, (F3. )£ (5,9)))
= ‘%D(( ,9) (%), (x,)) + gD((x»y), (*,9), (x,9))
gD((x,y) ®2), (g(x,2),8(,%))) + %D((x,y), ®,9), (g(x,9),g0,%)))
+ 2D((5.9),(5,9), (7))
+ 2D(002), 000, 00) + 1D(01), (%), (3,)
+ 2 D((%), 0,0, (€01 2).g(5.))) + 5 D(0:), (), (6 ), 85,))
+ 2D((4), 0,0, )
= 2D((62), (59), (¢(x.9),80)) + ZD((5.9), (7). (¢(x.3),8014))
# 5 D(00, (002, (221, 267))) + 5 D(0: 9 (009, (g2 8.)))-
Therefore,

S(f (x,9),f (x,9),8(x, ) + S(f (3, %), f (3, %), g (9, %))
< (r+s)(S(xxg ) +S(1,5.8,%)))-

That is,

S(xx,g(x,9) + S(5,20,%)) < (r +9)(S(xx,gx2) + S(y,2,2,%))).
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Since 0 <r+s<1,wegetS(x,x,g(x,9) =S,7,2(,%)) = 0. Thatis, g(x,y) = xand g(y,x) = y.
Therefore, (x,y) is a coupled common fixed point of f and g.

Case 2.2. g is continuous. We can also prove that (x, y) is a coupled common fixed point
of f and g similarly as in Case 2.1.

Case 2.3. X satisfies two assumptions (a) and (b). Then by (2.3) we get x, <xand y <y,

for all n € N. By using Lemma 1.4 and Lemma 1.13, we have

D((x,9), (%,9), (f (%, 9).f 7, %)) )

<2D((%,9), (%,), %242, Y2n42)) + D(K2ms20 Y2n42)s K212, Yans2), (F (£, 9).f (3, %))

=2D((%,9), (%,), ®2ns2 Y2ns2)) + D((€X2ms15 Y2n41), EW2ns1, %2041))
(X241, Y2041, € D2ms1 X2041) ) > (F (%, ), (3, %))

<2D((x,9), (%,), %2425 Y2n+2)) + S(€*2n41, Y2n41)s € K21 Yans1)of (,9))
+ S(€Wan1 %2041, € W21, %201, f (0, %) )

= 28(x, %, Xons2) + 280 5 Yons2) + (€241 Yans1)s € F2mets Yane1), f (%, 7))
+ S(F 3, %), f 3, %), Y241, K2m41)) - (2.13)

By interchanging the roles of f and g and using (2.1), we have

S(g(x2n+l:y2n+l),g(x2n+lry2n+l);f(x’y))

< gD((x2n+1:y2n+1)! (%2041, Y2n41)> (%))
+ gD((x2n+lxy2n+l)’ (x2n+1’y2n+1)r (g(x2n+1’y2n+1)rg(y2n+1r x2n+1)))
+ gD((x,y), @), (fx9).f (3,%)))

+ iD((~762;1+1x}12n+1)v (x2n+1ry2n+1)r (f(x’y)’f(% x)))

© N

+ =D((%,9), (%), (§2n41, Y241)s € V2115 ¥2n41)) )

N

NS
2

(x2n+lry2n+l)) (x2n+1)y2n+1)v (x’y))

+

N Nl NI NI

D((%2n41> Y2n11)s 2041, Yans1)s K2ms2s Yons2)
+ =D((x,9), (%, ), (f (%, 9).f 7, %))
+ =D((%2ns1, Y2ne1)s F2ne1 Yans1)s (F(,9),f (9,%)))

+ D((x>y)’ (x,)/), (x2n+2ry2n+2))' (214)

Again, by using (2.1), we have

S(f(y,x),f(y;x);g(y2n+1)x2n+1))
= gD((% %), 9, %), O2ns1, x2n+1)) + gD(O’: x), (9, %), (f(% x),f(xd’)))
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+ g (21, %2041), D21, X21)s (€Wane1s ¥211), € (X2ns1, Y2i1)))
+ 2D(0 04, (801, %20:2),8 2011, 3200))
+ 2 D((20s1%2000), Ot %31 )s (0020 3)))
=2 D(09) 019 G, 2000) + 2D(010), 010, (£ 020, 5))
2 D((20s1 ¥2001)s Ot 8200 Onizs2012)) + 5 D(09) 018), 02, 53012)
+ 2 D(Onetr32), Ot et (F 2. 59))): (2.15)

It follows from (2.13), (2.14) and (2.15) that
D((%,9), (%, %), (f (%, 9),f (,%)) )
< 28(x,%, X342) + 25(9, Y5 Yane2) + ED((x2n+lry2n+l), (%241, Y2ne)s (%,))
T D(Goamets Yanet) Gomsts Yost)s Fonsns Yosa)) + D((x 9, %9, (f(x,9).f(5,%)))
+ =D ((%2ns1, Yane1) Foner, Yane1), (F(,9),f (0,%))) + D((x,y) (%, (X212, Y2n+2))
+ ZD((,%), 0 %), Yasr, Xame1)) + D((y %), (35%), (f %), f (%,9)) )

D((y2n+1’x2n+l) (y2n+lrx2n+1) (y2n+2;x2n+2)) + D(()/ x) (y x) (y2n+2:x2n+2))

wm NI\ ml"s l\JIC': NI

+ = D(02ns1s%2n01), Oanets X2un), (F 05 %), £ (x,9))).- (2.16)

By using Lemma 1.7 and taking the limit as # — oo in (2.16), we have

D((x,9), (%,9), (f (%, 9).f 7, %))

< 28(x,%,%) + 2S(,,y) + ED((x,y), (x,9), (%)) + gD((x,y); (*,9), (%,))

+ =D((x,9), ®%,2), (f®%2),f (%)) + D((x, (), (f %, 2),f(3,%)))

+ D((x,y),(x,y),(x,y)+ D((y,x), LX), ,x))

N N« l\DI\:

+ ED((y’ x)’ ()/; x)’ (f(y’ x),f(xry))) + ED((% x)’ ()’, x)r (yr x))
+2D((), 0020, 0) + 5D(009), 00, (£, 9).f (3)))
= 5oD((), (500, (F6. )£ 0r9)) + T=D(0,, 0, (F 000 £(5.9))- - (217)

It implies that

S(nnf @) + S(2,f 0,
= %(5 (%2 f (0,9) + (12.f 2))) + ( 3,9,/ 3 %)) + S(x,%,(x,9)))
_ r+q+2s

5 (SExflxy) + (y,y,f(y,x))). (218)
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Since %ﬂs <1, we have S(x,x,f (x, 7)) +S(y,,f (,x)) = 0, that s, f(x,y) = x and f (y,%) = y.
Similarly, one can show that g(x,y) = x and g(y,x) = y. This proves that (x,y) is a coupled
common fixed point of f and g. d

From Theorem 2.1, we have following corollaries.

Corollary 2.2 [27, Theorems 2.1 and 2.2] Let (X, <, d) be a partially ordered metric space;
f,g:X x X — X be two maps such that
1. X is complete;
2. The pair (f,g) has the mixed weakly monotone property on X; xo < f(x0,%0),
So,%0) < y0 or x0 < g(%0,50), g0, %0) =< yo for some xo,y0 € X;
3. There exist p,q,r,s > 0 satisfyingp + q +r + 2s <1 and

d(f(x, ,g(u,v))
maumwwgbAmwvu, f(,5)))

+ %Dd((u, V), (g(u, v),g(v, u))) + EDd((x,y), (g(u,v),g(v, 1))
+ 2Du((,), (F 90, 0,)) (219)

forall x,y,u,v e X with x < u and y > v, where D, is defined as in Lemma 1.12;
4. f or g is continuous or X has the following property:
(@) If{xy} is an increasing sequence with x, — x, then x, < x for all n e N;
b) If {x,} is an decreasing sequence with x,, — x, then x < x,, for all n € N.
Then f and g have a coupled common fixed point in X.

Proof It is a direct consequence of Lemma 1.10, Remark 1.14 and Theorem 2.1. O

For similar results of the following for maps on metric spaces and cone metric spaces,
the readers may refer to [6, Theorems 2.1, 2.2, 2.4 and 2.6] and [28, Theorem 3.1].

Corollary 2.3 Let (X, <X,S) be a partially ordered S-metric spaceandf : X x X — X bea
map such that
1. X is complete;
2. f has the mixed monotone property on X; xo < f(x0,90) and f (yo,x0) < yo _for some
%0,%0 € X;
3. There exist p,q,r,s > 0 satisfyingp +q +r +2s <1 and

S(f (), f (%, 9), f (1, v))
< —D((x,y), x,9), (,v)) + gD((x,y), @), (f(x.9).f (%))
D((u,v), (1, v), (f (), f (v, ) ) + %D((x,y), @ 9), (f , v), f (v 1))

NI‘A NI\

D((u v), (i, v), (f %N, f 0, x )) (2.20)

forall x,y,u,ve X withx <u and y > v;
4. f is continuous or X has the following property:
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(@) If {x,} is an increasing sequence with x,, — x, then x, < x for all n € N;
(b) If{x,} is an decreasing sequence with x,, — x, then x < x,, for all n € N.
Then f has a coupled fixed point in X.

Proof By choosing g = f in Theorem 2.1 and using Remark 1.20, we get the conclusion. [J

Corollary 2.4 Let (X, <,S) be a partially ordered S-metric spaceandf : X x X — X bea
map such that
1. X is complete;
2. f has the mixed monotone property on X; xo < f(x0,y0) and f(yo,%0) < yo for some
x0,Y0 € X;
3. There exists k € [0,1) satisfying

S(f(x’y)’f(x’y)’f(ur V)) = (S(x, X, 1) + 5(%)’, V)) (2.21)

N =

forallx,y,u,ve X withx < uand y > v;
4. f is continuous or X has the following property:
a) If {x,} is an increasing sequence with x,, — x, then x, < x for alln e N;
(b) If {x,} is an decreasing sequence with x,, — x, then x < x,, for all n € N.
Then f has a coupled fixed point in X.

Proof By choosingg =f andp =k, g =r =s=0in Theorem 2.1 and using Remark 1.20, we

get the conclusion. O

Corollary 2.5 Assume that X is a totally ordered set in addition to the hypotheses of The-
orem 2.1; in particular, Corollary 2.3, Corollary 2.4. Then f and g have a unique coupled

common fixed point (x,y) and x = y.

Proof By Theorem 2.1, f and g have a coupled common fixed point (x,y). Let (z,t) be
another coupled common fixed point of f and g. Without loss of generality, we may assume
that (x,y) < (z,£). Then by (2.1) and Lemma 1.3, we have

D((x,9), (x,9), (2, 1))
=S(x,x,2) + S(y,9,1)

= S(f (). f (5.9). 82 0)) + S(F 0. 2).f (,2), (2. 2))
< ‘IZD((x, 9),(6,9), (2 1)) + ED((’”)’ (*,9), (f (®9).f(,%)))

+ 2D((2.0), (2,1), (¢(21).¢(6,2))) + 5D((.), (5.7), (¢(a ). ¢(6,2)))
+ 50(@ 0, =0, (.90, 0,)) + £ D(02), (0., (,2)

+ 2D(0, 0,00, (F029).f (9))) + 2 D((6:2), 0,2, (8(6, 2 8(2.))
+ 5D(0:9, 09, (¢(6.2).8(2,1)) + 3 D((62), (6.2, (100, (5 )

NI’E

= 2D((x9), (), (2.8) + 1D((@), (5,9), () + 5D((2.0), @, 1), (1)
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D), (5,90, (2,8)) + > D((@,1), (2.0, (13) + 5 D(010), 010 (,2)
D((,%), (%), (%)) + ;D((t 2),(t2), (t,2)) + ;D((y %), (%), (£,2))

NI% NIQ NI‘A

D((t,2), (£,2), (7, %))

D

[SHRN]

@30, (59), @1) + >D((59), (03, (2.0) + D((@ 1), (. 8), (.7))

—_

((y x), (¥, %), (¢, z))+ D((y x), (y, %), tz))+ D((t 2), (t,2), (yx))

~
5 wm

(D), (90, (.0) + D((02), 04),(1.2)
= (p+25)(S(6,%,2) + S3, 3, ).

N

Since p + 2s <1, we have S(x,x,2) + S(,,£) =0. Then x = z and y = t. This proves that the
coupled common fixed point of f and g is unique.
Moreover, by using (2.1) and Lemma 1.3 again, we get

S@,%,9) = S(f (%, 9).f (%,9),g(3,%))
= 2D (), (03, 00) + 2D((), (59), (F 5.1 0, ))
# 5 D(00, 002, (220, 25,9))) + 5 D((9), (59), (g 2)2()))
+ 5D(04), 04, (5,20, 01)))
= 2D((.), (5.2, 0:9) + 2D((59), (03, 0,) + 3D(013), (0., (7))

= 222 D (), (59, 04 )

= (p +25)S(x,%,9).

Since p + 2s < 1, we get S(x,x,y) = 0, that is, x = y. O
Finally, we give an example to demonstrate the validity of the above results.

Example 2.6 Let X = R with the S-metric as in Example 1.6 and the usual order <. Then
X is a totally ordered, complete S-metric space. For all x,y € X, put

2x—y+11

flxy) =gxy) = 1

Then the pair (f,g) has the mixed weakly monotone property and

S(f(x:y),f(x,y):g(% V)) = ZV(x’y) _g(u’ V)’
2¢—y+11 2u-v+11
2 12

A

1
—|lx—ul+—=ly-v
o= ul + Iy =]

IA

(e + 1y ).
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Then the contraction (2.1) is satisfied with p = é and g = r = s = 0. Note that other as-

sumptions of Corollary 2.5 are also satisfied and (1,1) is the unique common fixed point
of fand g.
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