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1 Introduction
In recent years, there has been recent interest in establishing fixed point theorems on
ordered metric spaces with a contractivity condition which holds for all points that are
related by partial ordering.
In [], Ran and Reurings established the following fixed point theorem that extends the

Banach contraction principle to the setting of ordered metric spaces.

Theorem . (Ran and Reurings []) Let (X,�) be an ordered set endowed with a metric
d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) T is continuous nondecreasing (with respect to �);
(iii) there exists x ∈ X such that x � Tx;
(iv) there exists a constant k ∈ (, ) such that for all x, y ∈ X with x� y,

d(Tx,Ty) ≤ kd(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists a z ∈ X such that
x � z and y � z, we obtain uniqueness of the fixed point.

Nieto and López [] extended the above result for a mapping T not necessarily contin-
uous by assuming an additional hypothesis on (X,�,d).

Theorem . (Nieto and López []) Let (X,�) be an ordered set endowed with a metric d
and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x for

all n;
(iii) T is nondecreasing;
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(iv) there exists x ∈ X such that x � Tx;
(v) there exists a constant k ∈ (, ) such that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ kd(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists a z ∈ X such that
x � z and y� z, we obtain uniqueness of the fixed point.

Theorems . and . are extended and generalized by many authors. Before presenting
some of theses results, we need to introduce some functional sets.
Denote by� the set of functions ϕ : [,∞) → [,∞) satisfying the following conditions:

(�) ϕ is continuous nondecreasing;
(�) ϕ–({}) = {}.
Denote by S the set of functions β : [,∞)→ [, ) satisfying the following condition:

β(tn) –→  implies tn –→ .

Denote by � the set of functions θ : [,∞)  → [, ) which satisfy the condition:

θ (sn, tn) –→  implies tn, sn –→ .

Denote by � the set of functions ψ : [,∞) → [,∞) satisfying the following conditions:

(�) ψ(t) < t for all t > ;
(�) limr→t+ ψ(r) < t.

In [], Harjani and Sadarangani established the following results.

Theorem . (Harjani and Sadarangani []) Let (X,�) be an ordered set endowed with a
metric d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) T is continuous nondecreasing;
(iii) there exists x ∈ X such that x � Tx;
(iv) there exist ϕ,ψ ∈ � such that for all x, y ∈ X with x � y,

ψ
(
d(Tx,Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
.

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists a z ∈ X such that
x � z and y� z, we obtain uniqueness of the fixed point.

Theorem . (Harjani and Sadarangani []) Let (X,�) be an ordered set endowed with a
metric d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x for

all n;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
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(v) there exist ϕ,ψ ∈ � such that for all x, y ∈ X with x � y,

ψ
(
d(Tx,Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
.

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists a z ∈ X such that
x � z and y� z, we obtain uniqueness of the fixed point.

In [], Amini-Harandi and Emami established the following results.

Theorem . (Amini-Harandi and Emami []) Let (X,�) be an ordered set endowed with
a metric d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) T is continuous nondecreasing;
(iii) there exists x ∈ X such that x � Tx;
(iv) there exists β ∈ S such that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ β
(
d(x, y)

)
d(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists a z ∈ X such that
x � z and y� z, we obtain uniqueness of the fixed point.

Theorem . (Amini-Harandi and Emami []) Let (X,�) be an ordered set endowed with
a metric d and T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x for

all n;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
(v) there exists β ∈ S such that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ β
(
d(x, y)

)
d(x, y).

Then T has a fixed point. Moreover, if for all (x, y) ∈ X × X there exists a z ∈ X such that
x � z and y� z, we obtain uniqueness of the fixed point.

Remark . Jachymski [] established that Theorem . (resp. Theorem .) follows from
Theorem . (resp. Theorem .).

Remark . Theorems . and . hold if ϕ : [,∞) → [,∞) satisfies only the following
conditions: ϕ is lower semi-continuous and ϕ–({}) = {} (see, for example, []).

The following results are special cases of Theorem . in [].

Theorem . (Ćirić et al. []) Let (X,�) be an ordered set endowed with a metric d and
T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) T is continuous nondecreasing;
(iii) there exists x ∈ X such that x � Tx;
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(iv) there exists a continuous function ϕ : [,∞) → [,∞) with ϕ(t) < t for all t >  such
that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ ϕ
(
d(x, y)

)
.

Then T has a fixed point.

Theorem . (Ćirić et al. []) Let (X,�) be an ordered set endowed with a metric d and
T : X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x for

all n;
(iii) T is nondecreasing;
(iv) there exists x ∈ X such that x � Tx;
(v) there exists a continuous function ϕ : [,∞) → [,∞) with ϕ(t) < t for all t >  such

that for all x, y ∈ X with x � y,

d(Tx,Ty) ≤ ϕ
(
d(x, y)

)
.

Then T has a fixed point.

Remark . Theorems . and . hold if we suppose that ϕ ∈ � (see, for example, []).

Let X be a nonempty set and F : X × X → X be a given mapping. We say that (x, y) ∈
X ×X is a coupled fixed point of F if

x = F(x, y) and y = F(y,x).

In [], Bhaskar and Lakshmikantham established some coupled fixed point theorems on
ordered metric spaces and applied the obtained results to the study of existence and
uniqueness of solutions to a class of periodic boundary value problems. The obtained re-
sults in [] have been extended and generalized by many authors (see, for example, [,
–]).
In this paper, we will prove that most of the coupled fixed point theorems are in fact

immediate consequences of well-known fixed point theorems in the literature.

2 Main results
Let (X,�) be a partially ordered set endowed with ametric d and F : X×X → X be a given
mapping. We endow the product set X ×X with the partial order:

(x, y), (u, v) ∈ X ×X, (x, y) � (u, v) ⇐⇒ x � u, y� v.

Definition . F is said to have the mixedmonotone property if F(x, y) is monotone non-
decreasing in x and is monotone non-increasing in y, that is, for any x, y ∈ X,

x,x ∈ X, x � x =⇒ F(x, y) � F(x, y);

y, y ∈ X, y � y =⇒ F(x, y)� F(x, y).
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Let Y = X ×X. It is easy to show that the mappings η, δ : Y × Y → [,∞) defined by

η
(
(x, y), (u, v)

)
= d(x,u) + d(y, v);

δ
(
(x, y), (u, v)

)
=max

{
d(x,u),d(y, v)

}

for all (x, y), (u, v) ∈ Y , are metrics on Y .
Now, define the mapping T : Y → Y by

T(x, y) =
(
F(x, y),F(y,x)

)
for all (x, y) ∈ Y .

It is easy to show the following.

Lemma . The following properties hold:
(a) (X,d) is complete if and only if (Y ,η) and (Y , δ) are complete;
(b) F has the mixed monotone property if and only if T is monotone nondecreasing with

respect to �;
(c) (x, y) ∈ X ×X is a coupled fixed point of F if and only if (x, y) is a fixed point of T .

2.1 Bhaskar and Lakshmikantham’s coupled fixed point results
We present the obtained results in [] in the following theorem.

Theorem . (see Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
endowed with ametric d. Let F : X×X → X be a givenmapping. Suppose that the following
conditions hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(v) there exists a constant k ∈ (, ) such that for all (x, y), (u, v) ∈ X ×X with x � u and

y� v,

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
.

Then F has a coupled fixed point (x*, y*) ∈ X × X. Moreover, if for all (x, y), (u, v) ∈ X × X
there exists (z, z) ∈ X ×X such that (x, y)� (z, z) and (u, v) � (z, z), we have unique-
ness of the coupled fixed point and x* = y*.

We will prove the following result.

Theorem . Theorem . follows from Theorems . and ..
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Proof From (v), for all (x, y), (u, v) ∈ X ×X with x � u and y � v, we have

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]

and

d
(
F(v,u),F(y,x)

) ≤ k

[
d(x,u) + d(y, v)

]
.

This implies that for all (x, y), (u, v) ∈ X ×X with x � u and y� v,

d
(
F(x, y),F(u, v)

)
+ d

(
F(v,u),F(y,x)

) ≤ k
[
d(x,u) + d(y, v)

]
,

that is,

η
(
T(x, y),T(u, v)

) ≤ kη
(
(x, y), (u, v)

)

for all (x, y), (u, v) ∈ Y with (x, y) � (u, v). From Lemma ., since (X,d) is complete, (Y ,η)
is also complete. Since F has themixedmonotone property,T is a nondecreasingmapping
with respect to �. From (iv), we have (x, y) � T(x, y). Now, if F is continuous, then
T is continuous. In this case, applying Theorem ., we get that T has a fixed point, which
implies from Lemma . that F has a coupled fixed point. If conditions (X) and (X) are
satisfied, then Y satisfies the following property: if a nondecreasing (with respect to �)
sequence {un} in Y converges to some point u ∈ Y , then un � u for all n. Applying Theo-
rem ., we get that T has a fixed point, which implies that F has a coupled fixed point. If,
in addition, we suppose that for all (x, y), (u, v) ∈ X × X there exists (z, z) ∈ X × X such
that (x, y)� (z, z) and (u, v) � (z, z), from the last part of Theorems . and ., we ob-
tain the uniqueness of the fixed point of T , which implies the uniqueness of the coupled
fixed point of F . Now, let (x*, y*) ∈ X×X be a unique coupled fixed point of F . Since (y*,x*)
is also a coupled fixed point of F , we get x* = y*. �

2.2 Harjani, López and Sadarangani’s coupled fixed point results
We present the results obtained in [] in the following theorem.

Theorem . (see Harjani et al. []) Let (X,�) be a partially ordered set endowed with
a metric d. Let F : X × X → X be a given mapping. Suppose that the following conditions
hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);

http://www.fixedpointtheoryandapplications.com/content/2013/1/50
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(v) there exist ψ ,ϕ ∈ � such that for all (x, y), (u, v) ∈ X ×X with x � u and y� v,

ψ
(
d
(
F(x, y),F(u, v)

)) ≤ ψ
(
max

{
d(x,u),d(y, v)

})
– ϕ

(
max

{
d(x,u),d(y, v)

})
.

Then F has a coupled fixed point (x*, y*) ∈ X × X. Moreover, if for all (x, y), (u, v) ∈ X × X
there exists (z, z) ∈ X ×X such that (x, y)� (z, z) and (u, v) � (z, z), we have unique-
ness of the coupled fixed point and x* = y*.

We will prove the following result.

Theorem . Theorem . follows from Theorems . and ..

Proof From (v), for all (x, y), (u, v) ∈ X ×X with x � u and y � v, we have

ψ
(
d
(
F(x, y),F(u, v)

)) ≤ ψ
(
max

{
d(x,u),d(y, v)

})
– ϕ

(
max

{
d(x,u),d(y, v)

})

and

ψ
(
d
(
F(v,u),F(y,x)

)) ≤ ψ
(
max

{
d(x,u),d(y, v)

})
– ϕ

(
max

{
d(x,u),d(y, v)

})
.

This implies (since ψ is nondecreasing) that for all (x, y), (u, v) ∈ X × X with x � u and
y� v,

ψ
(
max

{
d
(
F(x, y),F(u, v)

)
,d

(
F(v,u),F(y,x)

)})
≤ ψ

(
max

{
d(x,u),d(y, v)

})
– ϕ

(
max

{
d(x,u),d(y, v)

})
,

that is,

ψ
(
δ
(
T(x, y),T(u, v)

)) ≤ ψ
(
δ
(
(x, y), (u, v)

))
– ϕ

(
δ
(
(x, y), (u, v)

))

for all (x, y), (u, v) ∈ Y with (x, y) � (u, v). Thus we proved that the mapping T satisfies
the condition (iv) (resp. (v)) of Theorem . (resp. Theorem .). The rest of the proof is
similar to the above proof. �

2.3 Lakshmikantham and Ćirić’s coupled fixed point results
In [], putting g = iX (the identity mapping), we obtain the following result.

Theorem . (see Lakshmikantham and Ćirić’s []) Let (X,�) be a partially ordered set
endowed with ametric d. Let F : X×X → X be a givenmapping. Suppose that the following
conditions hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

http://www.fixedpointtheoryandapplications.com/content/2013/1/50
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(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(v) there exists ϕ ∈ � such that for all (x, y), (u, v) ∈ X ×X with x� u and y � v,

d
(
F(x, y),F(u, v)

) ≤ ϕ

(
d(x,u) + d(y, v)



)
.

Then F has a coupled fixed point.

We will prove the following result.

Theorem . Theorem . follows from Theorems . and ..

Proof From (v), for all (x, y), (u, v) ∈ X ×X with x � u and y � v, we have

d
(
F(x, y),F(u, v)

) ≤ ϕ

(
d(x,u) + d(y, v)



)

and

d
(
F(v,u),F(y,x)

) ≤ ϕ

(
d(x,u) + d(y, v)



)
.

This implies that for all (x, y), (u, v) ∈ X ×X with x � u and y� v,

d(F(x, y),F(u, v)) + d(F(v,u),F(y,x))


≤ ϕ

(
d(x,u) + d(y, v)



)
,

that is,

η′(T(x, y),T(u, v)) ≤ ϕ
(
η′((x,u), (y, v)))

for all (x, y), (u, v) ∈ Y with (x, y) � (u, v). Here, η′ : Y × Y → [,∞) is the metric on Y
given by

η′((x, y), (u, v)) = η((x, y), (u, v))


for all (x, y), (u, v) ∈ Y .

Thus we proved that the mapping T satisfies the condition (iv) (resp. (v)) of Theorem .
(resp. Theorem .). Then T has a fixed point, which implies that F has a coupled fixed
point. �

2.4 Luong and Thuan’s coupled fixed point results
Luong and Thuan [] presented a coupled fixed point result involving an ICS mapping.

Definition . Let (X,d) be a metric space. A mapping S : X → X is said to be ICS if
S is injective, continuous and has the property: for every sequence {xn} in X, if {Sxn} is
convergent, then {xn} is also convergent.

We have the following result.

http://www.fixedpointtheoryandapplications.com/content/2013/1/50
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Lemma . Let (X,d) be a metric space and S : X → X be an ICS mapping. Then the
mapping dS : X ×X → [,∞) defined by

dS(x, y) = d(Sx,Sy) for all x, y ∈ X,

is a metric on X.Moreover, if (X,d) is complete, then (X,dS) is also complete.

Proof Let us prove that dS is a metric on X. Let x, y ∈ X such that dS(x, y) = . This implies
that Sx = Sy. Since S is injective, we obtain that x = y. Other properties of themetric can be
easily checked. Now, suppose that (X,d) is complete and let {xn} be a Cauchy sequence in
themetric space (X,dS). This implies that {Sxn} is Cauchy in (X,d). Since (X,d) is complete,
{Sxn} is convergent in (X,d) to some point y ∈ X. Since S is an ICS mapping, {xn} is also
convergent in (X,d) to some point x ∈ X. On the other hand, the continuity of S implies
the convergence of {Sxn} in (X,d) to Sx. By the uniqueness of the limit in (X,d), we get that
y = Sx, which implies that dS(xn,x) –→  as n –→ ∞. Thus {xn} is a convergent sequence
in (X,dS). This proves that (X,dS) is complete. �

The obtained result in [] is the following.

Theorem . (see Luong and Thuan []) Let (X,�) be a partially ordered set endowed
with a metric d. Let S : X → X be an ICS mapping. Let F : X ×X → X be a given mapping.
Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(v) there exists ψ ∈ � such that for all (x, y), (u, v) ∈ X ×X with x� u and y� v,

d
(
SF(x, y),SF(u, v)

) ≤ 

ψ

(
d(Sx,Su) + d(Sy,Sv)

)
.

Then F has a coupled fixed point.

We will prove the following result.

Theorem . Theorem . follows from Theorems . and ..

Proof The condition (v) implies that for all (x, y), (u, v) ∈ X ×X with x� u and y� v,

dS
(
F(x, y),F(u, v)

)
+ dS

(
F(v,u),F(y,x)

) ≤ ψ
(
dS(x,u) + dS(y, v)

)
,

that is,

ηS
(
T(x, y),T(u, v)

) ≤ ψ
(
ηS

(
(x, y), (u, v)

))
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/50
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for all (x, y), (u, v) ∈ Y with (x, y) � (u, v), where ηS is the metric (see Lemma .) on Y
defined by

ηS
(
(x, y), (u, v)

)
= dS(x,u) + dS(y, v) for all (x, y), (u, v) ∈ Y .

Thus we proved that the mapping T satisfies the condition (iv) (resp. (v)) of Theorem .
(resp. Theorem .). Then T has a fixed point, which implies that F has a coupled fixed
point. �

2.5 Berind’s coupled fixed point results
The following result was established in [].

Theorem . (see Berinde []) Let (X,�) be a partially ordered set endowed with a met-
ric d. Let F : X ×X → X be a given mapping. Suppose that the following conditions hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(v) there exists a constant k ∈ (, ) such that for all (x, y), (u, v) ∈ X ×X with x � u and

y� v,

d
(
F(x, y),F(u, v)

)
+ d

(
F(y,x),F(v,u)

) ≤ k
[
d(x,u) + d(y, v)

]
.

Then F has a coupled fixed point (x*, y*) ∈ X × X. Moreover, if for all (x, y), (u, v) ∈ X × X
there exists (z, z) ∈ X ×X such that (x, y)� (z, z) and (u, v) � (z, z), we have unique-
ness of the coupled fixed point and x* = y*.

We have the following result.

Theorem . Theorem . follows from Theorems . and ..

Proof From the condition (v), the mapping T satisfies

η
(
T(x, y),T(u, v)

) ≤ kη
(
(x, y), (u, v)

)

for all (x, y), (u, v) ∈ Y with (x, y) � (u, v). Thus we proved that the mapping T satisfies
the condition (iv) (resp. (v)) of Theorem . (resp. Theorem .). Then T has a fixed point,
which implies that F has a coupled fixed point. The rest of the proof is similar to the above
proofs. �
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2.6 Rasouli and Bahrampour’s coupled fixed point results
Theorem . (see Rasouli and Bahrampour []) Let (X,�) be a partially ordered set
endowed with ametric d. Let F : X×X → X be a givenmapping. Suppose that the following
conditions hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(v) there exists β ∈ S such that for all (x, y), (u, v) ∈ X ×X with x� u and y� v,

d
(
F(x, y),F(u, v)

) ≤ β
(
max

{
d(x,u),d(y, v)

})
max

{
d(x,u),d(y, v)

}
.

Then F has a coupled fixed point (x*, y*) ∈ X × X. Moreover, if for all (x, y), (u, v) ∈ X × X
there exists (z, z) ∈ X ×X such that (x, y)� (z, z) and (u, v) � (z, z), we have unique-
ness of the coupled fixed point and x* = y*.

We have the following result.

Theorem . Theorem . follows from Theorems . and ..

Proof From the condition (v), the mapping T satisfies

δ
(
T(x, y),T(u, v)

) ≤ β
(
δ
(
(x, y), (u, v)

))
δ
(
(x, y), (u, v)

)

for all (x, y), (u, v) ∈ Y with (x, y) � (u, v). Thus we proved that the mapping T satisfies
the condition (iv) (resp. (v)) of Theorem . (resp. Theorem .). Then T has a fixed point,
which implies that F has a coupled fixed point. The rest of the proof is similar to the above
proofs. �
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