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Abstract
Let q > 1 and let K be a nonempty, closed and convex subset of a q-uniformly smooth
real Banach space E. Let T : K → CB(K ) be a multi-valued strictly pseudo-contractive
map with a nonempty fixed point set. A Krasnoselskii-type iteration sequence {xn} is
constructed and proved to be an approximate fixed point sequence of T , i.e.,
limn→∞ d(xn, Txn) = 0. This result is then applied to prove strong convergence
theorems for a fixed point of T under additional appropriate conditions. Our theorems
improve several important well-known results.
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1 Introduction
For decades, the study of fixed point theory for multi-valued nonlinear mappings has at-
tracted, and continues to attract, the interest of several well-known mathematicians (see,
for example, Brouwer [], Kakutani [], Nash [, ], Geanakoplos [], Nadla [], Downing
and Kirk []).
Interest in the study of fixed point theory for multi-valued maps stems, perhaps, mainly

from the fact that many problems in some areas of mathematics such as in Game Theory
and Market Economy and in Non-Smooth Differential Equations can be written as fixed
point problems for multi-valued maps. We describe briefly the connection of fixed point
theory for multi-valued mappings and these applications.

Game theory andmarket economy
In game theory andmarket economy, the existence of equilibriumwas uniformly obtained
by the application of a fixed point theorem. In fact, Nash [, ] showed the existence
of equilibria for non-cooperative static games as a direct consequence of Brouwer [] or
Kakutani [] fixed point theorem.More precisely, under some regularity conditions, given
a game, there always exists amulti-valuedmapwhose fixed points coincide with the equi-
librium points of the game. A model example of such an application is the Nash equilib-
rium theorem (see, e.g., []).
Consider a gameG = (un,Kn) withN players denoted by n, n = , . . . ,N , where Kn ⊂R

mn

is the set of possible strategies of the nth player and is assumed to be nonempty, compact
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and convex and un : K := K×K · · ·×KN →R is the payoff (or gain function) of the player
n and is assumed to be continuous. The player n can take individual actions, represented
by a vector σn ∈ Kn. All players together can take a collective action, which is a combined
vector σ = (σ,σ, . . . ,σN ). For each n, σ ∈ K and zn ∈ Kn, wewill use the following standard
notations:

K–n := K × · · · ×Kn– ×Kn+ × · · · ×KN ,

σ–n := (σ, . . . ,σn–,σn+, . . . ,σN ),

(zn,σ–n) := (σ, . . . ,σn–, zn,σn+, . . . ,σN ).

A strategy σ̄n ∈ Kn permits the nth player to maximize his gain under the condition that
the remaining players have chosen their strategies σ–n if and only if

un(σ̄n,σ–n) = max
zn∈Kn

un(zn,σ–n).

Now, let Tn : K–n → Kn be the multi-valued map defined by

Tn(σ–n) :=Argmax
zn∈Kn

un(zn,σ–n) ∀σ–n ∈ K–n.

Definition A collective action σ̄ = (σ̄, . . . , σ̄N ) ∈ K is called a Nash equilibrium point if,
for each n, σ̄n is the best response for the nth player to the action σ̄–n made by the remain-
ing players. That is, for each n,

un(σ̄ ) = max
zn∈Kn

un(zn, σ̄–n) (.)

or, equivalently,

σ̄n ∈ Tn(σ̄–n). (.)

This is equivalent to σ̄ is a fixed point of the multi-valued map T : K → K defined by

T(σ ) :=
[
T(σ–),T(σ–), . . . ,TN (σ–N )

]
.

From the point of view of social recognition, game theory is perhaps themost successful
area of application of fixed point theory of multi-valued mappings. However, it has been
remarked that the applications of this theory to equilibrium are mostly static: they en-
hance understanding of conditions under which equilibrium may be achieved but do not
indicate how to construct a process starting from a non-equilibrium point and convergent
to an equilibrium solution. This is part of the problem that is being addressed by iterative
methods for a fixed point of multi-valued mappings.

Non-smooth differential equations
The mainstream of applications of fixed point theory for multi-valued maps has been ini-
tially motivated by the problem of differential equations (DEs) with discontinuous right-
hand sides which gave birth to the existence theory of differential inclusion (DI). Here is
a simple model for this type of application.
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Consider the initial value problem

du
dt

= f (t,u), a.e. t ∈ I := [–a,a],u() = u. (.)

If f : I × R → R is discontinuous with bounded jumps, measurable in t, one looks for
solutions in the sense of Filippov [] which are solutions of the differential inclusion

du
dt

∈ F(t,u), a.e. t ∈ I,u() = u, (.)

where

F(t,x) =
[
lim inf
y→x

f (t, y), lim sup
y→x

f (t, y)
]
. (.)

Now, set H := L(I) and let NF : H → H be the multi-valued Nemystkii operator defined
by

NF (u) :=
{
v ∈H : v(t) ∈ F

(
t,u(t)

)
a.e. t ∈ I

}
.

Finally, let T : H → H be a multi-valued map defined by T := NF ◦ L–, where L– is the
inverse of the derivative operator Lu = u′ given by

L–v(t) := u +
∫ t


v(s)ds.

One can see that problem (.) reduces to the fixed point problem: u ∈ Tu.
Finally, a variety of fixed point theorems for multi-valued maps with nonempty and

convex values is available to conclude the existence of a solution. We used a first-order
differential equation as a model for simplicity of presentation, but this approach is most
commonly used with respect to second-order boundary value problems for ordinary dif-
ferential equations or partial differential equations. For more details about these topics,
one can consult [–] and references therein as examples. Let E be a real normed linear
space of dimension ≥ . Themodulus of smoothness of E, ρE , is defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ = τ

}
, τ > .

A normed linear space E is called uniformly smooth if

lim
τ→

ρE(τ )
τ

= .

It is well known (see, e.g., [], p., []) that ρE is nondecreasing. If there exist a constant
c >  and a real number q >  such that ρE(τ ) ≤ cτ q, then E is said to be q-uniformly smooth.
Typical examples of such spaces are the Lp, �p andWm

p spaces for  < p < ∞, where

Lp (or lp) orWm
p is

{
-uniformly smooth if  ≤ p < ∞;
p-uniformly smooth if  < p < .
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Let Jq denote the generalized duality mapping from E to E∗ defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖q and ‖f ‖ = ‖x‖q–},

where 〈·, ·〉 denotes the generalized duality pairing. J is called thenormalized dualitymap-
ping and is denoted by J . It is well known that if E is smooth, Jq is single-valued.
Every uniformly smooth space has a uniformly Gâteaux differentiable norm (see, e.g.,

[], p.).
Let K be a nonempty subset of E. The set K is called proximinal (see, e.g., [–]) if for

each x ∈ E, there exists u ∈ K such that

d(x,u) = inf
{‖x – y‖ : y ∈ K

}
= d(x,K),

where d(x, y) = ‖x – y‖ for all x, y ∈ E. Every nonempty, closed and convex subset of a real
Hilbert space is proximinal. Let CB(K) and P(K) denote the families of nonempty, closed
and bounded subsets and nonempty, proximinal and bounded subsets of K , respectively.
The Hausdorff metric on CB(K) is defined by

D(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

for all A,B ∈ CB(K). Let T :D(T) ⊆ E → CB(E) be amulti-valued mapping on E. A point
x ∈ D(T) is called a fixed point of T if x ∈ Tx. The fixed point set of T is denoted by
F(T) := {x ∈D(T) : x ∈ Tx}.
A multi-valued mapping T : D(T) ⊆ E → CB(E) is called L-Lipschitzian if there exists

L >  such that

D(Tx,Ty)≤ L‖x – y‖ ∀x, y ∈ D(T). (.)

When L ∈ (, ) in (.), we say that T is a contraction, and T is called nonexpansive if
L = .

Definition . Let K be a nonempty subset of a real Hilbert space H . A map T : K → H
is called k-strictly pseudo-contractive if there exists k ∈ (, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥x – y – (Tx – Ty)

∥∥ ∀x, y ∈ K . (.)

Browder and Petryshyn [] introduced and studied the class of strictly pseudo-contrac-
tive maps as an important generalization of the class of nonexpansive maps (mappings T :
K → K satisfying ‖Tx–Ty‖ ≤ ‖x– y‖ ∀x, y ∈ K ). It is trivial to see that every nonexpansive
map is strictly pseudo-contractive.
Motivated by this, Chidume et al. [] introduced the class of multi-valued strictly

pseudo-contractivemaps defined on a real Hilbert space H as follows.

Definition . A multi-valued map T : D(T) ⊂ H → CB(H) is called k-strictly pseudo-
contractive if there exists k ∈ (, ) such that for all x, y ∈D(T),

(
D(Tx,Ty)

) ≤ ‖x – y‖ + k
∥∥x – y – (u – v)

∥∥ ∀u ∈ Tx, v ∈ Ty. (.)
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They then proved convergence theorems for approximating fixed points ofmulti-valued
strictly pseudo-contractive maps (see []) which extend recent results from the class of
multi-valued nonexpansive maps to the more general and important class of multi-valued
strictly pseudo-contractive maps.
Single-valued strictly pseudo-contractive maps have also been defined and studied in

real Banach spaces, which are much more general than Hilbert spaces.

Definition . Let K be a nonempty subset of a real normed space E. A map T : K → E is
called k-strictly pseudo-contractive (see, e.g., [], p., []) if there exists k ∈ (, ) such
that for all x, y ∈ K , there exists j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – k
∥∥x – y – (Tx – Ty)

∥∥. (.)

In this paper, we define multi-valued strictly pseudo-contractive maps in arbitrary
normed space E as follows.

Definition . A multi-valued map T : D(T) ⊂ E → CB(E) is called k-strictly pseudo-
contractive if there exists k ∈ (, ) such that for all x, y ∈D(T),

k
(
D(Ax,Ay)

) ≤ 〈
u – v, j(x – y)

〉 ∀u ∈ Ax, v ∈ Ay, (.)

where A := I – T and I is the identity map on E.

We observe that if T is single-valued, then inequality (.) reduces to (.).
Several papers deal with the problemof approximating fixed points ofmulti-valued non-

expansive mappings defined on Hilbert spaces (see, for example, Sastry and Babu [], Pa-
nyanak [], Song and Wong [], Khan et al. [], Abbas et al. [] and the references
contained therein) and their generalizations (see, e.g., Chidume et al. [] and the refer-
ences contained therein).
Chidume et al. [] proved the following theorem for multi-valued k-strictly pseudo-

contractive mappings defined on real Hilbert spaces.

Theorem CCDM (Theorem . []) Let K be a nonempty, closed and convex subset of
a real Hilbert space H . Suppose that T : K → CB(K) is a multi-valued k-strictly pseudo-
contractive mapping such that F(T) �= ∅. Assume that Tp = {p} for all p ∈ F(T). Let {xn} be
a sequence defined iteratively from x ∈ K by

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn and λ ∈ (,  – k). Then limn→∞ d(xn,Txn) = .

Using Theorem CCDM, Chidume et al. proved several convergence theorems for the
approximation of fixed points of strictly pseudo-contractive maps under various addi-
tional mild compactness-type conditions either on the operator T or on the domain of T .
The theorems proved in [] are significant generalizations of several important results
on Hilbert spaces (see, e.g., []).
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Our purpose in this paper is to extend TheoremCCDMand other related results in [],
using Definition ., from Hilbert spaces to the much more general class of q-uniformly
smooth real Banach spaces. As we have noted, theses spaces include the Lp, lp and Wm,p

spaces,  < p < ∞ and m ≥ . Finally, we give important examples of multi-valued maps
satisfying the conditions of our theorems.

2 Preliminaries
In the sequel, we need the following definitions and results.

Definition . Let E be a real Banach space and T be amulti-valuedmapping. Themulti-
valued map (I –T) is said to be strongly demiclosed at  (see, e.g., []) if for any sequence
{xn} ⊆ D(T) such that {xn} converges strongly to x* and d(xn,Txn) converges to , then
d(x*,Tx*) = .

Lemma . [] Let E be a reflexive real Banach space and let A,B ∈ CB(X). Assume that
B is weakly closed. Then, for every a ∈ A, there exists b ∈ B such that

‖a – b‖ ≤ D(A,B). (.)

Proposition . Let K be a nonempty subset of a real Banach space E and let T : K →
CB(K) be a multi-valued k-strictly pseudo-contractive mapping. Assume that for every x ∈
K , Tx is weakly closed. Then T is Lipschitzian.

Proof We first observe that for any x ∈ D(T), the set Tx is weakly closed if and only if the
set Ax is weakly closed. Now, let x, y ∈ D(T) and u ∈ Ax. From Lemma ., there exists
v ∈ Ay such that

‖u – v‖ ≤ D(Ax,Ay). (.)

Using the fact that T is k-strictly pseudo-contractive and inequality (.), we have

k
(
D(Ax,Ay)

) ≤ 〈
u – v, j(x – y)

〉
≤ ‖u – v‖‖x – y‖
≤ D(Ax,Ay)‖x – y‖.

So,

D(Ax,Ay) ≤ 
k
‖x – y‖ ∀x, y ∈D(T). (.)

From the definition of the Hausdorff distance, we have

D(Tx,Ty)≤ D(Ax,Ay) + ‖x – y‖ ∀x, y ∈D(T). (.)

Using (.) and (.), we obtain

D(Tx,Ty)≤ Lk‖x – y‖ ∀x, y ∈ D(T), where Lk :=
 + k
k

.

Therefore, T is Lk-Lipschitzian. �
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Remark  We note that for a single-valued map T , for each x ∈D(T), the set Tx is always
weakly closed.

Lemma . Let q > , E be a q-uniformly smooth real Banach space, k ∈ (, ). Suppose T :
D(T)⊂ E → CB(E) is a multi-valued map with F(T) �= ∅, and for all x ∈D(T), x* ∈ F(T),

k
(
D

(
Ax,Ax*

)) ≤ 〈
u – v*, j

(
x – x*

)〉 ∀u ∈ Ax, v* ∈ Ax*, (.)

where A := I –T , I is the identity map on E. If Tx* = {x*} for all x* ∈ F(T), then the following
inequality holds:

〈
x – y, jq

(
x – x*

)〉 ≥ kq–‖x – y‖q, ∀x ∈D(T),∀y ∈ Tx.

Proof Let x ∈ D(T), u ∈ Ax, x* ∈ F(T). Then, from inequality (.), the definition of the
Hausdorff metric and the assumption that Tx* = {x*}, we have

k
(
D

(
Ax,Ax*

)) ≤ ‖u‖∥∥x – x*
∥∥ ≤ D

(
Ax,Ax*

)∥∥x – x*
∥∥.

So,

kD
(
Ax,Ax*

) ≤ ∥∥x – x*
∥∥ ∀x ∈D(T),x* ∈ F(T). (.)

Therefore, for all x ∈ D(T), y ∈ Tx, x* ∈ F(T) such that x �= x*, using inequalities (.) and
(.) and the fact that jq(x – x*) = ‖x – x*‖q–j(x – x*), we obtain

〈
x – y, jq

(
x – x*

)〉
=

∥∥x – x*
∥∥q–〈x – y, j

(
x – x*

)〉
≥ kq–

(
D

(
Ax,Ax*

))q
≥ kq–‖x – y‖q.

D(Ax,Ax*) ≥ ‖x – x*‖ since Tx* = {x*}. This completes the proof. �

Lemma . Let K be a nonempty closed subset of a real Banach space E and let T : K →
P(K) be a k-strictly pseudo-contractive mapping. Assume that for every x ∈ K , Tx is weakly
closed. Then (I – T) is strongly demiclosed at zero.

Proof Let {xn} ⊆ K be such that xn → x and d(xn,Txn) →  as n → ∞. Since K is closed,
we have that x ∈ K . Since, for every n, Txn is proximinal, let yn ∈ Txn such that ‖xn – yn‖ =
d(xn,Txn). Using Lemma ., for each n, there exists zn ∈ Tx such that

‖yn – zn‖ ≤ D(Txn,Tx).

We then have

‖x – zn‖ ≤ ‖x – xn‖ + ‖xn – yn‖ + ‖yn – zn‖
≤ ‖x – xn‖ + ‖xn – yn‖ +D(Txn,Tx)

≤ ‖x – xn‖ + ‖xn – yn‖ + Lk‖xn – x‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/58
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Observing that d(x,Tx)≤ ‖x – zn‖, it then follows that

d(x,Tx)≤ ‖x – xn‖ + ‖xn – yn‖ + Lk‖xn – x‖.

Taking limit as n → ∞, we have that d(x,Tx) = . Therefore x ∈ Tx. The proof is com-
pleted. �

Lemma . [] Let q >  and E be a smooth real Banach space. Then the following are
equivalent:

(i) E is q-uniformly smooth.
(ii) There exists a constant dq >  such that for all x, y ∈ E,

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+ dq‖y‖q.

(iii) There exists a constant cq >  such that for all x, y ∈ E and λ ∈ [, ],

∥∥( – λ)x + λy
∥∥q ≥ ( – λ)‖x‖q + λ‖y‖q –wq(λ)cq‖x – y‖q,

where wq(λ) := λq( – λ) + λ( – λ)q.

From now on, dq denotes the constant that appeared in Lemma .. Let μ := min{,
( qk

q–

dq )


q– }.

3 Main results
We prove the following theorem.

Theorem . Let q >  be a real number and K be a nonempty, closed and convex subset of
a q-uniformly smooth real Banach space E. Suppose that T : K → CB(K) is a multi-valued
k-strictly pseudo-contractive mapping such that F(T) �= ∅ and such that Tp = {p} for all
p ∈ F(T). For arbitrary x ∈ K and λ ∈ (,μ), let {xn} be a sequence defined iteratively by

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn. Then limn→∞ d(xn,Txn) = .

Proof Let x* ∈ F(T). Then, using the recursion formula (.), Lemmas . and ., we have

∥∥xn+ – x*
∥∥q =

∥∥xn – x* – λ(xn – yn)
∥∥q

≤ ∥∥xn – x*
∥∥q – λq

〈
xn – yn, jq

(
xn – x*

)〉
+ λqdq‖xn – yn‖q

≤ ∥∥xn – x*
∥∥q – qλkq–‖xn – yn‖q + λqdq‖xn – yn‖q

=
∥∥xn – x*

∥∥q – λ
(
qkq– – dqλq–)‖xn – yn‖q. (.)

It follows that

∞∑
n=

‖xn – yn‖q <∞.

Hence, limn→∞ ‖xn – yn‖ = . Since yn ∈ Txn, we have that limn→∞ d(xn,Txn) = . �

http://www.fixedpointtheoryandapplications.com/content/2013/1/58
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A mapping T : K → CB(K) is called hemicompact if, for any sequence {xn} in K such
that d(xn,Txn) →  as n → ∞, there exists a subsequence {xnj} of {xn} such that xnj →
p ∈ K . We note that if K is compact, then every multi-valued mapping T : K → CB(K) is
hemicompact.
We now prove the following corollaries of Theorem ..

Corollary . Let q >  be a real number and K be a nonempty, closed and convex subset
of a q-uniformly smooth real Banach space E. Let T : K → CB(K) be a multi-valued k-
strictly pseudo-contractive mapping with F(T) �= ∅ and such that Tp = {p} for all p ∈ F(T).
Suppose that T is continuous and hemicompact. Let {xn} be a sequence defined iteratively
from x ∈ K by

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn and λ ∈ (,μ). Then the sequence {xn} converges strongly to a fixed point
of T .

Proof From Theorem ., we have limn→∞ d(xn,Txn) = . Since T is hemicompact, there
exists a subsequence {xnj} of {xn} such that xnj → p for some p ∈ K . Since T is continuous,
we have d(xnj ,Txnj ) → d(p,Tp). Therefore, d(p,Tp) =  and so p ∈ F(T). Setting x* = p in
the proof of Theorem ., it follows from inequality (.) that limn→∞ ‖xn – p‖ exists. So,
{xn} converges strongly to p. This completes the proof. �

Corollary . Let q >  be a real number and K be a nonempty, compact and convex subset
of a q-uniformly smooth real Banach space E. Let T : K → CB(K) be a multi-valued k-
strictly pseudo-contractive mapping with F(T) �= ∅ and such that Tp = {p} for all p ∈ F(T).
Suppose that T is continuous. Let {xn} be a sequence defined iteratively from x ∈ K by

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn and λ ∈ (,μ). Then the sequence {xn} converges strongly to a fixed point
of T .

Proof Observing that if K is compact, every map T : K → CB(K) is hemicompact, the
proof follows from Corollary .. �

Remark  In Corollary ., the continuity assumption on T can be dispensed if we as-
sume that for every x ∈ K , the set Tx is proximinal and weakly closed. In fact, we have the
following result.

Corollary . Let q >  be a real number and K be a nonempty, closed and convex subset
of a q-uniformly smooth real Banach space E. Let T : K → CB(K) be a multi-valued k-
strictly pseudo-contractive mapping with F(T) �= ∅ and such that for every x ∈ K , Tx is
weakly closed and Tp = {p} for all p ∈ F(T). Suppose that T is hemicompact. Let {xn} be a
sequence defined iteratively from x ∈ K by

xn+ = ( – λ)xn + λyn, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/58
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where yn ∈ Txn and λ ∈ (,μ). Then the sequence {xn} converges strongly to a fixed point
of T .

Proof Following the same arguments as in the proof of Corollary ., we have xnj → p and
limn→∞ d(xnj ,Txnj ) = . Furthermore, from Lemma ., (I – T) is strongly demiclosed at
zero. It then follows that p ∈ Tp. Setting x* = p and following the same computations as in
the proof of Theorem ., we have from inequality (.) that lim‖xn –p‖ exists. Since {xnj}
converges strongly to p, it follows that {xn} converges strongly to p ∈ F(T). The proof is
completed. �

A mapping T : K → CB(K) is said to satisfy Condition (I) if there exists a strictly in-
creasing function f : [,∞)→ [,∞) with f () = , f (r) >  for all r ∈ (,∞) such that

d
(
x,T(x)

) ≥ f
(
d
(
x,F(T)

)) ∀x ∈ D.

Convergence theorems have been proved in real Hilbert spaces for multi-valued non-
expansive mappings T under the assumption that T satisfies Condition (I) (see, e.g.,
[, ]). The following corollary extends such theorems to multi-valued strictly pseudo-
contractive maps and to q-uniformly smooth real Banach spaces.

Corollary . Let q >  be a real number and K be a nonempty, closed and convex subset of
a q-uniformly smooth real Banach space E. Let T : K → P(K) be a multi-valued k-strictly
pseudo-contractive mapping with F(T) �= ∅ and such that for every x ∈ K , Tx is weakly
closed and Tp = {p} for all p ∈ F(T). Suppose that T satisfies Condition (I). Let {xn} be a
sequence defined iteratively from x ∈ K by

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn and λ ∈ (,μ). Then the sequence {xn} converges strongly to a fixed point
of T .

Proof From Theorem ., we have limn→∞ d(xn,Txn) = . Using the fact that T satisfies
Condition (I), it follows that limn→∞ f (d(xn,F(T))) = . Thus there exist a subsequence
{xnj} of {xn} and a sequence {pj} ⊂ F(T) such that

‖xnj – pj‖ < 
j

∀j ∈N.

By setting x* = pj and following the same arguments as in the proof of Theorem ., we
obtain from inequality (.) that

‖xnj+ – pj‖ ≤ ‖xnj – pj‖ < 
j
.

We now show that {pj} is a Cauchy sequence in K . Notice that

‖pj+ – pj‖ ≤ ‖pj+ – xnj+‖ + ‖xnj+ – pj‖

<


j+
+


j

<


j–
.
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This shows that {pj} is a Cauchy sequence in K and thus converges strongly to some p ∈ K .
Using the fact that T is L-Lipschitzian and pj → p, we have

d(pj,Tp) ≤ D(Tpj,Tp)

≤ L‖pj – p‖,

so that d(p,Tp) =  and thus p ∈ Tp. Therefore, p ∈ F(T) and {xnj} converges strongly
to p. Setting x* = p in the proof of Theorem ., it follows from inequality (.) that
limn→∞ ‖xn – p‖ exists. So, {xn} converges strongly to p. This completes the proof. �

Corollary . Let q >  be a real number and K be a nonempty, compact and convex
subset of a q uniformly smooth real Banach space E. Let T : K → P(K) be a multi-valued
k-strictly pseudo-contractive mapping with F(T) �= ∅ and such that for every x ∈ K , the set
Tx is weakly closed and Tp = {p} for all p ∈ F(T). Let {xn} be a sequence defined iteratively
from x ∈ K by

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn and λ ∈ (,μ). Then the sequence {xn} converges strongly to a fixed point
of T .

Proof From Theorem ., we have limn→∞ d(xn,Txn) = . Since {xn} ⊆ K and K is com-
pact, {xn} has a subsequence {xnj} that converges strongly to some p ∈ K . Furthermore,
from Lemma ., (I –T) is strongly demiclosed at zero. It then follows that p ∈ Tp. Setting
x* = p and following the same arguments as in the proof of Theorem ., we have from
inequality (.) that lim‖xn – p‖ exists. Since {xnj} converges strongly to q, it follows that
{xn} converges strongly to p ∈ F(T). This completes the proof. �

Corollary . Let q >  be a real number and K be a nonempty compact convex subset of a
q uniformly smooth real Banach space E.Let T : K → P(K) be amulti-valued nonexpansive
mapping. Assume that Tp = {p} for all p ∈ F(T). Let {xn} be a sequence defined iteratively
from x ∈ K ,

xn+ = ( – λ)xn + λyn, (.)

where yn ∈ Txn and λ ∈ (,μ). Then the sequence {xn} converges strongly to a fixed point
of T .

Remark  The recursion formula (.) of Theorem . is of the Krasnoselkii type (see,
e.g., []) and is known to be superior to the recursion formula of the Mann algorithm
(see, e.g., Mann []) in the following sense: (i) The recursion formula (.) requires less
computation time than the formula of the Mann algorithm because the parameter λ in
formula (.) is fixed in (,  – k), whereas in the algorithm of Mann, λ is replaced by a
sequence {cn} in (, ) satisfying the following conditions:

∑∞
n= cn = ∞, lim cn = . The cn

must be computed at each step of the iteration process. (ii) The Krasnoselskii-type algo-
rithm usually yields rate of convergence as fast as that of a geometric progression, whereas
the Mann algorithm usually has order of convergence of the form o(/n).
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Remark In [], the authors replace the conditionTp = {p} ∀p ∈ F(T) with the following
restriction on the sequence yn : yn ∈ PTxn, i.e., yn ∈ Txn and ‖yn – xn‖ = d(xn,Txn). We
observe that if, for example, the set Txn is a closed and convex subset of a real Hilbert
space, then yn is unique and is characterized by

〈xn – yn, yn – un〉 ≥  ∀un ∈ Txn.

Since this yn has to be computed at each step of the iteration process, this makes the re-
cursion formula difficult to use in any possible application.

Remark  The addition of bounded error terms to the recursion formula (.) leads to no
generalization.

Remark  Our theorems in this paper are important generalizations of several important
recent results in the following sense: (i) Our theorems extend results proved for multi-
valued nonexpansivemappings in real Hilbert spaces (see, e.g., [–, , ]) to a much
larger class ofmulti-valued strictly pseudo-contractivemappings and in amuch larger class
of q-uniformly smooth real Banach spaces. (ii) Our theorems are proved with the superior
Krasnoselskii-type algorithm.

We give examples of multi-valued maps where, for each x ∈ K , the set Tx is proximinal
and weakly closed.

Example  Let f :R →R be an increasing function. Define T :R → R by

Tx =
[
f (x–), f (x+)

] ∀x ∈R,

where f (x–) := limy→x– f (y) and f (x+) := limy→x+ f (y). For every x ∈ R, Tx is either a single-
ton or a closed and bounded interval. Therefore, Tx is always weakly closed and convex.
Hence, for every x ∈R, the set Tx is proximinal and weakly closed.

Example  LetH be a real Hilbert space and f :H →R be a convex continuous function.
Let T :H → H be the multi-valued map defined by

Tx = ∂f (x) ∀x ∈H ,

where ∂f (x) is the subdifferential of f at x and is defined by

∂f (x) =
{
z ∈ H : 〈z, y – x〉 ≤ f (y) – f (x) ∀y ∈H

}
.

It is well known that for every x ∈H , ∂f (x) is nonempty, weakly closed and convex. There-
fore, since H is a real Hilbert space, it then follows that for every x ∈ H , the set Tx is
proximinal and weakly closed. The subdifferential has deep connection with convex opti-
mization problems.

The condition Tp = {p} for all p ∈ F(T), which is imposed in all our theorems of this
paper, can actually be replaced by another condition (see, e.g., Shahzad and Zegeye []).
This is done in Theorem ..
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Let K be a nonempty, closed and convex subset of a real Hilbert space, T : K → P(K) be
a multi-valued map and PT : K → CB(K) be defined by

PT (x) :=
{
y ∈ Tx : ‖x – y‖ = d(x,Tx)

}
.

We will need the following result.

Lemma . (Song and Cho []) Let K be a nonempty subset of a real Banach space and
T : K → P(K) be a multi-valued map. Then the following are equivalent:

(i) x* ∈ F(T);
(ii) PT (x*) = {x*};
(iii) x* ∈ F(PT ).Moreover, F(T) = F(PT ).

Remark  We observe from Lemma . that if T : K → P(K) is any multi-valued map
with F(T) �= ∅, then the corresponding multi-valued map PT satisfies PT (p) = {p} for all
p ∈ F(PT ), the condition imposed in all our theorems and corollaries. Consequently, the
examples of multi-valued maps T : K → CB(K) satisfying the condition Tp = {p} for all
p ∈ F(T) abound.

Theorem. Let q >  be a real number and K be a nonempty, closed and convex subset of
a q-uniformly smooth real Banach space E. Suppose that T : K → CB(K) is a multi-valued
mapping such that F(T) �= ∅.Assume that PT is k-strictly pseudo-contractive. For arbitrary
x ∈ K and λ ∈ (,μ), let {xn} be a sequence defined iteratively by

xn+ = ( – λ)xn + λyn,

where yn ∈ PT (xn). Then limn→∞ d(xn,Txn) = .

We conclude this paper with an example of a multi-valued map T for which PT is k-
strictly pseudo-contractive, the condition assumed in Theorem .. Trivially, every non-
expansive map is strictly pseudo-contractive.

Example  Let E =R with the usual metric and T :R → CB(R) be the multi-valued map
defined by

Tx =

{
[, x ], x ∈ (,∞),
[ x , ], x ∈ (–∞, ].

Then PT is strictly pseudo-contractive. In fact, PT (x) = { x } for all x ∈R.
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