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Abstract
In this paper, we introduce the notion of a cyclic (ψ ,A,B)-contraction for the pair (f , T )
of self-mappings on the set X . We utilize our definition to introduce some common
fixed point theorems for the two mappings f and T under a set of conditions. Also, we
introduce an example to support the validity of our results. As application of our
results, we derive some common fixed point theorems of integral type.
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1 Introduction
In recent years many authors established interesting results in fixed point theory in (or-
dered) metric spaces. One of the popular topics in the fixed point theory is the cyclic
contraction. Kirk et al. [] established the first result in this interesting area. Meantime,
other authors obtained important results in this area (see [–]).
We begin with the definition of a cyclic map.

Definition . LetA and B be non-empty subsets of ametric space (X,d) and T : A∪B →
A∪ B. Then T is called a cyclic map if T(A) ⊆ B and T(B)⊆ A.

In , Kirk et al. [] gave the following interesting theorem in fixed point theory for a
cyclic map.

Theorem . ([]) Let A and B be nonempty closed subsets of a complete metric space
(X,d). Suppose that T : A∪ B → A∪ B is a cyclic map such that

d(Tx,Ty) ≤ kd(x, y) ∀x ∈ A,∀y ∈ B.

If k ∈ [, ), then T has a unique fixed point in A∩ B.

Recently, several authors proved many results in fixed point theory for cyclic mappings,
satisfying various (nonlinear) contractive conditions (see [–]). Some of contractive
conditions are based on functions called control functions which alter the distance be-
tween two points in a metric space. Such functions were introduced by Khan et al. [].
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Definition . (altering distance function, []) The function φ : [, +∞) → [, +∞) is
called an altering distance function if the following properties are satisfied:
() φ is continuous and nondecreasing;
() φ(t) =  if and only if t = .

For some fixed point theorems based on an altering distance function, we refer the
reader to [–].
Let X be a nonempty set. Then (X,d,
) is called an ordered metric space if and only

if (X,d) is a metric space and (X,
) is a partially ordered set. Two elements x, y ∈ X are
called comparable if x 
 y or y
 x.
Altun et al. [, ] introduced the notion of weakly increasing mappings and proved

some existing theorems. For some works in the theory of weakly increasing mappings, we
refer the reader to [, ].

Definition . ([]) Let (X,
) be a partially ordered set. Twomappings F ,G : X → X are
said to be weakly increasing if Fx
 GFx and Gx 
 FGx for all x ∈ X.

The purpose of this paper is to obtain common fixed point results for mappings satis-
fying nonlinear contractive conditions of a cyclic form based on the notion of an altering
distance function.

2 Main result
We start with the following definition.

Definition . Let (X,d,
) be an ordered metric space and A, B be nonempty closed
subsets of X. Let f ,T : X → X be two mappings. The pair (f ,T) is called a cyclic (ψ ,A,B)-
contraction if
() ψ is an altering distance function;
() A∪ B has a cyclic representation w.r.t. the pair (f ,T); that is, fA ⊆ B, TB ⊆ A and

X = A∪ B;
() There exists  < δ <  such that for any comparable elements x, y ∈ X with x ∈ A and

y ∈ B, we have

ψ
(
d(fx,Ty)

)

≤ δψ

(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
. (.)

Definition . Let (X,
) be a partially ordered set and A, B be closed subsets of X with
X = A ∪ B. Let f ,T : X → X be two mappings. The pair (f ,T) is said to be (A,B)-weakly
increasing if fx 
 Tfx for all x ∈ A and Tx 
 fTx for all x ∈ B.

From now on, by ψ we mean altering distance functions unless otherwise stated.
In the rest of this paper, N stands for the set of nonnegative integer numbers.

Theorem . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X. Let f ,T : X → X be two mappings such that the pair (f ,T) is (A,B)-
weakly increasing. Assume the following:
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() The pair (f ,T) is a cyclic (ψ ,A,B)-contraction;
() f or T is continuous.

Then f and T have a common fixed point.

Proof Choose x ∈ A. Let x = fx. Since fA ⊆ B, we have x ∈ B. Also, let x = Tx. Since
TB ⊆ A, we have x ∈ A. Continuing this process, we can construct a sequence {xn} in X
such xn+ = fxn, xn+ = Txn+, xn ∈ A and xn+ ∈ B.
Since f and T are (A,B)-weakly increasing, we have

x = fx 
 Tfx = Tx = x 
 fTx = fx = x 
 · · · .

We divide our proof into the following steps.
Step : We will show that {xn} is a Cauchy sequence in (X,d).
Subcase : Suppose that xn = xn+ for some n ∈ N. Since xn and xn+ are comparable

elements in X with xn ∈ A and xn+ ∈ B, we have

ψ
(
d(xn+,xn+)

)
= ψ

(
d(fxn,Txn+)

)

≤ δψ

(
max

{
d(xn,xn+),d(xn, fxn),d(xn+,Txn+),



(
d(xn,Txn+) + d(fxn,xn+)

)})

= δψ

(
max

{
d(xn,xn+),d(xn,xn+),d(xn+,xn+),



(
d(xn,xn+) + d(xn+,xn+)

)})

≤ δψ
(
d(xn+,xn+)

)
.

Since δ < , we have ψ(d(xn+,xn+)) =  and hence xn+ = xn+. Similarly, we may
show that xn+ = xn+. Hence {xn} is a constant sequence in X, so it is a Cauchy sequence
in (X,d).
Subcase : xn �= xn+ for all n ∈N. Given n ∈ N. If n is even, then n = t for some t ∈N.

Since xt ∈ A, xt+ ∈ B and xt , xt+ are comparable, we have

ψ
(
d(xn+,xn+)

)
= ψ

(
d(xt+,xt+)

)
= ψ

(
d(fxt ,Txt+)

)

≤ δψ

(
max

{
d(xt ,xt+),d(xt , fxt),d(xt+,Txt+),



(
d(xt ,Txt+) + d(fxt ,xt+)

)})

= δψ

(
max

{
d(xt ,xt+),d(xt+,xt+),



(
d(xt ,xt+) + d(xt+,xt+)

)})

≤ δψ
(
max

{
d(xt ,xt+),d(xt+,xt+)

})
.
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If

max
{
d(xt ,xt+),d(xt+,xt+)

}
= d(xt+,xt+),

then

ψ
(
d(xt+,xt+)

) ≤ δψ
(
d(xt+,xt+)

)
< ψ

(
d(xt+,xt+)

)
,

which is a contradiction. Thus

max
{
d(xt ,xt+),d(xt+,xt+)

}
= d(xt ,xt+), (.)

therefore

ψ
(
d(xt+,xt+)

) ≤ δψ
(
d(xt ,xt+)

)
. (.)

If n is odd, then n = t +  for some t ∈ N. Since xt+ and xt+ are comparable with
xt+ ∈ A and xt+ ∈ B, we have

ψ
(
d(xn+,xn+)

)
= ψ

(
d(xt+,xt+)

)
= ψ

(
d(fxt+,Txt+)

)

≤ δψ

(
max

{
d(xt+,xt+),d(xt+, fxt+),d(xt+,Txt+),



(
d(xt+,Txt+) + d(fxt+,xt+)

)})

≤ δψ

(
max

{
d(xt+,xt+),d(xt+,xt+),



(
d(xt+,xt+) + d(xt+,xt+)

)})

≤ δψ
(
max

{
d(xt+,xt+),d(xt+,xt+)

})
.

If

max
{
d(xt+,xt+),d(xt+,xt+)

}
= d(xt+,xt+),

then

ψ
(
d(xt+,xt+)

) ≤ δψ
(
d(xt+,xt+)

)
<ψ

(
d(xt+,xt+)

)
,

which is a contradiction. Therefore

max
{
d(xt+,xt+),d(xt+,xt+)

}
= d(xt+,xt+), (.)

and hence

ψ
(
d(xt+,xt+)

) ≤ δψ
(
d(xt+,xt+)

)
. (.)
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From (.) and (.), we have

ψ
(
d(xn+,xn+)

) ≤ δψ
(
d(xn,xn+)

)
. (.)

Since ψ is an altering distance function, we have {d(xn+,xn+) : n ∈ N∪ {}} is a bounded
nonincreasing sequence. Thus there exists r ≥  such that

lim
n→+∞d(xn,xn+) = r.

On letting n→ +∞ in (.), we have

ψ(r)≤ δψ(r).

Since δ < , we have ψ(r) =  and hence r = . Thus

lim
n→+∞d(xn,xn+) = . (.)

Next, we show that {xn} is a Cauchy sequence in the metric space (X,d). It is sufficient
to show that {xn} is a Cauchy sequence in (X,d). Suppose to the contrary; that is, {xn}
is not a Cauchy sequence in (X,d). Then there exists ε >  for which we can find two
subsequences {xm(i)} and {xn(i)} of {xn} such that n(i) is the smallest index for which

n(i) >m(i) > i, d(xm(i),xn(i)) ≥ ε. (.)

This means that

d(xm(i),xn(i)–) < ε. (.)

From (.), (.) and the triangular inequality, we get that

ε ≤ d(xm(i),xn(i)) ≤ d(xm(i),xn(i)–) + d(xn(i)–,xn(i)–) + d(xn(i)–,xn(i))

< ε + d(xn(i)–,xn(i)–) + d(xn(i)–,xn(i)).

On letting i→ +∞ in the above inequalities and using (.), we have

lim
i→+∞d(xm(i),xn(i)) = ε. (.)

Again, from (.) and the triangular inequality, we get that

ε ≤ d(xm(i),xn(i))

≤ d(xn(i),xn(i)–) + d(xn(i)–,xm(i))

≤ d(xn(i),xn(i)–) + d(xn(i)–,xm(i)+) + d(xm(i)+,xm(i))

≤ d(xn(i),xn(i)–) + d(xn(i)–,xm(i)) + d(xm(i)+,xm(i))

≤ d(xn(i),xn(i)–) + d(xn(i),xm(i)) + d(xm(i)+,xm(i)).
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Letting i→ +∞ in the above inequalities and using (.) and (.), we get that

lim
i→+∞d(xm(i),xn(i)) = lim

i→+∞d(xm(i)+,xn(i)–)

= lim
i→+∞d(xm(i)+,xn(i))

= lim
i→+∞d(xm(i),xn(i)–)

= ε.

Since xm(i) and xn(i)– are comparable with xm(i) ∈ A and xn(i)– ∈ B, we have

ψ
(
d(xm(i)+,xn(i))

)
= ψ

(
d(fxm(i),Txn(i)–)

)

≤ δψ

(
max

{
d(xm(i),xn(i)–),d(xm(i), fxm(i)),d(xn(i)–,Txn(i)–),



(
d(xm(i),Txn(i)–) + d(fxm(i),xn(i)–)

)})

= δψ

(
max

{
d(xm(i),xn(i)–),d(xm(i),xm(i)+),d(xn(i)–,xn(i)),



(
d(xm(i),xn(i)) + d(xm(i)+,xn(i)–)

)})
.

Letting i→ +∞ and using the continuity of ψ , we get that

ψ(ε)≤ δψ(ε).

Since δ < , we have ψ(ε) =  and hence ε = , a contradiction. Thus {xn} is a Cauchy
sequence in (X,d).
Step : Existence of a common fixed point.
Since (X,d) is complete and {xn} is a Cauchy sequence in X, we have {xn} converges to

some u ∈ X, that is, limn→∞ d(xn,u) = . Therefore

lim
n→+∞xn = lim

n→+∞xn– = lim
n→+∞xn = u. (.)

Since xn is a sequence in A, A is closed and xn → u, we have u ∈ A. Also, since xn+ is
a sequence in B, B is closed and xn+ → u, we have u ∈ B. Now, we show that u is a fixed
point of f and T . Without loss of generality, we may assume that f is continuous, since
xn → u, we get xn+ = fxn → fu. By the uniqueness of limit, we have u = fu. Now, we
show that u = Tu. Since u
 u with u ∈ A and u ∈ B, we have

ψ
(
d(u,Tu)

)
= ψ

(
d(fu,Tu)

)

≤ δψ

(
max

{
d(fu,Tu),d(u, fu),d(u,Tu),



(
d(u,Tu) + d(fu,u)

)})

= δψ
(
d(u,Tu)

)
.

Since δ < , we get that d(u,Tu) =  and hence u = Tu. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/60


Shatanawi and Postolache Fixed Point Theory and Applications 2013, 2013:60 Page 7 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/60

Theorem . can be proved without assuming the continuity of f or the continuity of T .
For this instance, we assume that X satisfies the following property:
(P) If (xn) is a nondecreasing sequence in X with xn → x, then xn 
 x.
Now, we state and prove the following result.

Theorem . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X. Let f ,T : X → X be two mappings such that the pair (f ,T) is (A,B)-
weakly increasing. Assume the following:
() The pair (f ,T) is a cyclic (ψ ,A,B)-contraction;
() X satisfies property (P).

Then f and T have a common fixed point.

Proof We follow the proof of Theorem . step by step to construct a nondecreasing se-
quence (xn) in X with xn ∈ A, xn+ ∈ B and xn → u for some u ∈ X. Since xn → u,
xn+ → u, A and B are closed subsets of X, we get u ∈ A ∩ B. Using property (P), we get
xn 
 u for all n ∈ N. Since xn ∈ A and u ∈ B, we have

ψ
(
d(xn+,Tu)

)
= ψ

(
d(fxn,Tu)

)

≤ δψ

({
d(xn,u),d(xn, fxn),d(u,Tu),



(
d(xn,Tu) + d(fxn,u)

)})

= δψ

({
d(xn,u),d(xn,xn+),d(u,Tu),



(
d(xn,Tu) + d(xn+,u)

)})
.

Letting n → +∞ in the above inequality, we get ψ(d(u,Tu)) ≤ δψ(d(u,Tu)). Since δ < ,
we get d(u,Tu) = , hence u = Tu. Similarly, we may show that u = fu. Thus u is a common
fixed point of f and T . �

Taking ψ = I[,+∞) (the identity function) in Theorem ., we have the following result.

Corollary . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X. Let f ,T : X → X be two mappings such that the pair (f ,T) is (A,B)-
weakly increasing and A ∪ B has a cyclic representation with respect to the pair (f ,T).
Suppose that there exists  < δ <  such that for any two comparable elements x, y ∈ X with
x ∈ A and y ∈ B, we have

d(fx,Ty) ≤ δmax

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)}
.

If f or T is continuous, then f and T have a common fixed point.

The continuity of f or T in Corollary . can be dropped.

Corollary . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X. Let f ,T : X → X be two mappings such that the pair (f ,T) is (A,B)-
weakly increasing and such that A ∪ B has a cyclic representation with respect to the pair

http://www.fixedpointtheoryandapplications.com/content/2013/1/60
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(f ,T). Suppose that there exists  < δ <  such that for any two comparable elements x, y ∈ X
with x ∈ A and y ∈ B, we have

d(fx,Ty) ≤ δmax

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)}
.

If X satisfies property (P), then f and T have a common fixed point.

By taking f = T in Theorem ., we have the following result.

Corollary . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X with X = A ∪ B. Let f : X → X be a mapping such that fx 
 f (fx) for all
x ∈ X. Suppose that there exists  < δ <  such that for all x ∈ A and y ∈ B, we have

ψ
(
d(fx, fy)

) ≤ δψ

(
max

{
d(x, y),d(x, fx),d(y, fy),



(
d(x, fy) + d(fx, y)

)})
.

Assume the following:
() f is a cyclic map;
() f is continuous.

Then f has a fixed point.

The continuity of f in Corollary . can be dropped.

Corollary . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X with X = A ∪ B. Let f : X → X be a mapping such that fx 
 f (fx) for all
x ∈ X. Suppose that there exists  < δ <  such that for all x ∈ A and y ∈ B, we have

ψ
(
d(fx, fy)

) ≤ δψ

(
max

{
d(x, y),d(x, fx),d(y, fy),



(
d(x, fy) + d(fx, y)

)})
.

Assume the following:
() f is a cyclic map;
() X satisfies property (P).

Then f has a fixed point.

Taking A = B = X in Theorem ., we have the following result.

Corollary . Let (X,d,
) be an ordered complete metric space. Let f ,T : X → X be two
weakly increasing mappings. Suppose that there exists  < δ <  such that for any two com-
parable elements x, y ∈ X, we have

ψ
(
d(fx,Ty)

) ≤ δψ

(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

If f or T is continuous, then f and T have a common fixed point.

The continuity of f or T in Corollary . can be dropped.

http://www.fixedpointtheoryandapplications.com/content/2013/1/60
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Corollary . Let (X,d,
) be an ordered complete metric space. Let f ,T : X → X be two
weakly increasing mappings. suppose that there exists  < δ <  such that for any two com-
parable elements x, y ∈ X, we have

ψ
(
d(fx,Ty)

) ≤ δψ

(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

If X satisfies property (P), then f and T have a common fixed point.

To support the validity of our results, we introduce the following nontrivial example.

Example . On X = {, , , , . . .}, consider

d : X ×X → X, d(x, y) =

⎧⎨
⎩
 if x = y;

max{x, y} if x �= y.

We introduce a relation on X by x 
 y if and only if y ≤ x. Define f ,T : X → X by the
formulae

fx =

⎧⎨
⎩
 if x = ;

x –  if x ≥ ,

and

Tx =

⎧⎨
⎩
 if x = , , ;

x –  if x ≥ .

Also, define ψ : [, +∞) → [, +∞) by ψ(t) = tet . Let A = {, , , , . . .} and B = {, ,
, , . . .}. Then
() (X,d,
) is a complete ordered metric space;
() A∪ B has a cyclic representation with respect to the pair (f ,T);
() The pair (f ,T) is weakly (A,B)-increasing;
() X satisfies property (P);
() For every two comparable elements x, y ∈ X with x ∈ A and y ∈ B, we have

ψ
(
d(fx,Ty)

) ≤ e–ψ
(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

Proof The proof of part () is clear. Since fA = {, , ,  . . .} ⊆ B and TB = {, , , . . .} ⊆ A,
we conclude that A∪B has a cyclic representation with respect to the pair (f ,T). To prove
part (), given x ∈ A. If x ∈ {, , , , }, thenT(fx) = . ThusTfx ≤ fx and hence fx 
 T(fx).
If x ≥ , then fx = x –  and T(fx) = T(x – ) = x – . Thus T(fx)≤ fx and hence fx 
 T(fx).
Therefore fx 
 T(fx) for all x ∈ A. Similarly, we may show that Tx 
 f (Tx) for all x ∈ B. So,
the pair (f ,T) is weakly (A,B)-increasing. To prove part (), let {xn} be a nondecreasing
sequence such that xn → x ∈ X. Then d(xn,x) → d(x,x) = . So, xn = x for all n except for
finitely many. Since (xn) is a nondecreasing with respect to 
, we have x ≥ x ≥ x · · · .
Since xn = x for all but finitely many, then there exists k ∈ N such that x ≥ · · · ≥ xk– ≥

http://www.fixedpointtheoryandapplications.com/content/2013/1/60
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xn = x for all n≥ k. So, xn ≥ x for all n ∈ N and hence xn 
 x for all n ∈N. Thus X satisfies
property (P). To prove part (), given two comparable elements x, y ∈ X with x ∈ A and
y ∈ B. We divide the proof into the following cases:

• Case one: x =  and y ∈ {, , }. Here, we have fx = Ty =  and hence ψ(d(fx,Ty)) = .
Thus

ψ
(
d(fx,Ty)

) ≤ e–ψ
(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

• Case two: x ≥  and y ≥ . Here fx = x –  and Ty = y – . Since x ∈ A and y ∈ B, then
x = t and y = n +  for some t,n ∈N.
If fx = Ty, then x– = y– and hence t– = n–. Thus t = n–, which is impossible.
If x –  > y – , then d(fx,Ty) = x – . Thus

ψ
(
d(fx,Ty)

)
= (x – )ex–

≤ e–xex

= e–ψ(x)

= e–ψ
(
d(x, fx)

)

≤ e–ψ
(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

If y –  > x – , then d(fx,Ty) = y – . Thus

ψ
(
d(fx,Ty)

)
= (y – )ey–

≤ e–yey

≤ e–yey

= e–ψ(y)

= e–ψ
(
d(y,Ty)

)

≤ e–ψ
(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

• Case three: x =  and y ≥ . Here fx =  and Ty = y – . Thus

ψ
(
d(fx,Ty)

)
= ψ(y – )

= (y – )ey–

≤ e–yey

= e–ψ(y)

= e–ψ
(
d(y,Ty)

)

≤ e–ψ
(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/60
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• Case four: x ≥  and y ∈ {, , }. Here fx = x –  and Ty = .

ψ
(
d(fx,Ty)

)
= ψ

(
d(x – , )

)
= ψ(x – )

= (x – )ex–

≤ e–xex

= e–ψ(x)

= e–ψ
(
d(x, fx)

)

≤ e–ψ
(
max

{
d(x, y),d(x, fx),d(y,Ty),



(
d(x,Ty) + d(fx, y)

)})
.

Note that f and T satisfy all the hypotheses of Theorem .. Hence f and T have a fixed
point. Here  is the fixed point of f and T . �

3 Applications
Denote by � the set of functions μ : [, +∞) → [, +∞) satisfying the following hypothe-
ses:
(h) μ is a Lebesgue-integrable mapping on each compact of [, +∞);
(h) For every ε > , we have

∫ ε


μ(t)dt > .

Theorem . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X. Let f ,T : X → X be two mappings such that the pair (f ,T) is (A,B)-
weakly increasing and A∪ B has a cyclic representation w.r.t. the pair (f ,T). Suppose that
there exist δ ∈ [, ) and μ ∈ � such that for any two comparable elements x, y ∈ X with
x ∈ A and y ∈ B, we have

∫ d(fx,Ty)


μ(s)ds≤ δ

∫ max{d(x,y),d(x,fx),d(y,Ty),  (d(x,Ty)+d(fx,y))}


μ(s)ds.

If f or T is continuous, then f and T have a common fixed point.

Proof Follows from Theorem . by defining ψ : [, +∞) → [, +∞) via ψ(t) =
∫ t
 μ(s)ds

and noting that ψ is an altering distance function. �

The continuity of f or T in Theorem . can be dropped.

Theorem . Let (X,d,
) be an ordered complete metric space and A, B be nonempty
closed subsets of X. Let f ,T : X → X be two mappings such that (f ,T) is (A,B)-weakly in-
creasing and A∪B has a cyclic representation w.r.t. the pair (f ,T). Suppose that there exist
δ ∈ [, ) and μ ∈ � such that for any two comparable elements x, y ∈ X with x ∈ A and
y ∈ B, we have

∫ d(fx,Ty)


μ(s)ds≤ δ

∫ max{d(x,y),d(x,fx),d(y,Ty),  (d(x,Ty)+d(fx,y))}


μ(s)ds.

If X satisfies property (P), then f and T have a common fixed point.
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By taking A = B = X in Theorems . and ., we have the following results.

Corollary . Let (X,d,
) be an ordered complete metric space. Let f ,T : X → X be two
weakly increasing mappings. Suppose that there exist δ ∈ [, ) and μ ∈ � such that for any
two comparable elements x, y ∈ X, we have

∫ d(fx,Ty)


μ(s)ds≤ δ

∫ max{d(x,y),d(x,fx),d(y,Ty),  (d(x,Ty)+d(fx,y))}


μ(s)ds.

If f or T is continuous, then f and T have a common fixed point.

Corollary . Let (X,d,
) be an ordered complete metric space. Let f ,T : X → X be two
weakly increasing mappings. Suppose that there exist δ ∈ [, ) and μ ∈ � such that for any
two comparable elements x, y ∈ X, we have

∫ d(fx,Ty)


μ(s)ds≤ δ

∫ max{d(x,y),d(x,fx),d(y,Ty),  (d(x,Ty)+d(fx,y))}


μ(s)ds.

If X satisfies property (P), then f and T have a common fixed point.
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