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Abstract
We introduce the theory of asymptotical nonexpansiveness of mappings defined in
the algebraic product E × E and with values in the space E. We then prove the
existence of coupled fixed points of such mappings when E is a uniformly convex
Banach space. This paper is an extension of some recent results in the literature.
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1 Introduction and preliminaries
In the past years, many researchers have proved various results on the theory of nonex-
pansive mappings (or contractions). The mean ergodic theorem for contractions in uni-
formly convex Banach spaces was proved in [], while the authors in [] introduced the
convex approximation property of a space, proved that contractions satisfy an inequality
analogue to the Zarantonello inequality (see []) and then studied the asymptotic behavior
of contractions.
Given a nonempty subset D of a real linear normed space E, a self-mapping T : D → D

is said to be nonexpansive if the following inequality holds for all x, y ∈D:

‖Tx – Ty‖ ≤ ‖x – y‖.

Many more general classes of mappings have been considered, including the class of
asymptotically nonexpansivemappings introduced by Goebel and Kirk [], defined by the
relation

∥∥Tnx – Tny
∥∥≤ kn‖x – y‖ ∀n≥ ,∀x, y ∈D,

where the sequence {kn} ⊂ [, +∞) converges to  as n → +∞. They proved that a self
asymptotically nonexpansive map of a nonempty closed convex bounded subset of a real
uniformly convex Banach space has a fixed point. Then Chang et al. [] established some
convergence theorems for this class of mappings without the assumption of boundedness
of the subset D.
Recently, the concept of coupled fixed points was introduced and developed by some

authors (see [–]). A coupled fixed point of a map F : E×E → E is defined as an element
(x, y) ∈ E × E such that x = F(x, y) and y = F(y,x). One could be interested in extending
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nonexpansiveness to maps defined on a product space (the algebraic product) and study
the existence of their coupled fixed points. This is the main purpose of this paper.
We now introduce the definitions of nonexpansive maps, asymptotically nonexpansive

maps, Lipschitzian and uniformly Lipschitzian maps defined in product spaces.

Definition . Let D be a nonempty subset of a real normed linear space E. A mapping
F :D×D→ D is said to be nonexpansive if

∥∥F(x, y) – F(u, v)
∥∥≤ 


[‖x – u‖ + ‖y – v‖] ∀x, y,u, v ∈ X. (.)

Definition . F is said to be asymptotically nonexpansive if there exists a sequence
{kn} ⊂ [, +∞) with limn→+∞ kn =  such that

∥∥Fn(x, y) – Fn(u, v)
∥∥≤ kn


[‖x – u‖ + ‖y – v‖] ∀n≥ ,∀x, y,u, v ∈ X, (.)

where the sequence {Fn} is defined (see []) as follows:

{
F(x, y) = x,
Fn+(x, y) = F(Fn(x, y),Fn(y,x)), n≥ .

(.)

Definition . F is said to be uniformly L-Lipschitzian (where L is a positive constant) if

∥∥Fn(x, y) – Fn(u, v)
∥∥≤ L


[‖x – u‖ + ‖y – v‖] ∀n≥ ,∀x, y,u, v ∈ X. (.)

When the equality is verified for n = , i.e., when

∥∥F(x, y) – F(u, v)
∥∥≤ L


[‖x – u‖ + ‖y – v‖] ∀x, y,u, v ∈ X, (.)

F is said to be Lipschitz with the constant L (or L-Lipschitzian).

Remark .
. It is easy to see that if F :D×D →D is a nonexpansive mapping, then F is an

asymptotically nonexpansive mapping with a constant sequence {}.
. If T :D×D →D is an asymptotically nonexpansive mapping with a sequence

{kn} ∈ [, +∞) such that kn → , then it must be uniformly L-Lipschitzian with
L = supn≥{kn}.

. The sequence {Fn(x, y)} can be written as the sequence {xn} defined (see []) as
follows:⎧⎪⎨
⎪⎩
x = x, y = y,
xn+ = F(xn, yn), n≥ ,
yn+ = F(yn,xn), n≥ .

(.)

In [], Chang et al. defined demi-closed maps at the origin as follows.

Definition . [] Let E be a real Banach space and D be a closed subset of E. A map-
ping T : D → D is said to be demi-closed at the origin if, for any sequence {xn} in D, the
conditions xn → q weakly and Txn →  strongly imply Tq = .
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We extend this definition to maps defined in D×D as follows.

Definition . Let E be a real Banach space and D be a closed subset of E. A mapping
F : D × D → D is said to be demi-closed at the origin if, for any sequence {(xn, yn)} in
D×D, the conditions xn → q, yn → q weakly and F(xn, yn) → , F(yn,xn) →  strongly
imply F(q,q) = F(q,q) = .

Lemma . Let E be a uniformly convex Banach space, C be a nonempty bounded closed
convex subset of E. Then there exists a strictly increasing continuous convex function
f : [, +∞)→ [, +∞) with f () =  such that for any Lipschitzian mapping T : C×C → E
with the Lipschitz constant L ≥ , any finite many elements {(xi, yi)}ni= in C × C and
any finite many nonnegative numbers {ti}ni= with

∑n
i= ti = , the following inequality

holds:

∥∥∥∥∥T
( n∑

i=

ti(xi, yi)

)
–

n∑
i=

tiT(xi, yi)

∥∥∥∥∥
≤ L


f –
{
max
≤i,j≤n

(
‖xi – xj‖ + ‖yi – yj‖ –

(
L


)–∥∥T(xi, yi) – T(xj, yj)
∥∥)}. (.)

Proof Let us prove by induction. For n = , (.) is trivial.
Let us prove for n = : Let δ be the modulus of uniform convexity of E and define d :

R
+ → R

+ by

d(t) =

{


∫ t
 δ(s)ds, ≤ t ≤ ,

d() + 
δ()(t – ), t > .

It is well known (e.g., see [, ]) that d is strictly increasing, continuous, convex, satisfying
d() =  and

ttd
(‖u – v‖)≤  – ‖tu + tv‖ (.)

for all t, t ≥  such that t + t =  and u, v ∈ E such that ‖u‖ ≤  and ‖v‖ ≤ .

∥∥∥∥∥T(x, y) – T

( ∑
i=

ti(xi, yi)

)∥∥∥∥∥
=
∥∥T(x, y) – T(tx + tx, ty + ty)

∥∥
≤ L


{‖x – tx – tx‖ + ‖y – ty – ty‖

}
=
L

{∥∥( – t)x – tx‖ + ‖( – t)y – ty

∥∥}
=
L

{‖tx – tx‖ + ‖ty – ty‖

}
=
L

t
[‖x – x‖ + ‖y – y‖

]
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/68
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Similarly,

∥∥∥∥∥T(x, y) – T

( ∑
i=

ti(xi, yi)

)∥∥∥∥∥ = ∥∥T(x, y) – T(tx + tx, ty + ty)
∥∥

≤ L

{‖x – tx – tx‖ + ‖y – ty – ty‖

}
=
L

{∥∥( – t)x – tx

∥∥ + ∥∥( – t)y – ty
∥∥}

=
L

{‖tx – tx‖ + ‖ty – ty‖

}
=
L

t
[‖x – x‖ + ‖y – y‖

]
. (.)

Hence, if u = T(x,y)–T(
∑

i= ti(xi ,yi))
L
 t[‖x–x‖+‖y–y‖] and v = T(

∑
i= ti(xi ,yi))–T(x,y)

L
 t[‖x–x‖+‖y–y‖] , then from (.) and (.),

⎧⎪⎪⎨
⎪⎪⎩

‖u‖ ≤ , ‖v‖ ≤ ,
tu + tv = T(x,y)–T(x,y)

L
 [‖x–x‖+‖y–y‖] ,

u – v = tT(x,y)+tT(x,y)–T(
∑

i= ti(xi ,yi))
L
 tt[‖x–x‖+‖y–y‖] .

(.)

Putting (.) in (.), we have

ttd
(‖tT(x, y) + tT(x, y) – T(

∑
i= ti(xi, yi))‖

L
 tt[‖x – x‖ + ‖y – y‖]

)
≤  –

‖T(x, y) – T(x, y)‖
L
 [‖x – x‖ + ‖y – y‖]

,

i.e.,

ttL
[‖x – x‖ + ‖y – y‖

]
d
(‖tT(x, y) + tT(x, y) – T(

∑
i= ti(xi, yi))‖

L
 tt[‖x – x‖ + ‖y – y‖]

)

≤ L

[‖x – x‖ + ‖y – y‖

]
–
∥∥T(x, y) – T(x, y)

∥∥.
Since t → d(t)

t is strictly increasing, tt ≤ 
 and ‖x – x‖ + ‖y – y‖ ≤ D, where D :=

diamC, we have

L

Dd
(‖tT(x, y) + tT(x, y) – T(

∑
i= ti(xi, yi))‖

L
D

)

≤ ttL
[‖x – x‖ + ‖y – y‖

]
d
(‖tT(x, y) + tT(x, y) – T(

∑
i= ti(xi, yi))‖

L
 tt[‖x – x‖ + ‖y – y‖]

)

≤ L

[‖x – x‖ + ‖y – y‖

]
–
∥∥T(x, y) – T(x, y)

∥∥.
Let f :R+ →R

+ be defined as f(t) =Dd( tD ); then

L

f

(

L

∥∥∥∥∥tT(x, y) + tT(x, y) – T

( ∑
i=

ti(xi, yi)

)∥∥∥∥∥
)

≤ L

[‖x – x‖ + ‖y – y‖

]
–
∥∥T(x, y) – T(x, y)

∥∥.
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Hence,

∥∥∥∥∥tT(x, y) + tT(x, y) – T

( ∑
i=

ti(xi, yi)

)∥∥∥∥∥
≤ L


f –

(
‖x – x‖ + ‖y – y‖ – 

L
∥∥T(x, y) – T(x, y)

∥∥). (.)

Thus (.) is true for n = .
Now suppose that

∥∥∥∥∥T
( n∑

i=

ti(xi, yi)

)
–

n∑
i=

tiT(xi, yi)

∥∥∥∥∥
≤ L


f –n

{
max
≤i,j≤n

(
‖xi – xj‖ + ‖yi – yj‖ –

(
L


)–∥∥T(xi, yi) – T(xj, yj)
∥∥)}. (.)

Define a strictly increasing continuous convex function fn+ satisfying fn+() =  and

f –n+(t) ≥ f – (t) + f –n
(
t + f – (t)

)
.

For example, if ∗ defines the inf-convolution, I the identity function onR and the functions
in the functions fn are extended to be +∞ on (–∞, ), then one could take (see [])

fn+ =


(I ∗ f)o

(


(f ∗ fn)

)
.

Define also �n– = {t = (t, . . . , tn) : ti ≥ ,
∑n

i= ti = }.
Fix t ∈ �n and let (x, y), . . . , (xn+, yn+) ∈ C×C. The case tn+ =  is trivial and therefore

omitted. For the rest of the proof, we let the subscript i range through ≤ i≤ n + , while
j ranges through ≤ j ≤ n. Put

(
uj
vj

)
= ( – tn+)

(
xj
yj

)
+ tn+

(
xn+
yn+

)
,

(
x′
i

y′
i

)
=

(
T(xi, yi)
T(yi,xi)

)
,

(
u′
j

v′
j

)
= ( – tn+)

(
x′
j

y′
j

)
+ tn+

(
x′
n+

y′
n+

)
,

μj =
tj

 – tn+
.

We have that μ ∈ �n– and after computation

n+∑
i=

ti

(
xi
yi

)
=

n∑
j=

μj

(
uj
vj

)
,

n+∑
i=

ti

(
x′
i

y′
i

)
=

n∑
j=

μj

(
u′
j

v′
j

)
,
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∥∥∥∥∥T
( n+∑

i=

ti(xi, yi)

)
–

n+∑
i=

tix′
i

∥∥∥∥∥ =
∥∥∥∥∥T
( n∑

j=

μj(uj, vj)

)
–

n∑
j=

μju′
j

∥∥∥∥∥
≤
∥∥∥∥∥T
( n∑

j=

μj(uj, vj)

)
–

n∑
j=

μjT(uj, vj)

∥∥∥∥∥
+

n∑
j=

μj
∥∥T(uj, vj) – u′

j
∥∥. (.)

The induction hypothesis (.) can also be written

fn

(

L

∥∥∥∥∥T
( n∑

j=

μj(uj, vj)

)
–

n∑
j=

μjT(uj, vj)

∥∥∥∥∥
)

≤ max
≤j,k≤n

(
‖uj – uk‖ + ‖vj – vk‖ – 

L
∥∥T(uj, vj) – T(uk , vk)

∥∥)

= max
≤j,k≤n

(
‖uj – uk‖ + ‖vj – vk‖ – 

L
∥∥T(vj,uj) – T(vk ,uk)

∥∥)

= max
≤j,k≤n

(
‖uj – uk‖ + ‖vj – vk‖ – 

L
∥∥T(uj, vj) – T(uk , vk)

∥∥
–

L
∥∥T(vj,uj) – T(vk ,uk)

∥∥). (.)

We also have, by the triangle inequality,

‖uj – uk‖ – 
L
∥∥T(uj, vj) – T(uk , vk)

∥∥
≤ ‖uj – uk‖ – 

L
∥∥u′

j – u′
k
∥∥ + 

L
∥∥u′

k – T(uk , vk)
∥∥ + 

L
∥∥u′

j – T(uj, vj)
∥∥, (.)

‖vj – vk‖ – 
L
∥∥T(vj,uj) – T(vk ,uk)

∥∥
≤ ‖vj – vk‖ – 

L
∥∥v′

j – v′
k
∥∥ + 

L
∥∥v′

k – T(vk ,uk)
∥∥ + 

L
∥∥v′

j – T(vj,uj)
∥∥. (.)

From (.) we have

f
(

L
∥∥T(uj, vj) – u′

j
∥∥) = f

(

L
∥∥T(uj, vj) – ( – tn+)x′

j – tn+x′
n+
∥∥)

= f
(

L
∥∥T(uj, vj) – ( – tn+)T(xj, yj) – tn+T(xn+, yn+)

∥∥)

= f
(

L
∥∥T(( – tn+)xj + tn+xn+, ( – tn+)yj + tn+yn+

)

– ( – tn+)T(xj, yj) – tn+T(xn+, yn+)
∥∥)

≤ ‖xj – xn+‖ + ‖yj – yn+‖ – 
L
∥∥T(xj, yj) – T(xn+, yn+)

∥∥
= ‖xj – xn+‖ + ‖yj – yn+‖ – 

L
∥∥x′

j – x′
n+
∥∥. (.)
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Similarly,

f
(

L
∥∥T(vj,uj) – v′

j
∥∥)≤ ‖xj – xn+‖ + ‖yj – yn+‖ – 

L
∥∥y′

j – y′
n+
∥∥. (.)

We also have

‖uj – uk‖ – 
L
∥∥u′

j – u′
k
∥∥ = ∥∥( – tn+)(xj – xk)

∥∥ – 
L
∥∥( – tn+)

(
x′
j – x′

k
)∥∥

= ( – tn+)
[
‖xj – xk‖ – 

L
∥∥x′

j – x′
k
∥∥]

≤ ‖xj – xk‖ – 
L
∥∥x′

j – x′
k
∥∥. (.)

Similarly,

‖vj – vk‖ – 
L
∥∥v′

j – v′
k
∥∥≤ ‖yj – yk‖ – 

L
∥∥y′

j – y′
k
∥∥. (.)

Put

t :=max

{
‖xi – xk‖ + ‖yi – yk‖ – 

L
∥∥x′

i – x′
k
∥∥ :  ≤ i,k ≤ n + 

}

=max

{
‖xi – xk‖ + ‖yi – yk‖ – 

L
∥∥y′

i – y′
k
∥∥ :  ≤ i,k ≤ n + 

}

=max

{
‖xi – xk‖ + ‖yi – yk‖ – 

L
∥∥x′

i – x′
k
∥∥ – 

L
∥∥y′

i – y′
k
∥∥ :  ≤ i,k ≤ n + 

}
.

Then, by (.) and (.),


L
∥∥T(uj, vj) – u′

j
∥∥≤ f – (t) and


L
∥∥T(vj,uj) – v′

j
∥∥≤ f – (t). (.)

Using (.) and (.) in (.) and also (.) and (.) in (.), we have

‖uj – uk‖ – 
L
∥∥T(uj, vj) – T(uk , vk)

∥∥≤ ‖xj – xk‖ – 
L
∥∥x′

j – x′
k
∥∥ + f – (t)

and

‖vj – vk‖ – 
L
∥∥T(vj,uj) – T(vk ,uk)

∥∥≤ ‖yj – yk‖ – 
L
∥∥y′

j – y′
k
∥∥ + f – (t);

by summing,

‖uj – uk‖ + ‖vj – vk‖ – 
L
∥∥T(uj, vj) – T(uk , vk)

∥∥ – 
L
∥∥T(vj,uj) – T(vk ,uk)

∥∥
≤ ‖xj – xk‖ + ‖yj – yk‖ – 

L
∥∥x′

j – x′
k
∥∥ – 

L
∥∥y′

j – y′
k
∥∥ + f – (t)

≤ t + f – (t). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/68
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Using (.) in (.) yields

∥∥∥∥∥T
( n∑

j=

μj(uj, vj)

)
–

n∑
j=

μjT(uj, vj)

∥∥∥∥∥≤ L

f –n
(
t + f – (t)

)
. (.)

Finally, when (.) and (.) are used in (.), we obtain

∥∥∥∥∥T
( n+∑

i=

ti(xi, yi)

)
–

n+∑
i=

tiT(xi, yi)

∥∥∥∥∥≤ L

f –n
(
t + f – (t)

)
+

n∑
j=

μj
L

f – (t)

≤ L

f –n
(
t + f – (t)

)
+
L

f – (t)

=
L

[
f –n
(
t + f – (t)

)
+ f – (t)

]
≤ L


f –n+(t) by the definition of fn+.

Therefore

∥∥∥∥∥T
( n+∑

i=

ti(xi, yi)

)
–

n+∑
i=

tiT(xi, yi)

∥∥∥∥∥
≤ L


f –n+

(
max

≤i,k≤n+

{
‖xi – xk‖ + ‖yi – yk‖ – 

L
∥∥T(xi, yi) – T(xk , yk)

∥∥}).
To complete the proof, we show in the sequel that the dependence of fn on n can actually

be omitted.
Since E is uniformly convex, E is B-convex (see []) and since the product of B-convex

spaces is also B-convex (see []), E is B-convex, hence has the convex approximation
property (C.A.P.) (see []), i.e., for each ε > , there exists a positive integer p such that

coM ⊂ copM + S
(
,

ε

L

)
× S
(
,

ε

L

)
× S
(
,

ε

L

)
,

where S(, r) is the open sphere centered at the origin and with r as radius, coM is the
convex hall ofM and

copM =

{ p∑
i=

tiXi; t ∈ �p–;Xi ∈M for all i ∈ {, . . . ,p},p fixed

}

for everyM ⊂ C ×C ×C.
Put γ = fp( εL ). Suppose x, . . . ,xn, y, . . . , yn ∈ C satisfy

‖xi – xj‖ + ‖yi – yj‖ – 
L
∥∥T(xi, yi) – T(xj, yj)

∥∥≤ γ for all i, j.

Consider M = {(xi, yi,T(xi, yi)) ∈ C : i = , , . . . ,n}. Thus, for each t ∈ �n–, there exist

http://www.fixedpointtheoryandapplications.com/content/2013/1/68
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μ ∈ �p– and i, . . . , ip ∈ {, . . . ,n} such that

∥∥∥∥∥
n∑
i=

tixi –
p∑
j=

μjxij

∥∥∥∥∥ < ε

L
,

∥∥∥∥∥
n∑
i=

tiyi –
p∑
j=

μjyij

∥∥∥∥∥ < ε

L
,

∥∥∥∥∥
n∑
i=

tiT(xi, yi) –
p∑
j=

μjT(xij , yij )

∥∥∥∥∥ < ε

L
≤ ε


.

Now
∥∥∥T(∑ ti(xi, yi)

)
–
∑

tiT(xi, yi)
∥∥∥≤
∥∥∥T(∑ ti(xi, yi)

)
– T
(∑

μj(xij , yij )
)∥∥∥

+
∥∥∥T(∑μj(xij , yij )

)
–
∑

μjT(xij , yij )
∥∥∥

+
∥∥∥∑μjT(xij , yij ) –

∑
tiT(xi, yi)

∥∥∥.
Since
∥∥∥T(∑ ti(xi, yi)

)
– T
(∑

μj(xij , yij )
)∥∥∥

≤ L


[∥∥∥∑ tixi –
∑

μjxij
∥∥∥ + ∥∥∥∑ tiyi –

∑
μjyij
∥∥∥]

<
L


[
ε

L
+

ε

L

]
=

ε



and

∥∥∥T(∑μj(xij , yij )
)
–
∑

μjT(xij , yij )
∥∥∥≤ L


f –p (γ ) =

L

f –p

(
fp
(
ε
L

))
=

ε


,

we have that
∥∥∥T(∑ ti(xi, yi)

)
–
∑

tiT(xi, yi)
∥∥∥ < ε


+

ε


+

ε


= ε

whenever ‖xi – xj‖+ ‖yi – yj‖– 
L‖T(xi, yi) –T(xj, yj)‖ ≤ γ . One can easily construct f such

that ε < L
 f

–(γ ), i.e., such that f (t) ≤ fp( t ), which guarantees (.) with f independent
of n. �

2 Existence of coupled fixed points
Let p : E × E → E denote the projection of the first coordinate, i.e., p(x, y) = x for all
x, y ∈ X. Note that if F :D×D →D is a mapping, we have that p –F is demi-closed at the
origin if the existence of a sequence {(xn, yn)} in D×D such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xn → q weakly,
yn → q weakly,
xn – F(xn, yn) →  strongly,
yn – F(yn,xn) →  strongly
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implies that

(p – F)(q,q) = (p – F)(q,q) = ,

i.e.,

F(q,q) = q and q = F(q,q),

i.e., the existence of a coupled fixed point (q,q) of F .
Now we prove our main theorem.

Theorem . Let D be a nonempty closed convex subset of a uniformly convex Banach
space E and F : D × D → D be an asymptotically nonexpansive map with the sequence
{kn} as defined in (.). Then p – F satisfies the demi-closedness at the origin property. In
other terms, if any sequence {(xn, yn)} in D×D is such that xn → q weakly, yn → q weakly,
xn –F(xn, yn) →  strongly and yn –F(yn,xn) →  strongly, then F has a coupled fixed point
(q,q).

Proof Since {(xn, yn)} converges weakly to q = (q,q) ∈ D×D, {xn} and {yn} are bounded
inD. Therefore, there exists r >  such that {xn}, {yn} ⊂ C =:D∩B[, r], where B[, r] is the
ball of E of radius r centered in . Hence C is a nonempty bounded closed convex subset
in D.
Next, we prove that as n → +∞, Fnq → q and Fnq̄ → q, where q = (q,q) and q̄ =

(q,q).
Since {xn} and {yn} converge weakly to q and q respectively, by Mazur’s theorem (see,

e.g., []), for all n≥ , there exist sequences {An} and {Bn} such that An =
∑m(n)

i= t(n)i xi+n and
Bn =
∑m(n)

i= t(n)i yi+n, where t(n)i ≥ ,
∑m(n)

i= t(n)i =  and ‖An – q‖ < 
n , ‖Bn – q‖ < 

n .
Since the sequences {xn – F(xn, yn)} and {yn – F(yn,xn)} converge strongly to  respec-

tively, for any given ε >  and positive integer j ≥ , there is an integerN =N(ε, j) such that

N < ε and

∥∥xn – F(xn, yn)
∥∥ + ∥∥yn – F(yn,xn)

∥∥≤ 
 +
∑j–

l= kl/
< ε, n ≥ N .

Since F is asymptotically nonexpansive,

∥∥Fj(xn, yn) – Fj+(xn, yn)
∥∥ = ∥∥Fj(xn, yn) – Fj(F(xn, yn),F(yn,xn))∥∥

≤ kj

[∥∥xn – F(xn, yn)

∥∥ + ∥∥yn – F(yn,xn)
∥∥]

and

∥∥Fj(yn,xn) – Fj+(yn,xn)
∥∥ = ∥∥Fj(yn,xn) – Fj(F(yx, yn),F(xn, yn))∥∥

≤ kj

[∥∥xn – F(xn, yn)

∥∥ + ∥∥yn – F(yn,xn)
∥∥].
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Hence, for any n ≥ N ,

∥∥xn – Fj(xn, yn)
∥∥≤ ∥∥xn – F(xn, yn)

∥∥ + ∥∥(F – F)(xn, yn)∥∥ + · · ·
+
∥∥(Fj– – Fj)(xn, yn)∥∥

≤
(
 +

j–∑
l=

kl/

)[∥∥xn – F(xn, yn)
∥∥ + ∥∥yn – F(yn,xn)

∥∥]

< ε. (.)

Similarly,

∥∥yn – Fj(yn,xn)
∥∥ < ε. (.)

Since F :D×D →D is asymptotically nonexpansive, F : C×C →D is also asymptotically
nonexpansive, hence Fj : C×C →D is a Lipschitzianmappingwith the Lipschitz constant
kj ≥ . We have the following inequality:

∥∥Fj(An,Bn) –An
∥∥ =
∥∥∥∥∥Fj(An,Bn) –

m(n)∑
i=

t(n)i Fj(xi+n, yi+n)

+
m(n)∑
i=

t(n)i Fj(xi+n, yi+n) –
m(n)∑
i=

t(n)i xi+n

∥∥∥∥∥
≤
∥∥∥∥∥Fj(An,Bn) –

m(n)∑
i=

t(n)i Fj(xi+n, yi+n)

∥∥∥∥∥
+

m(n)∑
i=

t(n)i
∥∥Fj(xi+n, yi+n) – xi+n

∥∥. (.)

By (.), we know that

m(n)∑
i=

t(n)i
∥∥Fj(xi+n, yi+n) – xi+n

∥∥ < ε ∀n≥ N . (.)

By Lemma ., (.) and (.), we have

∥∥∥∥∥Fj(An,Bn) –
m(n)∑
i=

t(n)i Fj(xi+n, yi+n)

∥∥∥∥∥
≤ (kj/)f –

{
max

≤i,k≤m(n)

(‖xi+n – xk+n‖ + ‖yi+n – yk+n‖

– (kj/)–
∥∥Fj(xi+n, yi+n) – Fj(xk+n, yk+n)

∥∥)}
≤ (kj/)f –

{
max

≤i,k≤m(n)

[∥∥xi+n – Fj(xi+n, yi+n)
∥∥ + ∥∥yi+n – Fj(yi+n,xi+n)

∥∥
+
∥∥Fj(xi+n, yi+n) – Fj(xk+n, yk+n)

∥∥ + ∥∥Fj(yi+n,xi+n) – Fj(yk+n,xk+n)
∥∥

+
∥∥Fj(xk+n, yk+n) – xk+n

∥∥ + ∥∥Fj(yk+n,xk+n) – yk+n
∥∥]
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– (kj/)–
∥∥Fj(xi+n, yi+n) – Fj(xk+n, yk+n)

∥∥}
≤ (kj/)f –

{
max

≤i,k≤m(n)

[
ε +
(
 – k–j

)
kj
(‖xi+n – xk+n‖ + ‖yi+n – yk+n‖

)]}

≤ (kj/)f –
(
ε + r

(
 – k–j

)
kj
)
, n≥ N . (.)

Inequalities (.) and (.) into (.) yield

∥∥Fj(An,Bn) –An
∥∥≤ (kj/)f –

[
ε + rkj

(
 – k–j

)]
+ ε.

Taking the limit superior as n→ +∞ in the above inequality and noting that ε >  is arbi-
trary, we have

lim sup
n→+∞

∥∥Fj(An,Bn) –An
∥∥≤ (kj/)f –

[
rkj
(
 – k–j

)]
. (.)

Also, by the definition of the sequences {An} and {Bn}, we have that for all j ≥ ,

∥∥Fj(q) – q
∥∥≤ ∥∥Fj(q,q) – Fj(An,Bn)

∥∥ + ∥∥Fj(An,Bn) –An
∥∥ + ‖An – q‖

≤ (kj + )
[‖An – q‖ + ‖Bn – q‖

]
+
∥∥Fj(An,Bn) –An

∥∥
≤ 

n
(kj + ) +

∥∥Fj(An,Bn) –An
∥∥.

Taking the limit superior in the above inequality, from (.) we have

∥∥Fj(q) – q
∥∥≤ (kj/)f –

(
rkj
(
 – k–j

))
.

Finally, the limit superior in the above inequality yields lim supj→+∞ ‖Fj(q)–q‖ ≤ f –() =
, which implies that ‖Fj(q) – q‖ →  as j → +∞.
Similar computations yield that ‖Fj(q̄) – q‖ →  as j → +∞. Hence,

{
F(qj,qj) → q,
F(qj,qj) → q.

Since F is continuous, we have

{
q = limj→+∞ F(qj+,qj+) = limj→+∞ F(F(qj,qj),F(qj,qj)) = F(q,q),
q = limj→+∞ F(qj+,qj+) = limj→+∞ F(F(qj,qj),F(qj,qj)) = F(q,q).

Hence q = (q,q) is a coupled fixed point of F , which completes the proof. �

The conclusion of demi-closedness in the previous theorem states that if sequences {xn}
and {yn} inD are such that xn → q, yn → q weakly and xn–F(xn, yn) → , yn–F(yn,xn) →
 strongly, then (q,q) is a coupled fixed point of F . A more direct conclusion about the
existence of a coupled fixed point of F can be obtained by adding the property bounded-
ness of the subset D. This fact is expressed in the following theorem.
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Theorem . Let D be a nonempty convex closed and bounded subset of a uniformly con-
vex Banach space E. Then any asymptotically nonexpansive mapping T : D×D → D has
a coupled fixed point.

Proof Let u, v ∈D be fixed. Define the set R(u, v) as follows:

R(u, v) =

{
ρ ∈ R/∃kρ ∈N :D∩

(+∞⋂
i=kρ

S
(
Fi(u, v) + Fi(v,u),ρ

)) �= ∅
}
,

where S(x, r) is the open sphere in E of center x and radius r.D is bounded, so if d := diamD
(diameter of D), d ∈ R(u, v), hence R(u, v) �= ∅. Let ρ* be the g.l.b. of R(u, v). For each ε > ,
define the set

Aε :=
+∞⋃
k=

(+∞⋂
i=k

S
(
Fi(u, v) + Fi(v,u),ρ* + ε

))
.

The sets Aε ∩ D are nonempty and convex. Since E is reflexive, A :=
⋂

ε>Aε ∩ D is
nonempty. Now, for any x, y ∈ A and η > , there exists N ∈ N such that i ≥ N implies
that ‖x – Fi(u, v)‖ + ‖y – Fi(v,u)‖ ≤ ρ* + η.
Let us show that there exist x, y ∈ A such that the sequences {Fn(x, y)} and {Fn(y,x)} con-

verge to x and y respectively. Suppose that for all x, y ∈ A such sequences do not converge.
Then ∃ε >  and a strictly increasing sequence of integers {ni} is such that

∥∥Fni (x, y) – x
∥∥ + ∥∥Fni (y,x) – y

∥∥≥ ε, i = , , . . . .

Form > n,

∥∥Fn(x, y) – Fm(y,x)
∥∥ = ∥∥Fn(x, y) – Fn(Fm–n(x, y),Fm–n(y,x)

)∥∥
≤ kn

‖x – Fm–n(x, y)‖ + ‖y – Fm–n(y,x)‖


,
∥∥Fn(y,x) – Fm(y,x)

∥∥ = ∥∥Fn(y,x) – Fn(Fm–n(y,x),Fm–n(y,x)
)∥∥

≤ kn
‖x – Fm–n(x, y)‖ + ‖y – Fm–n(y,x)‖


.

Hence

∥∥Fn(y,x) – Fm(y,x)
∥∥ + ∥∥Fn(y,x) – Fm(y,x)

∥∥
≤ kn
[∥∥x – Fm–n(x, y)

∥∥ + ∥∥y – Fm–n(y,x)
∥∥].

Let δ be the modulus of convexity of the space E. Assume ρ* >  and α >  so that ( –
δ( ε

ρ*+α
))(ρ* + α) < ρ*, and select n so that ‖x – Fn(x, y)‖ + ‖y – Fn(y,x)‖ ≥ ε and so that

kn(ρ* + α
 ) ≤ ρ* + α.

If N ≥ n is sufficiently large, thenm >N implies that

∥∥x – Fm–n(u, v)
∥∥ + ∥∥y – Fm–n(v,u)

∥∥≤ ρ* +
α


,
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and also

∥∥Fn(x, y) – Fm(u, v)
∥∥ + ∥∥Fn(y,x) – Fm(v,u)

∥∥≤ kn
[∥∥x – Fm–n(u, v)

∥∥
+
∥∥y – Fm–n(v,u)

∥∥]
≤ kn
(

ρ* +
α



)

≤ ρ* + α.

Now, by the uniform convexity of E,

∥∥∥∥X + Y


∥∥∥∥≤
[
 – δ

(
ε

ρ* + α

)]
ε

ρ* + α
, for ‖X‖,‖Y‖ ≤ ρ* + α,‖X – Y‖ ≥ ε.

Since ‖x – Fm(u, v)‖ + ‖y – Fm(v,u)‖ ≤ ρ* + α
 , letting X = x – Fm(u, v) + y – Fm(v,u) and

Y = Fn(x, y) + Fn(y,x) – Fm(u, v) – Fm(v,u), we have ifm >N

∥∥∥∥x + Fn(x, y) + y + Fn(y,x)


–
(
Fm(u, v) + Fm(v,u)

)∥∥∥∥≤
(
 – δ

(
ε

ρ* + α

))(
ρ* + α

)
< ρ*.

This contradicts the definition of ρ*, the g.l.b. of R(u, v), since

ρ* >
(
 – δ

(
ε

ρ* + α

))(
ρ* + α

) ∈ R(u, v).

Hence, ρ* =  and so x = F(x, y) and y = F(x, y). The fact that ρ* =  implies that the se-
quences {Fn(u, v)} and {Fn(v,u)} are Cauchy, hence Fn(u, v) → x = F(x, y) and Fn(v,u) →
y = F(y,x). This completes the proof. �

Since nonexpansivemaps are asymptotically nonexpansive, we have the following corol-
lary.

Corollary . Let D be a nonempty convex closed and bounded subset of a uniformly con-
vex Banach space. Then any nonexpansive mapping T : D × D → D has a coupled fixed
point.

Remark . Theorem . is an extension of Theorem  of [] to nonexpansive maps de-
fined in a product space. The proof of Theorem . follows the methodology in [], ex-
tending the result therein to product spaces. Our results are, to the best of our knowledge,
first of their kind in the theory of nonexpansiveness in product spaces dealing with the
existence of a coupled fixed point.
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