Some new results for single-valued and multi-valued mixed monotone operators of Rhoades type

Farshid Khojasteh*

Correspondence:
f-khojaste@iau-arak.ac.ir Department of Mathematics, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

In (2008), Zhang proved the existence of fixed points of mixed monotone operators along with certain convexity and concavity conditions. In this paper, mixed monotone single-valued and multi-valued operators of Rhoades type are defined and two fixed point theorems are proved MSC: 47H10; 47H07 Keywords: mixed monotone operator; Rhoades type; multi-valued; increasing inward mappings; $\mathcal{L}^{\prime \prime}$-function

1 Introduction and preliminaries

In (1987), mixed monotone operators were introduced by Guo and Lakshmikantham [1]. Then many authors studied them in Banach spaces and obtained lots of interesting results (see $[2,3]$ and $[4-8]$).
On the other hand, in (2001), Rhoades [9] introduced a new fixed point theorem as a generalization of Banach fixed point theorem.

Theorem 1.1 (Rhoades [9]) Let (X, d) be a complete metric space. Suppose that $T: X \rightarrow X$ is a single-valued mapping that satisfies

$$
\begin{equation*}
d(T x, T y) \leq d(x, y)-\psi(d(x, y)) \tag{1}
\end{equation*}
$$

for each $x, y \in X$, where $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is continuous, nondecreasing and $\psi^{-1}(0)=$ $\{0\}$ (i.e., weakly contractive mappings). Then T has a fixed point.

In this paper, a weak mixed monotone single-valued and multi-valued operator of Rhoades type is defined. Then two fixed point theorems for this kind of operators are proved.
Let E be a real Banach space. The zero element of E is denoted by θ. A subset P of E is called a cone if and only if:

- P is closed, nonempty and $P \neq\{\theta\}$,
- $a, b \in \mathrm{R}, a, b \geq 0$ and $x, y \in P$ imply that $a x+b y \in P$,
- $x \in P$ and $-x \in P$ imply that $x=\theta$.

[^0]Given a cone $P \subset E$, a partial ordering \leq with respect to P is defined by $x \leq y$ if and only if $y-x \in P$. We write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ stands for $y-x \in \operatorname{int} P$, where int P denotes the interior of P. The cone P is called normal if there exists a number $K>0$ such that $\theta \leq x \leq y$ implies $\|x\| \leq K\|y\|$ for every $x, y \in E$. The least positive number satisfying this is called the normal constant of P.

Assume that $u_{0}, v_{0} \in E$ and $u_{0} \leq v_{0}$. The set $\left\{x \in E: u_{0} \leq x \leq v_{0}\right\}$ is denoted by $\left[u_{0}, v_{0}\right]$. Now, we recall the following definitions from [2,3].

Definition 1.1 Let P be a cone of a real Banach space E. Suppose that $D \subset P$ and $\alpha \in$ $(-\infty,+\infty)$. An operator $A: D \rightarrow D$ is said to be α-convex (α-concave) if it satisfies $A(t x) \leq$ $t^{\alpha} A x\left(A(t x) \geq t^{\alpha} A x\right)$ for $(t, x) \in(0,1) \times D$.

Definition 1.2 Let E be an ordered Banach space and $D \subset E$. An operator is called mixed monotone on $D \times D$ if $A: D \times D \rightarrow E$ and $A\left(x_{1}, y_{1}\right) \leq A\left(x_{2}, y_{2}\right)$ for any $x_{1}, x_{2}, y_{1}, y_{2} \in D$, where $x_{1} \leq x_{2}$ and $y_{2} \geq y_{1}$. Also, $x^{*} \in D$ is called a fixed point of A if $A\left(x^{*}, x^{*}\right)=x^{*}$.

Let $\mathcal{C}(E)$ be a collection of all closed subsets of E.

Definition 1.3 For two subsets X, Y of E, we write

- $X \preceq Y$ if for all $x \in X$, there exists $y \in Y$ such that $x \leq y$,
- $x \prec X$ if there exists $z \in X$ such that $x \ll z$,
- $X \prec x$ if for all $z \in X, z \ll x$.

Definition 1.4 Let D be a nonempty subset of $E . T: D \rightarrow \mathcal{C}(E)$ is called increasing (decreasing) upward if $u, v \in D, u \leq v$ and $x \in T(u)$ imply there exists $y \in T(v)$ such that $x \leq y$ $(x \geq y)$. Similarly, $T: D \rightarrow \mathcal{C}(E)$ is called increasing (decreasing) downward if $u, v \in D$, $u \leq v$ and $y \in T(v)$ imply there exists $x \in T(u)$ such that $x \leq y(x \geq y) . T$ is called increasing (decreasing) if T is an increasing (decreasing) upward and downward.

Definition 1.5 Let D be a nonempty subset of E. A multi-valued operator $T: D \times D \rightarrow$ $\mathcal{C}(E)$ is said to be mixed monotone upward if $T(x, y)$ is increasing upward in x and decreasing upward in y, i.e.,
(A_{1}) for each $y \in D$ and any $x_{1}, x_{2} \in D$ with $x_{1} \leq x_{2}$, if $u_{1} \in T\left(x_{1}, y\right)$, then there exists a $u_{2} \in T\left(x_{2}, y\right)$ such that $u_{1} \leq u_{2}$;
(A_{2}) for each $x \in D$ and any $y_{1}, y_{2} \in D$ with $y_{1} \leq y_{2}$, if $v_{1} \in T\left(x, y_{1}\right)$, then there exists a $v_{2} \in T\left(x, y_{2}\right)$ such that $v_{1} \geq v_{2}$.

Definition 1.6 $x^{*} \in D$ is called a fixed point of T if $x^{*} \in T\left(x^{*}, x^{*}\right)$.

Definition 1.7 [10] A function $\Psi:[0,1) \times P \times P \times E \rightarrow E$ is called an $\mathcal{L}^{\prime \prime}$-function if $\Psi(t, x, y, 0)=0, \Psi(t, x, y, s) \gg 0$ for $s \gg 0$, and $\Psi(t, x, y, z)<z$ for all $(t, x, y, z) \in[0,1) \times$ $P \times P \times E$.

In 2011, Khojasteh and Razani [10] extended the results given by Zhang [6]. Also, in 2011 Khojasteh and Razani [11] introduced the concept of integral with respect to a cone. We recall the following definitions and lemmas of cone integration and refer to [11, 12] for their proofs.

Definition 1.8 [11] Suppose that P is a cone in E. Let $a, b \in E$ and $a<b$. Define

$$
\begin{equation*}
[a, b]:=\{x \in E: x=t b+(1-t) a \text { for some } t \in[0,1]\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
[a, b):=\{x \in E: x=t b+(1-t) a \text { for some } t \in[0,1)\} . \tag{3}
\end{equation*}
$$

Definition 1.9 [11] The set $\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\}$ is called a partition for $[a, b]$ if and only if the intervals $\left\{\left[x_{i-1}, x_{i}\right)\right\}_{i=1}^{n}$ are pairwise disjoint and $[a, b]=\left\{\bigcup_{i=1}^{n}\left[x_{i-1}, x_{i}\right)\right\} \cup\{b\}$. Denote $\mathcal{P}[a, b]$ as the collection of all partitions of $[a, b]$.

Definition 1.10 [12] For each partition Q of $[a, b]$ and each increasing function ϕ : $[a, b] \rightarrow E$, we define cone lower summation and cone upper summation as

$$
\begin{equation*}
L_{n}^{\mathrm{Con}}(\phi, Q)=\sum_{i=0}^{n-1} \phi\left(x_{i}\right)\left\|x_{i}-x_{i+1}\right\| \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}^{\mathrm{Con}}(\phi, Q)=\sum_{i=0}^{n-1} \phi\left(x_{i+1}\right)\left\|x_{i}-x_{i+1}\right\|, \tag{5}
\end{equation*}
$$

respectively. Also, we denote $\|\Delta(Q)\|=\sup \left\{\left\|x_{i}-x_{i-1}\right\|, x_{i} \in Q\right\}$.

Definition 1.11 [12] Suppose that P is a cone in $E . \phi:[a, b] \rightarrow E$ is called an integrable function on $[a, b]$ with respect to a cone P or, to put it simply, a cone integrable function if and only if for all partition Q of $[a, b]$,

$$
\lim _{\|\Delta(Q)\| \rightarrow 0} L_{n}^{\mathrm{Con}}(\phi, Q)=S^{\mathrm{Con}}=\lim _{\|\Delta(Q)\| \rightarrow 0} U_{n}^{\mathrm{Con}}(\phi, Q)
$$

where $S^{\text {Con }}$ must be unique.
We show the common value $S^{\text {Con }}$ by

$$
\int_{a}^{b} \phi(x) d_{P}(x) \text { or to simplicity } \int_{a}^{b} \phi d_{p}
$$

We denote the set of all cone integrable functions $\phi:[a, b] \rightarrow E$ by $\mathcal{L}^{1}([a, b], E)$.

Lemma 1.1 [11] Let M be a subset of P. The following conditions hold:
(1) If $[a, b] \subseteq[a, c] \subset M$, then $\int_{a}^{b} f d_{p} \leq \int_{a}^{c} f d_{p}$ for $f \in \mathcal{L}^{1}(M, P)$.
(2) $\int_{a}^{b}(\alpha f+\beta g) d_{p}=\alpha \int_{a}^{b} f d_{p}+\beta \int_{a}^{b} g d_{p}$ for $f, g \in \mathcal{L}^{1}(M, P)$ and $\alpha, \beta \in \mathrm{R}$.

Remark 1.1 [13, Remark 1.2] Let P be a cone of E, and let $u \in P$. If for each $\epsilon \in \operatorname{int}(P)$, $0 \leq u \ll \epsilon$, then $u=0$.

2 Main results

In this section, we introduce some new fixed point theorems in the class of mixed monotone operators. Due to this, the following definition is presented.

Definition 2.1 A mixed monotone operator $A: D \times D \rightarrow E$ is said to be a Weak Mixed Monotone single-valued operator of Rhoades type ($\mathrm{WM}_{2} \mathrm{R}$ property for short) if

$$
\begin{equation*}
A(t x, y) \leq A(x, t y)-\Psi(t, x, y, A(x, t y)) \tag{6}
\end{equation*}
$$

for all $(x, y) \in D \times D$, where $\Psi:[0,1) \times P \times P \times E \rightarrow E$ is an $\mathcal{L}^{\prime \prime}$-function.

Theorem 2.1 Let P be a cone of E, let S be a completely ordered closed subset of E with $S_{0}=S \backslash\{\theta\} \subset \operatorname{int} P$ and let $\lambda S \subset S$ for all $\lambda \in[0,1]$. Let $u_{0}, v_{0} \in S_{0}, A: P \times P \rightarrow E$ be a weak mixed monotone operator of Rhoades type with $A\left(\left(\left[\theta, v_{0}\right] \cap S\right) \times\left(\left[\theta, v_{0}\right] \cap S\right)\right) \subset S$ satisfying the following conditions:
(I) there exists $r_{0}>0$ such that $u_{0} \geq r_{0} v_{0}$,
(II) $A\left(u_{0}, v_{0}\right) \ll u_{0} \ll v_{0} \ll A\left(v_{0}, u_{0}\right)$,
(III) for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u^{\prime} \in S$ such that $u \leq A\left(u^{\prime}, v\right) \ll u^{\prime} \ll v$; similarly, for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $u \ll v \ll A(v, u)$, there exists $v^{\prime} \in S$ such that $u \ll v^{\prime} \ll A\left(v^{\prime}, u\right) \leq v$.
Then A has at least one fixed point $x^{*} \in\left[u_{0}, v_{0}\right] \cap S$.

Proof By the above condition (III), there exists $u_{1} \in S$ such that $u_{0} \leq A\left(u_{1}, v_{0}\right) \ll u_{1} \ll$ v_{0}. Then there exists $v_{1} \in S$ such that $u_{1} \ll v_{1} \ll A\left(v_{1}, u_{1}\right) \leq v_{0}$. Likewise, there exists $u_{2} \in S$ such that $u_{1} \leq A\left(u_{2}, v_{1}\right) \ll u_{2} \ll v_{1}$. Then there exists $v_{2} \in S$ such that $u_{2} \ll v_{2} \ll$ $A\left(v_{2}, u_{2}\right) \leq v_{1}$. In general, there exists $u_{n} \in S$ such that $u_{n-1} \leq A\left(u_{n}, v_{n-1}\right) \ll u_{n} \ll v_{n-1}$. Then there exists $v_{n} \in S$ such that $u_{n} \ll v_{n} \ll A\left(v_{n}, u_{n}\right) \leq v_{n-1}(n=1,2, \ldots)$.
Take $r_{n}=\sup \left\{r \in(0,1): u_{n} \geq r v_{n}\right\}$, thus $0<r_{0}<r_{1}<\cdots<r_{n}<r_{n+1}<\cdots<1$ and $\lim _{n \rightarrow \infty} r_{n}=\sup \left\{r_{n}: n=0,1,2, \ldots\right\}=r^{*} \in(0,1]$. Since $r_{n+1}>r_{n}=\sup \left\{r \in(0,1): u_{n} \geq r v_{n}\right\}$, thus $u_{n} \nsucceq r_{n+1} v_{n}$. In addition, S is completely ordered and $\lambda S \subset S$ for all $\lambda \in[0,1]$, then $u_{n}<r_{n+1} v_{n}$. Now, one can prove $r^{*}=1$. Otherwise, $r^{*} \in(0,1)$.

Since $u_{n}<r_{n+1} v_{n}$ and $r_{n+1}<r^{*}$, hence $u_{n}<r^{*} v_{n}$, and we have

$$
\begin{align*}
A\left(u_{n+1}, v_{n+1}\right) & \leq A\left(\frac{1}{r^{*}} u_{n+1}, r^{*} v_{n+1}\right) \\
& \leq A\left(u_{n+1}, v_{n+1}\right)-\Psi\left(r^{*}, \frac{1}{r^{*}} u_{n+1}, v_{n+1}, A\left(u_{n+1}, v_{n+1}\right)\right) \\
& <A\left(u_{n+1}, v_{n+1}\right), \tag{7}
\end{align*}
$$

which is a contradiction. Thus, $r^{*}=1$. Let $\epsilon \gg 0$ be given. Choose $\delta>0$ such that $\epsilon+$ $N_{\delta}(0) \subseteq P$, where $N_{\delta}(0)=\{y \in E:\|y\|<\delta\}$. Since $r_{n} \rightarrow 1$, one can choose a natural number N_{1} such that $\left(1-r_{n}\right) v_{1} \in N_{\delta}(0)$ for all $n \geq N_{1}$. Therefore $\left(1-r_{n}\right) v_{1} \ll \epsilon$. Also, $v_{n} \leq v_{1}$ and

$$
\begin{equation*}
0<v_{n}-u_{n} \leq\left(1-r_{n}\right) v_{n} \leq\left(1-r_{n}\right) v_{1} \ll \epsilon . \tag{8}
\end{equation*}
$$

By Remark 1.1, $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}$.

For all $n, p \geq 1$, applying the same argument, we have

$$
\begin{equation*}
0<v_{n}-v_{n+p} \leq v_{n}-u_{n} \ll \epsilon . \tag{9}
\end{equation*}
$$

Also,

$$
\begin{equation*}
0<u_{n+p}-u_{n} \leq v_{n}-u_{n} \ll \epsilon . \tag{10}
\end{equation*}
$$

Hence, $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are Cauchy sequences in E, then there exist $u^{*}, v^{*} \in E$ such that $u_{n} \rightarrow$ $u^{*}, v_{n} \rightarrow v^{*}(n \rightarrow \infty)$ and $u^{*}=v^{*}$. Write $x^{*}=u^{*}=v^{*}$.

It is easy to see $u_{0} \leq u_{n} \leq u^{*} \leq v_{n} \leq v_{0}$ for all $n=1,2, \ldots$. In addition, S is closed, then $u^{*} \in\left[u_{n}, v_{n}\right] \cap S \subset\left[u_{0}, v_{0}\right] \cap S(n=0,1,2, \ldots)$.

Finally, by the mixed monotone property of A,

$$
\begin{equation*}
u_{n-1} \leq A\left(u_{n}, v_{n}\right) \leq A\left(x^{*}, x^{*}\right) \leq A\left(u_{n}, v_{n}\right) \leq u_{n-1} . \tag{11}
\end{equation*}
$$

On taking limit on both sides of (11), when $n \rightarrow \infty$, we have $A\left(x^{*}, x^{* *}\right)=x^{* *}$. This means x^{*} is a fixed point of A in $\left[u_{0}, v_{0}\right] \cap S$.

Corollary 2.1 Let P be a cone of E, let S be a completely ordered closed subset of E with $S_{0}=S \backslash\{\theta\} \subset \operatorname{int} P$ and let $\lambda S \subset S$ for all $\lambda \in[0,1]$. Let $u_{0}, v_{0} \in S_{0}, A: P \times P \rightarrow E$ satisfy

$$
\begin{equation*}
\int_{y}^{t x} \phi d_{P} \leq \int_{t y}^{x} \phi d_{P}-\Psi\left(t, x, y, \int_{t y}^{x} \phi d_{P}\right) \tag{12}
\end{equation*}
$$

for all $(x, y) \in D \times D$, where $\Psi:[0,1) \times P \times P \times E \rightarrow E$ is an $\mathcal{L}^{\prime \prime}$-function, and let $\phi: P \rightarrow P$ be a non-vanishing, cone integrable mapping on each $[a, b] \subset P$ such that for each $\epsilon \gg 0$, $\int_{0}^{\epsilon} \phi d_{p} \gg 0$ and the mapping $\theta(x)=\int_{0}^{x} \phi d_{P}$ for $(x \geq 0)$ has a continuous inverse at zero. Also, $A\left(\left(\left[\theta, v_{0}\right] \cap S\right) \times\left(\left[\theta, v_{0}\right] \cap S\right)\right) \subset S$ satisfies the following conditions:
(I) there exists $r_{0}>0$ such that $u_{0} \geq r_{0} v_{0}$,
(II) $A\left(u_{0}, v_{0}\right) \ll u_{0} \ll v_{0} \ll A\left(v_{0}, u_{0}\right)$,
(III) for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u^{\prime} \in S$ such that
$u \leq A\left(u^{\prime}, v\right) \ll u^{\prime} \ll v$; similarly, for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $u \ll v \ll A(v, u)$, there
exists $v^{\prime} \in S$ such that $u \ll v^{\prime} \ll A\left(v^{\prime}, u\right) \leq v$.
Then A has at least one fixed point $x^{*} \in\left[u_{0}, v_{0}\right] \cap S$.

Proof Define

$$
A(x, y)=\int_{y}^{x} \phi d_{P}
$$

A is a mixed monotone operator, and one can easily see that all conditions of Theorem 2.1 hold. Thus we obtain the desired result.

$3 \mathbf{M}_{3}$ R property

In this section, we introduce a new fixed point theorem in the class of multi-valued mixed monotone operators. Due to this, the following definition is given.

Definition 3.1 A mixed monotone operator $T: D \times D \rightarrow \mathcal{C}(E)$ is said to be a Mixed Monotone Multi-valued operator of Rhoades type ($\mathrm{M}_{3} R$ property for short) if

$$
\begin{equation*}
T(t x, y) \leq T(x, t y)-\Psi(t, x, y, T(t x, y)) \tag{13}
\end{equation*}
$$

for each $(x, y) \in D \times D$, where $\Psi:[0,1) \times P \times P \times E \rightarrow E$ is an $\mathcal{L}^{\prime \prime}$-function.
Theorem 3.1 Let P be a cone of E, let S be a completely ordered closed subset of E with $S_{0}=$ $S \backslash\{\theta\} \subset \operatorname{int} P$ and let $\lambda S \subset S$ for all $\lambda \in[0,1]$. Let $u_{0}, v_{0} \in S_{0}, T: P \times P \rightarrow \mathcal{C}(E)$ be a mixed monotone multi-valued operator of Rhoades type with $T\left(\left(\left[\theta, v_{0}\right] \cap S\right) \times\left(\left[\theta, v_{0}\right] \cap S\right)\right) \subset S$ satisfying the following conditions:
(I) there exists $r_{0}>0$ such that $u_{0} \geq r_{0} v_{0}$,
(II) $T\left(u_{0}, v_{0}\right) \prec u_{0} \ll v_{0} \prec T\left(v_{0}, u_{0}\right)$,
(III) for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $T(u, v) \prec u \ll v$, there exists $u^{\prime} \in S$ such that $u \preceq T\left(u^{\prime}, v\right) \prec u^{\prime} \ll v$; similarly, for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $u \ll v \prec T(v, u)$, there exists $v^{\prime} \in S$ such that $u \ll v^{\prime} \prec T\left(v^{\prime}, u\right) \preceq v$.
Then T has at least one fixed point $x^{*} \in\left[u_{0}, v_{0}\right] \cap S$.
Proof By the above condition (III), there exists $u_{1} \in S$ such that $u_{0} \preceq T\left(u_{1}, v_{0}\right) \prec u_{1} \ll$ v_{0}. Then there exists $v_{1} \in S$ such that $u_{1} \ll v_{1} \prec T\left(v_{1}, u_{1}\right) \preceq v_{0}$. Likewise, there exists $u_{2} \in S$ such that $u_{1} \preceq T\left(u_{2}, v_{1}\right) \prec u_{2} \ll v_{1}$. Then there exists $v_{2} \in S$ such that $u_{2} \ll v_{2} \prec$ $T\left(v_{2}, u_{2}\right) \leq v_{1}$. In general, there exists $u_{n} \in S$ such that $u_{n-1} \preceq T\left(u_{n}, v_{n-1}\right) \prec u_{n} \ll v_{n-1}$. Then there exists $v_{n} \in S$ such that $u_{n} \ll v_{n} \prec T\left(v_{n}, u_{n}\right) \preceq v_{n-1}(n=1,2, \ldots)$.

Take $r_{n}=\sup \left\{r \in(0,1): u_{n} \geq r v_{n}\right\}$, thus $0<r_{0}<r_{1}<\cdots<r_{n}<r_{n+1}<\cdots<1$, and $\lim _{n \rightarrow \infty} r_{n}=\sup \left\{r_{n}: n=0,1,2, \ldots\right\}=r^{*} \in(0,1]$. Since $r_{n+1}>r_{n}=\sup \left\{r \in(0,1): u_{n} \geq r v_{n}\right\}$, thus $u_{n} \nsucceq r_{n+1} v_{n}$. In addition, S is completely ordered and $\lambda S \subset S$ for all $\lambda \in[0,1]$, then $u_{n}<r_{n+1} v_{n}$. Now, one can prove $r^{*}=1$. Otherwise, $r^{*} \in(0,1)$. We claim

$$
\begin{equation*}
T\left(u_{n+1}, v_{n+1}\right) \preceq T\left(\left(1 / r^{*}\right) u_{n+1}, r^{*} v_{n+1}\right) . \tag{14}
\end{equation*}
$$

Suppose that $x \in T\left(u_{n+1}, v_{n+1}\right)$ is arbitrary. We have $u_{n+1} \leq\left(1 / r^{*}\right) u_{n+1}$. If $x_{1}=u_{n+1}, x_{2}=$ $\left(1 / r^{*}\right) u_{n+1}$ and $y=v_{n+1}$, then by $\left(\mathrm{A}_{1}\right)$ of Definition 1.5, there exists $z \in T\left(\left(1 / r^{*}\right) u_{n+1}, v_{n+1}\right)$ such that $x \leq z$. Thus, $T\left(u_{n+1}, v_{n+1}\right) \preceq T\left(\left(1 / r^{*}\right) u_{n+1}, v_{n+1}\right)$.

Also, if $y_{1}=r^{*} v_{n+1}, y_{2}=v_{n+1}$ and $x=\left(1 / r^{*}\right) u_{n+1}$, then for $w \in T\left(\left(1 / r^{*}\right) u_{n+1}, r^{*} v_{n+1}\right)$, there exists $h \in T\left(\left(1 / r^{*}\right) u_{n+1}, v_{n+1}\right)$ such that $w \geq h$. It means that

$$
\begin{equation*}
T\left(\left(1 / r^{*}\right) u_{n+1}, v_{n+1}\right) \preceq T\left(\left(1 / r^{*}\right) u_{n+1}, r^{*} v_{n+1}\right) . \tag{15}
\end{equation*}
$$

Thus,

$$
\begin{align*}
T\left(u_{n+1}, v_{n+1}\right) & \preceq T\left(\left(1 / r^{*}\right) u_{n+1}, r^{*} v_{n+1}\right) \\
& \preceq T\left(u_{n+1}, v_{n+1}\right)-\Psi\left(\frac{1}{r^{*}}, u_{n+1}, r^{*} v_{n+1}, T\left(u_{n+1}, v_{n+1}\right)\right) \\
& \prec T\left(u_{n+1}, v_{n+1}\right), \tag{16}
\end{align*}
$$

and this is a contradiction. Therefore, $r^{*}=1$. Let $\epsilon \gg 0$ be given. Choose $\delta>0$ such that $\epsilon+N_{\delta}(0) \subseteq P$, where $N_{\delta}(0)=\{y \in E:\|y\|<\delta\}$. Since $r_{n} \rightarrow 1$, one can choose a natural

```
Figure 1 A( u},\mp@code{v
\cdots<<1<<\cdots<<vn<<\cdots<<\mp@subsup{v}{1}{}<<\mp@subsup{v}{0}{}<<A(\mp@subsup{v}{0}{},\mp@subsup{u}{0}{}).
```


number N_{1} such that $\left(1-r_{n}\right) v_{1} \in N_{\delta}(0)$ for all $n \geq N_{1}$. Therefore $\left(1-r_{n}\right) v_{1} \ll \epsilon$. Also, $v_{n} \leq v_{1}$ and

$$
\begin{equation*}
0<v_{n}-u_{n} \leq\left(1-r_{n}\right) v_{n} \leq\left(1-r_{n}\right) v_{1} \ll \epsilon . \tag{17}
\end{equation*}
$$

By Remark 1.1, $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}$.
For all $n, p \geq 1$, applying the same argument, we have

$$
\begin{equation*}
0<v_{n}-v_{n+p} \leq v_{n}-u_{n} \ll \epsilon . \tag{18}
\end{equation*}
$$

Also,

$$
\begin{equation*}
0<u_{n+p}-u_{n} \leq v_{n}-u_{n} \ll \epsilon . \tag{19}
\end{equation*}
$$

Hence, $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are Cauchy sequences in E, then there exist $u^{*}, v^{*} \in E$ such that $u_{n} \rightarrow$ $u^{*}, v_{n} \rightarrow v^{*}(n \rightarrow \infty)$ and $u^{*}=v^{*}$. Write $x^{*}=u^{*}=v^{*}$.

It is easy to see that $u_{n} \preceq T\left(u_{n+1}, v_{n+1}\right) \preceq T\left(x^{*}, x^{*}\right) \preceq T\left(v_{n+1}, u_{n+1}\right) \preceq v_{n}$ for all $n=1,2, \ldots$. Thus, there exists $z_{n} \in T\left(x^{*}, x^{*}\right)$ such that $u_{n} \leq z_{n} \leq v_{n}$. By taking limit on both sides of (17),

$$
\begin{equation*}
0<z_{n}-u_{n} \leq\left(1-r_{n}\right) v_{n} \leq\left(1-r_{n}\right) v_{1} \ll \epsilon . \tag{20}
\end{equation*}
$$

So, $z_{n} \rightarrow x^{*}$. Since T has closed values, then $x^{*} \in T\left(x^{*}, x^{*}\right)$ and

$$
x^{*} \in\left[u_{n}, v_{n}\right] \cap S \subset\left[u_{0}, v_{0}\right] \cap S .
$$

Remark 3.1 One can see easily that Theorem 2.1 should be included as a corollary of Theorem 3.1.

Example 3.1 Let $E=\mathrm{R}, P=[0,+\infty)$ and $S=P$. Then $S_{0}=\operatorname{int}(P)=(0,+\infty)$.
Define $A:[0,+\infty) \times[0,+\infty) \rightarrow \mathrm{R}$ as

$$
A(x, y)= \begin{cases}\frac{x}{y}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

A is a mixed monotone operator. Now suppose that $\Psi:[0,1) \times P \times P \times E \rightarrow E$ is as $\Psi(t, x, y, s)=\left(1-t^{2}\right) s$. Then Ψ is an $\mathcal{L}^{\prime \prime}$-function. Moreover,

$$
A(t x, y) \leq A(x, t y)-\Psi(t, x, y, A(x, t y))
$$

for each $x, y \in S_{0}$. Also, by taking $u_{0}=\frac{1}{2}, v_{0}=\frac{3}{2}$ and $r_{0}=\frac{1}{4}$, we have
(I) $u_{0} \geq r_{0} v_{0}$,
(II) $A\left(u_{0}, v_{0}\right)=\frac{1}{3} \ll u_{0} \ll v_{0} \ll A\left(v_{0}, u_{0}\right)=3$,
(III) for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u^{\prime} \in S$ such that $u \leq A\left(u^{\prime}, v\right) \ll u^{\prime} \ll v$; similarly, for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $u \ll v \ll A(v, u)$, there exists $v^{\prime} \in S$ such that $u \ll v^{\prime} \ll A\left(v^{\prime}, u\right) \leq v$.
For further explanation on (III), since $A\left(u_{0}, v_{0}\right)=\frac{1}{3} \ll u_{0} \ll v_{0}$, by (III) there exists $u_{1} \in S$ such that $u_{0} \ll A\left(u_{1}, v_{0}\right) \ll u_{1} \ll v_{0}$. It means that $\frac{1}{2} \ll \frac{u_{1}}{\frac{3}{2}} \ll u_{1} \ll \frac{3}{2}$. Thus u_{1} must be greater than $\frac{3}{4}$. Therefore we can set $u_{1}=\frac{\frac{3}{4}+1}{2}$. Similarly, since $\frac{7}{8}=u_{1} \ll v_{0}=\frac{3}{2} \ll$ $A\left(v_{0}, u_{1}\right)=\frac{12}{7}$, thus by (III) there exists $v_{1} \in S$ such that $u_{1} \ll v_{1} \ll A\left(v_{1}, u_{1}\right) \leq v_{0}$. It means that v_{1} must be less than $\frac{21}{16}$. We can set $v_{1}=\frac{\frac{21}{16}+1}{2}$. By the continuity of such ways, we can consider the following reflexive sequences:

$$
u_{0}=\frac{1}{2}, \quad v_{0}=\frac{3}{2}, \quad u_{n}=\frac{u_{n-1} v_{n-1}+1}{2} \quad \text { and } \quad v_{n}=\frac{v_{n-1} u_{n}+1}{2}
$$

which satisfy (I), (II) and (III) (see Figure 1). Moreover, $u_{n} \rightarrow 1$ and $v_{n} \rightarrow 1$ and $A(1,1)=1$.

4 Application

The following result is given by Zhang [6] and is obtained by our main result.

Corollary 4.1 Let P be a normal cone of E, let S be a completely ordered closed subset of E with $S_{0}=S \backslash\{\theta\} \subset \operatorname{int} P$ and let $\lambda S \subset S$ for all $\lambda \in[0,1]$. Let $u_{0}, \nu_{0} \in S_{0}, A: P \times P \rightarrow E$ be a mixed monotone operator with $A\left(\left(\left[\theta, v_{0}\right] \cap S\right) \times\left(\left[\theta, v_{0}\right] \cap S\right)\right) \subset S$ and $A\left(u_{0}, v_{0}\right) \ll u_{0} \ll$ $v_{0} \ll A\left(v_{0}, u_{0}\right)$. Assume that there exists a function $\phi:(0,1) \times\left(\left[u_{0}, v_{0}\right] \cap S\right) \times\left(\left[u_{0}, v_{0}\right] \cap\right.$ $S) \rightarrow(0,+\infty)$ such that $A(t x, y) \leq \phi(t, x, y) A(x, t y)$, where $0<\phi(t, x, x)<t$ for all $(t, x, y) \in$ $(0,1) \times\left(\left[u_{0}, v_{0}\right] \cap S\right) \times\left(\left[u_{0}, v_{0}\right] \cap S\right)$. Suppose that
(I) for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $A(u, v) \ll u \ll v$, there exists $u^{\prime} \in S$ such that $u \leq A\left(u^{\prime}, v\right) \ll u^{\prime} \ll v$; similarly, for $u, v \in\left[u_{0}, v_{0}\right] \cap S$ with $u \ll v \ll A(v, u)$, there exists $v^{\prime} \in S$ such that $u \ll v^{\prime} \ll A\left(v^{\prime}, u\right) \leq v$.
(II) there exists an element $w_{0} \in\left[u_{0}, v_{0}\right] \cap S$ such that $\phi(t, x, x) \leq \phi\left(t, w_{0}, w_{0}\right)$ for all $(t, x) \in(0,1) \times\left(\left[u_{0}, v_{0}\right] \cap S\right)$, and $\lim _{s \rightarrow t^{-}} \phi\left(s, w_{0}, w_{0}\right)<t$ for all $t \in(0,1)$.
Then A has at least one fixed point $x^{*} \in\left[u_{0}, v_{0}\right] \cap S$.

Proof Set $\Psi(t, x, y, z)=(1-\phi(t, x, y)) z$. Then Ψ is an $\mathcal{L}^{\prime \prime}$-function, and we have

$$
A(t x, y) \leq \phi(t, x, y) A(x, t y)=A(x, t y)-\Psi(t, x, y, A(x, t y)) .
$$

Thus, by Theorem 2.1 the desired result is obtained.

Competing interests

The author declares that they have no competing interests.
Received: 11 May 2012 Accepted: 1 March 2013 Published: 28 March 2013

References

1. Guo, DJ, Lakshmikantham, V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. TMA 11, 623-632 (1987)
2. Guo, DJ: Fixed points of mixed monotone operators with applications. Appl. Anal. 31, 215-224 (1988)
3. Hong, S: Fixed points for mixed monotone multivalued operators in Banach spaces with applications. J. Math. Anal. Appl. 337, 333-342 (2008)
4. Wu, Y : New fixed point theorems and applications of mixed monotone operator. J. Math. Anal. Appl. 341, 883-893 (2008)
5. Xu, S, Jia, B: Fixed-point theorems of ϕ concave- ψ convex mixed monotone operators and applications. J. Math. Anal. Appl. 295, 645-657 (2004)
6. Zhang, M: Fixed point theorems of ϕ concave- ψ convex mixed monotone operators and applications. J. Math. Anal. Appl. 339, 970-981 (2008)
7. Zhang, Z, Wang, K: On fixed point theorems of mixed monotone operators and applications. Nonlinear Anal. TMA 70, 3279-3284 (2009)
8. Zhao, Z: Existence and uniqueness of fixed points for some mixed monotone operators. Nonlinear Anal. TMA 73, 1481-1490 (2010)
9. Rhoades, BE : Some theorems on weakly contractive maps. Proceedings of the Third World Congress of Nonlinear Analysis, part 4 (Catania, 2000). Nonlinear Anal. TMA 47, 2683-2693 (2001)
10. Khojasteh, F, Razani, A: Fixed point theorems for single-valued and multi-valued mixed monotone operators of Meir-Keeler type. J. Nonlinear Convex Anal. 14(2) (2013, to appear)
11. Khojasteh, F, Goodarzi, Z, Razani, A: Some fixed point theorems of integral type contraction in cone metric spaces. Fixed Point Theory Appl. (2010). doi:10.1155/2010/189684
12. Khojasteh, F, Razani, A, Moradi, S: A fixed point of generalized T_{F}-contraction mappings in cone metric spaces. Fixed Point Theory Appl. (2011). doi:10.1186/1687-1812-2011-14
13. Arandelovic, I, Kadelburg, Z, Radenovic, S: Boyd-Wong-type common fixed point results in cone metric spaces. Appl. Math. Comput. 217, 7167-7171 (2011)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2013 Khojasteh; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1812-2013-73
 Cite this article as: Khojasteh: Some new results for single-valued and multi-valued mixed monotone operators of Rhoades type. Fixed Point Theory and Applications 2013 2013:73.

