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Abstract
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1 Introduction and preliminaries
In (), mixed monotone operators were introduced by Guo and Lakshmikantham [].
Thenmany authors studied them in Banach spaces and obtained lots of interesting results
(see [, ] and [–]).
On the other hand, in (), Rhoades [] introduced a new fixed point theorem as a

generalization of Banach fixed point theorem.

Theorem . (Rhoades []) Let (X,d) be a complete metric space. Suppose that T : X → X
is a single-valued mapping that satisfies

d(Tx,Ty) ≤ d(x, y) –ψ
(
d(x, y)

)
()

for each x, y ∈ X, where ψ : [, +∞) → [, +∞) is continuous, nondecreasing and ψ–() =
{} (i.e., weakly contractive mappings). Then T has a fixed point.

In this paper, a weak mixed monotone single-valued and multi-valued operator of
Rhoades type is defined. Then two fixed point theorems for this kind of operators are
proved.
Let E be a real Banach space. The zero element of E is denoted by θ . A subset P of E is

called a cone if and only if:
• P is closed, nonempty and P �= {θ},
• a,b ∈ R, a,b ≥  and x, y ∈ P imply that ax + by ∈ P,
• x ∈ P and –x ∈ P imply that x = θ .
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Given a cone P ⊂ E, a partial ordering ≤ with respect to P is defined by x≤ y if and only if
y–x ∈ P. We write x < y to indicate that x≤ y but x �= y, while x
 y stands for y–x ∈ intP,
where intP denotes the interior of P. The cone P is called normal if there exists a number
K >  such that θ ≤ x ≤ y implies ‖x‖ ≤ K‖y‖ for every x, y ∈ E. The least positive number
satisfying this is called the normal constant of P.
Assume that u, v ∈ E and u ≤ v. The set {x ∈ E : u ≤ x ≤ v} is denoted by [u, v].
Now, we recall the following definitions from [, ].

Definition . Let P be a cone of a real Banach space E. Suppose that D ⊂ P and α ∈
(–∞, +∞). An operator A :D→D is said to be α-convex (α-concave) if it satisfies A(tx) ≤
tαAx (A(tx)≥ tαAx) for (t,x) ∈ (, )×D.

Definition . Let E be an ordered Banach space and D⊂ E. An operator is called mixed
monotone on D × D if A : D × D → E and A(x, y) ≤ A(x, y) for any x,x, y, y ∈ D,
where x ≤ x and y ≥ y. Also, x* ∈D is called a fixed point of A if A(x*,x*) = x*.

Let C(E) be a collection of all closed subsets of E.

Definition . For two subsets X, Y of E, we write
• X � Y if for all x ∈ X , there exists y ∈ Y such that x ≤ y,
• x ≺ X if there exists z ∈ X such that x 
 z,
• X ≺ x if for all z ∈ X , z 
 x.

Definition . Let D be a nonempty subset of E. T : D → C(E) is called increasing (de-
creasing) upward if u, v ∈D, u≤ v and x ∈ T(u) imply there exists y ∈ T(v) such that x≤ y
(x ≥ y). Similarly, T : D → C(E) is called increasing (decreasing) downward if u, v ∈ D,
u ≤ v and y ∈ T(v) imply there exists x ∈ T(u) such that x ≤ y (x ≥ y). T is called increas-
ing (decreasing) if T is an increasing (decreasing) upward and downward.

Definition . Let D be a nonempty subset of E. A multi-valued operator T : D × D →
C(E) is said to bemixedmonotone upward if T(x, y) is increasing upward in x and decreas-
ing upward in y, i.e.,

(A) for each y ∈ D and any x,x ∈ D with x ≤ x, if u ∈ T(x, y), then there exists a
u ∈ T(x, y) such that u ≤ u;

(A) for each x ∈ D and any y, y ∈ D with y ≤ y, if v ∈ T(x, y), then there exists a
v ∈ T(x, y) such that v ≥ v.

Definition . x* ∈D is called a fixed point of T if x* ∈ T(x*,x*).

Definition . [] A function � : [, ) × P × P × E → E is called an L′′-function if
�(t,x, y, ) = , �(t,x, y, s) �  for s � , and �(t,x, y, z) < z for all (t,x, y, z) ∈ [, ) ×
P × P × E.

In , Khojasteh and Razani [] extended the results given by Zhang []. Also, in 
Khojasteh and Razani [] introduced the concept of integral with respect to a cone. We
recall the following definitions and lemmas of cone integration and refer to [, ] for
their proofs.
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Definition . [] Suppose that P is a cone in E. Let a,b ∈ E and a < b. Define

[a,b] :=
{
x ∈ E : x = tb + ( – t)a for some t ∈ [, ]

}
()

and

[a,b) :=
{
x ∈ E : x = tb + ( – t)a for some t ∈ [, )

}
. ()

Definition . [] The set {a = x,x, . . . ,xn = b} is called a partition for [a,b] if and only
if the intervals {[xi–,xi)}ni= are pairwise disjoint and [a,b] = {⋃n

i=[xi–,xi)} ∪ {b}. Denote
P[a,b] as the collection of all partitions of [a,b].

Definition . [] For each partition Q of [a,b] and each increasing function φ :
[a,b]→ E, we define cone lower summation and cone upper summation as

LConn (φ,Q) =
n–∑
i=

φ(xi)‖xi – xi+‖ ()

and

UCon
n (φ,Q) =

n–∑
i=

φ(xi+)‖xi – xi+‖, ()

respectively. Also, we denote ‖�(Q)‖ = sup{‖xi – xi–‖,xi ∈ Q}.

Definition . [] Suppose that P is a cone in E. φ : [a,b] → E is called an integrable
function on [a,b] with respect to a cone P or, to put it simply, a cone integrable function
if and only if for all partition Q of [a,b],

lim
‖�(Q)‖→

LConn (φ,Q) = SCon = lim
‖�(Q)‖→

UCon
n (φ,Q),

where SCon must be unique.
We show the common value SCon by

∫ b

a
φ(x)dP(x) or to simplicity

∫ b

a
φ dp.

We denote the set of all cone integrable functions φ : [a,b]→ E by L([a,b],E).

Lemma . [] Let M be a subset of P. The following conditions hold:
() If [a,b]⊆ [a, c] ⊂M, then

∫ b
a f dp ≤ ∫ c

a f dp for f ∈L(M,P).
()

∫ b
a (αf + βg)dp = α

∫ b
a f dp + β

∫ b
a g dp for f , g ∈L(M,P) and α,β ∈ R.

Remark . [, Remark .] Let P be a cone of E, and let u ∈ P. If for each ε ∈ int(P),
 ≤ u
 ε, then u = .
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2 Main results
In this section, we introduce some new fixed point theorems in the class of mixed mono-
tone operators. Due to this, the following definition is presented.

Definition . A mixed monotone operator A : D × D → E is said to be a Weak Mixed
Monotone single-valued operator of Rhoades type (WMR property for short) if

A(tx, y) ≤ A(x, ty) –�
(
t,x, y,A(x, ty)

)
()

for all (x, y) ∈D×D, where � : [, )× P × P × E → E is an L′′-function.

Theorem . Let P be a cone of E, let S be a completely ordered closed subset of E with
S = S\{θ} ⊂ intP and let λS ⊂ S for all λ ∈ [, ]. Let u, v ∈ S, A : P × P → E be a weak
mixed monotone operator of Rhoades type with A(([θ , v]∩S)× ([θ , v]∩S)) ⊂ S satisfying
the following conditions:

(I) there exists r >  such that u ≥ rv,
(II) A(u, v)
 u 
 v 
 A(v,u),
(III) for u, v ∈ [u, v]∩ S with A(u, v) 
 u 
 v, there exists u′ ∈ S such that

u≤ A(u′, v) 
 u′ 
 v; similarly, for u, v ∈ [u, v]∩ S with u
 v
 A(v,u), there
exists v′ ∈ S such that u
 v′ 
 A(v′,u) ≤ v.

Then A has at least one fixed point x* ∈ [u, v]∩ S.

Proof By the above condition (III), there exists u ∈ S such that u ≤ A(u, v) 
 u 

v. Then there exists v ∈ S such that u 
 v 
 A(v,u) ≤ v. Likewise, there exists
u ∈ S such that u ≤ A(u, v) 
 u 
 v. Then there exists v ∈ S such that u 
 v 

A(v,u) ≤ v. In general, there exists un ∈ S such that un– ≤ A(un, vn–) 
 un 
 vn–.
Then there exists vn ∈ S such that un 
 vn 
 A(vn,un) ≤ vn– (n = , , . . .).
Take rn = sup{r ∈ (, ) : un ≥ rvn}, thus  < r < r < · · · < rn < rn+ < · · · <  and

limn→∞ rn = sup{rn : n = , , , . . .} = r* ∈ (, ]. Since rn+ > rn = sup{r ∈ (, ) : un ≥ rvn},
thus un �≥ rn+vn. In addition, S is completely ordered and λS ⊂ S for all λ ∈ [, ], then
un < rn+vn. Now, one can prove r* = . Otherwise, r* ∈ (, ).
Since un < rn+vn and rn+ < r*, hence un < r*vn, and we have

A(un+, vn+) ≤ A
(

r*
un+, r*vn+

)

≤ A(un+, vn+) –�

(
r*,


r*
un+, vn+,A(un+, vn+)

)

< A(un+, vn+), ()

which is a contradiction. Thus, r* = . Let ε �  be given. Choose δ >  such that ε +
Nδ()⊆ P, where Nδ() = {y ∈ E : ‖y‖ < δ}. Since rn → , one can choose a natural number
N such that ( – rn)v ∈ Nδ() for all n≥ N. Therefore ( – rn)v 
 ε. Also, vn ≤ v and

 < vn – un ≤ ( – rn)vn ≤ ( – rn)v 
 ε. ()

By Remark ., limn→∞ un = limn→∞ vn.

http://www.fixedpointtheoryandapplications.com/content/2013/1/73
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For all n,p ≥ , applying the same argument, we have

 < vn – vn+p ≤ vn – un 
 ε. ()

Also,

 < un+p – un ≤ vn – un 
 ε. ()

Hence, {un} and {vn} are Cauchy sequences in E, then there exist u*, v* ∈ E such that un →
u*, vn → v* (n→ ∞) and u* = v*. Write x* = u* = v*.
It is easy to see u ≤ un ≤ u* ≤ vn ≤ v for all n = , , . . . . In addition, S is closed, then

u* ∈ [un, vn]∩ S ⊂ [u, v]∩ S (n = , , , . . .).
Finally, by the mixed monotone property of A,

un– ≤ A(un, vn) ≤ A
(
x*,x*

) ≤ A(un, vn) ≤ un–. ()

On taking limit on both sides of (), when n → ∞, we have A(x*,x*) = x*. This means x*

is a fixed point of A in [u, v]∩ S. �

Corollary . Let P be a cone of E, let S be a completely ordered closed subset of E with
S = S\{θ} ⊂ intP and let λS ⊂ S for all λ ∈ [, ]. Let u, v ∈ S, A : P × P → E satisfy

∫ tx

y
φ dP ≤

∫ x

ty
φ dP –�

(
t,x, y,

∫ x

ty
φ dP

)
()

for all (x, y) ∈D×D, where � : [, )×P×P×E → E is an L′′-function, and let φ : P → P
be a non-vanishing, cone integrable mapping on each [a,b] ⊂ P such that for each ε � ,∫ ε

 φ dp �  and the mapping θ (x) =
∫ x
 φ dP for (x ≥ ) has a continuous inverse at zero.

Also, A(([θ , v]∩ S)× ([θ , v]∩ S))⊂ S satisfies the following conditions:
(I) there exists r >  such that u ≥ rv,
(II) A(u, v)
 u 
 v 
 A(v,u),
(III) for u, v ∈ [u, v]∩ S with A(u, v) 
 u 
 v, there exists u′ ∈ S such that

u≤ A(u′, v) 
 u′ 
 v; similarly, for u, v ∈ [u, v]∩ S with u
 v
 A(v,u), there
exists v′ ∈ S such that u
 v′ 
 A(v′,u) ≤ v.

Then A has at least one fixed point x* ∈ [u, v]∩ S.

Proof Define

A(x, y) =
∫ x

y
φ dP.

A is a mixed monotone operator, and one can easily see that all conditions of Theorem .
hold. Thus we obtain the desired result. �

3 M3R property
In this section, we introduce a new fixed point theorem in the class of multi-valued mixed
monotone operators. Due to this, the following definition is given.

http://www.fixedpointtheoryandapplications.com/content/2013/1/73
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Definition. Amixedmonotone operatorT :D×D→ C(E) is said to be aMixedMono-
tone Multi-valued operator of Rhoades type (MR property for short) if

T(tx, y) � T(x, ty) –�
(
t,x, y,T(tx, y)

)
()

for each (x, y) ∈D×D, where � : [, )× P × P × E → E is an L′′-function.

Theorem. Let P be a cone of E, let S be a completely ordered closed subset of E with S =
S\{θ} ⊂ intP and let λS ⊂ S for all λ ∈ [, ]. Let u, v ∈ S, T : P × P → C(E) be a mixed
monotone multi-valued operator of Rhoades type with T(([θ , v] ∩ S) × ([θ , v] ∩ S)) ⊂ S
satisfying the following conditions:

(I) there exists r >  such that u ≥ rv,
(II) T(u, v) ≺ u 
 v ≺ T(v,u),
(III) for u, v ∈ [u, v]∩ S with T(u, v)≺ u 
 v, there exists u′ ∈ S such that

u� T(u′, v)≺ u′ 
 v; similarly, for u, v ∈ [u, v]∩ S with u
 v≺ T(v,u), there
exists v′ ∈ S such that u
 v′ ≺ T(v′,u) � v.

Then T has at least one fixed point x* ∈ [u, v]∩ S.

Proof By the above condition (III), there exists u ∈ S such that u � T(u, v) ≺ u 

v. Then there exists v ∈ S such that u 
 v ≺ T(v,u) � v. Likewise, there exists
u ∈ S such that u � T(u, v) ≺ u 
 v. Then there exists v ∈ S such that u 
 v ≺
T(v,u) ≤ v. In general, there exists un ∈ S such that un– � T(un, vn–) ≺ un 
 vn–.
Then there exists vn ∈ S such that un 
 vn ≺ T(vn,un) � vn– (n = , , . . .).
Take rn = sup{r ∈ (, ) : un ≥ rvn}, thus  < r < r < · · · < rn < rn+ < · · · < , and

limn→∞ rn = sup{rn : n = , , , . . .} = r* ∈ (, ]. Since rn+ > rn = sup{r ∈ (, ) : un ≥ rvn},
thus un �≥ rn+vn. In addition, S is completely ordered and λS ⊂ S for all λ ∈ [, ], then
un < rn+vn. Now, one can prove r* = . Otherwise, r* ∈ (, ). We claim

T(un+, vn+)� T
((
/r*

)
un+, r*vn+

)
. ()

Suppose that x ∈ T(un+, vn+) is arbitrary. We have un+ ≤ (/r*)un+. If x = un+, x =
(/r*)un+ and y = vn+, then by (A) of Definition ., there exists z ∈ T((/r*)un+, vn+)
such that x ≤ z. Thus, T(un+, vn+)� T((/r*)un+, vn+).
Also, if y = r*vn+, y = vn+ and x = (/r*)un+, then for w ∈ T((/r*)un+, r*vn+), there

exists h ∈ T((/r*)un+, vn+) such that w ≥ h. It means that

T
((
/r*

)
un+, vn+

) � T
((
/r*

)
un+, r*vn+

)
. ()

Thus,

T(un+, vn+) � T
((
/r*

)
un+, r*vn+

)
� T(un+, vn+) –�

(

r*
,un+, r*vn+,T(un+, vn+)

)

≺ T(un+, vn+), ()

and this is a contradiction. Therefore, r* = . Let ε �  be given. Choose δ >  such that
ε + Nδ() ⊆ P, where Nδ() = {y ∈ E : ‖y‖ < δ}. Since rn → , one can choose a natural

http://www.fixedpointtheoryandapplications.com/content/2013/1/73
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Figure 1 A(u0,v0) � u0 � u1 � ···� un �
···� 1� ···� vn � ···� v1 � v0 � A(v0,u0).

numberN such that (–rn)v ∈Nδ() for all n ≥ N. Therefore (–rn)v 
 ε. Also, vn ≤ v
and

 < vn – un ≤ ( – rn)vn ≤ ( – rn)v 
 ε. ()

By Remark ., limn→∞ un = limn→∞ vn.
For all n,p ≥ , applying the same argument, we have

 < vn – vn+p ≤ vn – un 
 ε. ()

Also,

 < un+p – un ≤ vn – un 
 ε. ()

Hence, {un} and {vn} are Cauchy sequences in E, then there exist u*, v* ∈ E such that un →
u*, vn → v* (n→ ∞) and u* = v*. Write x* = u* = v*.
It is easy to see that un � T(un+, vn+) � T(x*,x*) � T(vn+,un+) � vn for all n = , , . . . .

Thus, there exists zn ∈ T(x*,x*) such that un ≤ zn ≤ vn. By taking limit on both sides of
(),

 < zn – un ≤ ( – rn)vn ≤ ( – rn)v 
 ε. ()

So, zn → x*. Since T has closed values, then x* ∈ T(x*,x*) and

x* ∈ [un, vn]∩ S ⊂ [u, v]∩ S. �

Remark . One can see easily that Theorem . should be included as a corollary of
Theorem ..

Example . Let E = R, P = [,+∞) and S = P. Then S = int(P) = (,+∞).
Define A : [, +∞)× [, +∞)→ R as

A(x, y) =

{
x
y , (x, y) �= (, ),
, (x, y) = (, ).

A is a mixed monotone operator. Now suppose that � : [, ) × P × P × E → E is as
�(t,x, y, s) = ( – t)s. Then � is an L′′-function. Moreover,

A(tx, y) ≤ A(x, ty) –�
(
t,x, y,A(x, ty)

)
for each x, y ∈ S. Also, by taking u = 

 , v =

 and r = 

 , we have
(I) u ≥ rv,

http://www.fixedpointtheoryandapplications.com/content/2013/1/73
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(II) A(u, v) = 
 
 u 
 v 
 A(v,u) = ,

(III) for u, v ∈ [u, v]∩ S with A(u, v) 
 u
 v, there exists u′ ∈ S such that
u≤ A(u′, v)
 u′ 
 v; similarly, for u, v ∈ [u, v]∩ S with u
 v
 A(v,u), there
exists v′ ∈ S such that u
 v′ 
 A(v′,u) ≤ v.

For further explanation on (III), since A(u, v) = 
 
 u 
 v, by (III) there exists u ∈ S

such that u 
 A(u, v) 
 u 
 v. It means that 
 
 u





 u 
 
 . Thus u must

be greater than 
 . Therefore we can set u =


 +
 . Similarly, since 

 = u 
 v = 
 


A(v,u) = 
 , thus by (III) there exists v ∈ S such that u 
 v 
 A(v,u) ≤ v. It means

that v must be less than 
 . We can set v =


 +
 . By the continuity of such ways, we can

consider the following reflexive sequences:

u =


, v =



, un =

un–vn– + 


and vn =
vn–un + 


,

which satisfy (I), (II) and (III) (see Figure ). Moreover, un →  and vn →  and A(, ) = .

4 Application
The following result is given by Zhang [] and is obtained by our main result.

Corollary . Let P be a normal cone of E, let S be a completely ordered closed subset of
E with S = S\{θ} ⊂ intP and let λS ⊂ S for all λ ∈ [, ]. Let u, v ∈ S, A : P × P → E be
a mixed monotone operator with A(([θ , v] ∩ S)× ([θ , v] ∩ S)) ⊂ S and A(u, v) 
 u 

v 
 A(v,u). Assume that there exists a function φ : (, ) × ([u, v] ∩ S) × ([u, v] ∩
S) → (, +∞) such that A(tx, y) ≤ φ(t,x, y)A(x, ty), where  < φ(t,x,x) < t for all (t,x, y) ∈
(, )× ([u, v]∩ S)× ([u, v]∩ S). Suppose that

(I) for u, v ∈ [u, v]∩ S with A(u, v) 
 u 
 v, there exists u′ ∈ S such that
u≤ A(u′, v) 
 u′ 
 v; similarly, for u, v ∈ [u, v]∩ S with u
 v
 A(v,u), there
exists v′ ∈ S such that u
 v′ 
 A(v′,u) ≤ v.

(II) there exists an element w ∈ [u, v]∩ S such that φ(t,x,x)≤ φ(t,w,w) for all
(t,x) ∈ (, )× ([u, v]∩ S), and lims→t– φ(s,w,w) < t for all t ∈ (, ).

Then A has at least one fixed point x* ∈ [u, v]∩ S.

Proof Set �(t,x, y, z) = ( – φ(t,x, y))z. Then � is an L′′-function, and we have

A(tx, y) ≤ φ(t,x, y)A(x, ty) = A(x, ty) –�
(
t,x, y,A(x, ty)

)
.

Thus, by Theorem . the desired result is obtained. �
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