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Abstract
In this paper, the local fractional variational iteration method is given to handle the
damped wave equation and dissipative wave equation in fractal strings. The
approximation solutions show that the methodology of local fractional variational
iteration method is an efficient and simple tool for solving mathematical problems
arising in fractal wave motions.
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1 Introduction
The variational iteration method was effectively applied in various fields of science and
engineering [–] and the references therein. It is in some cases, more powerful than the
existing techniques, e.g., the fractional variational iteration method [, , ], the homo-
topy perturbation method [, ], the exp-function method [, ], the decomposition
method [–], the homotopy analysis method [, ] and others []. The wave equa-
tion was investigated within some differential methods [–, –] and the references
therein.
As it is known, the quantum behavior of microphysics in terms of a non-differentiable

space-time continuum possesses and has fractal property. Also, it was shown by many
authors that a time-space structure of microphysics is non-differentiable. The relativis-
tic quantum mechanics in fractal time space was suggested in []. It was pointed out
that, while the zero set represents the Cantor point-like quantum particle, the empty set
was the basic mathematical representation of the quantum wave []. The exact solu-
tions for a class of fractal time random walks were researched in []. The questions of
a philosophical nature about fractal spacetime and its implications for phenomenology
and ontology were shown in []. The fractal time-space structure for dealing with the
non-differentiability and infinities of fractals derived from local fractional operators was
presented in [–] and the references therein. A solution of the wave equation in fractal
vibrating string by using the local fractional Fourier series was discussed in []. The dif-
fusion equation on Cantor time-space was reported in [] while the diffusion problems
on fractal space were suggested in []. The heat conduction problem by local fractional
variational iteration method was investigated in []. The heat conduction equation in
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fractal time space was structured in []. A relaxation equation in fractal space was set up
in []. The anomalous diffusion equation in the fractal time-space fabric was pointed out
in []. The Fokker-Planck equation in fractal time was considered in [].
Recently, fractional calculus analysis and fractional dynamics are hot topics [–]. In

this paper, we consider a general wave equation of a fractal stringwithin the local fractional
operators, namely

L(α)ζζ u(ζ , ξ ) + R(α)
ξ u(ζ , ξ ) – g(ζ , ξ ) = , ()

where [–]

∂α

∂ξ α u(ζ , ξ ) =

 times︷ ︸︸ ︷
∂α

∂ξα

∂α

∂ξα
u(ζ , ξ ), ()

and where R(α)
ξ is a local fractional linear operator, which has low order local fractional

partial derivatives with respect to ξ , subject to fractal initial conditions

∂ iα

∂ζ iα u(ζ , ξ ) = ϕi(ζ ), i ∈ N. ()

Thus, we obtain

L(α)ξξ u(ζ , ξ ) = L(α)tt u(x, t), R(α)
ξ u(ζ , ξ ) = –L(α)t u(x, t),

g(ζ , ξ ) = L(α)xx u(x, t) + L(α)x u(x, t) +m(x, t),
()

and we have the following dissipative wave equation in fractal time space:

L(α)tt u(x, t) – L(α)t u(x, t) – L(α)xx u(x, t) – L(α)x u(x, t) –m(x, t) = ,  ≤ x ≤ l, t > , ()

subject to initial conditions

u(x, ) = μ(x), L(α)t u(x, ) = μ(x),  ≤ x ≤ l. ()

If we start with

L(α)ξξ u(ζ , ξ ) = L(α)tt u(x, t), R(α)
ξ u(ζ , ξ ) = –L(α)t u(x, t),

g(ζ , ξ ) = L(α)xx u(x, t) + n(x, t),
()

then we obtain the following damped wave equation given by

L(α)tt u(x, t) – L(α)t u(x, t) – L(α)xx u(x, t) – n(x, t) = ,  ≤ x≤ l, t > , ()

where the damping force is proportional to the velocity, a and b are constants, subject to
initial conditions, which are suggested by the following expression:

u(x, ) = ψ(x), L(α)t u(x, ) = ψ(x),  ≤ x≤ l. ()
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More recently, the local fractional variational iteration method, which was structured
in [], was applied to solve heat conduction equation on Cantor sets [] and the local
fractional Laplace equation []. The purpose of this paper is to present the solutions of
the damped wave equation and the dissipative wave equation in fractal strings equipped
with fractal initial conditions.

2 Mathematical tools
In this section, we recall briefly some basic theory of local fractional calculus, and formore
details, see [–, –].
Local fractional derivative of f (x) at the point x = x, which is satisfied the condition

[, ]

∣∣f (x) – f (x)
∣∣ < εα ()

with |x – x| < δ, for ε, δ >  and ε, δ ∈ R, is given by [–, –]

D(α)
x f (x) = f (α)(x) =

dαf (x)
dxα

∣∣∣∣
x=x

= lim
x→x


α(f (x) – f (x))
(x – x)α

, ()

where


α
(
f (x) – f (x)

) ∼= �( + α)

(
f (x) – f (x)

)
. ()

Now, Eq. () is written in the form []


αf (x) = f (α)(x)(
x)α + λ(
x)α , ()

with λ →  as 
x → , or

dαf = f (α)(x)(dx)α . ()

Suppose that f (x) is satisfied the condition () for x ∈ [a,b], we can denote []

f (x) ∈ Cα(a,b). ()

The right-hand local fractional derivative is defined as [–, –]

x–D
α
x f (x) = f (α)

(
x–

)
=
dαf (x)
dxα

∣∣∣∣
x=x–

= lim
x→x–

�( + α)[f (x) – f (x–)]
(x – x–)α

()

if f (x) is satisfied the conditions x ∈ (x – δ,x) and f (x) ∈ Cα[a,b].
The left-hand local fractional derivative is written as [–]

x+D
α
x f (x) = f (α)

(
x+

)
=
dαf (x)
dxα

∣∣∣∣
x=x+

= lim
x→x+

�( + α)[f (x) – f (x+)]
(x – x+)α

()

if f (x) is satisfied the conditions f (x) ∈ Cα[a,b] and x ∈ (x,x + δ).
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We can obtain that [–]

dα

dxα
f (x)

∣∣∣∣
x=x+

=
dα

dxα
f (x)

∣∣∣∣
x=x–

=
dα

dxα
f (x)

∣∣∣∣
x=x

. ()

As an inverse local fractional derivative, local fractional integral of f (x) at the point x = x
for f (x) ∈ Cα[a,b], is expressed by [–, –]

aI(α)b f (x) =


�( + α)

∫ b

a
f (t)(dt)α =


�( + α)

lim

t→

j=N–∑
j=

f (tj)(
tj)α , ()

if there are conditions for a partition of the interval [a,b] given by


tj = tj+ – tj and 
t =max{
t,
t,
tj, . . .} for j = , . . . ,N – , t = a, tN = b.

We always give the relation [–]

f (x) = aI(α)x f (α)(x) ()

with given conditions f (x) ∈ Cα[a,b] for x ∈ (a,b).
Local fractional multiple integrals of f (x) is given by [–]

x I
(kα)
x f (x) =

k times︷ ︸︸ ︷
x I

(α)
x . . . x I

(α)
x f (x) ()

for given condition f (x) ∈ Cα[a,b].
Local fractional Taylor expansion of the following functions is written as [–]

Eα

(
xα

)
=

∞∑
k=

xαk

�( + kα)
. ()

3 Themethod
In this section, we present the local fractional variational iteration method [, , ]
for handling differential equations with the help of the local fractional calculus theory
[–].
Let us consider a general wave equation () subject to initial conditions as

u(ζ , ) = μ(ζ ), L(α)ξ u(ζ , ) = μ(ζ ),  ≤ x ≤ ζ . ()

We can construct a correction local fractional iteration algorithm given below

un+(ζ , ξ ) = un(ζ , ξ ) + I(α)ρ

λ(ξ )α

�( + α)
{
L(α)ξξ un(ζ , ξ ) + R(α)

ξ un(ζ , ξ ) – g(ζ , ξ )
}
, ()

where λα/�( + α) is a general fractal Lagrange’s multiplier.
By using the local fractional integration by parts [], we obtain

I(α)ρ

{
λ(ξ )α

�( + α)

[
∂αun(ζ , ξ )

∂ξα

]}
=

λ(τ )α

�( + α)
un(ζ , ξ )

∣∣∣∣
ξ=ρ

– I(α)ρ

{
un(ζ , ξ )

∂αξ (ξ )
∂ξα

}
,
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I(α)ρ

{
λ(ξ )α

�( + α)

[
∂αun(ζ , ξ )

∂ξ α

]}

=
λ(τ )α

�( + α)
∂αun(ζ , ξ )

∂ξα

∣∣∣∣
ξ=ρ

– un(ζ , ξ )
∂α

∂ξα

λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

()

+ I(α)t

{
un(ζ , ξ )

∂αξ (ξ )
∂ξ α

}
.

For the determination of the fractal Lagrangemultiplier, the extremum condition of un+
lead us to δαun+ = . By making use of Eq. (), we have

δαun+(ζ , ξ )

= δαun(ζ , ξ ) + δα
I(α)ρ

λ(ξ )α

�( + α)
{
L(α)ξξ un(ζ , ξ ) + R(α)

ξ un(ζ , ξ ) – g(ζ , ξ )
}

= δαun(ζ , ξ ) + δα
I(α)ρ

λ(ξ )α

�( + α)
{
L(α)ξξ un(ζ , ξ ) – L(α)ξ un(ζ , ξ ) – g(ζ , ξ )

}

=
(
 –

λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

–
∂α

∂ξα

λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

)
δαun(x, t) +

λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

δα

{
∂αun(ζ , ξ )

∂ξα

}

+ I(α)ρ

{
δαun(ζ , ξ )

∂α

∂ξ α
λ(ξ )α

�( + α)

}
. ()

This yields to the stationary conditions listed below:

 –
λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

–
∂α

∂ξα

λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

= ,

λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

= ,

∂α

∂ξ α
λ(ξ )α

�( + α)

∣∣∣∣
ξ=ρ

= .

()

Thus, we conclude that

λ(ξ )α

�( + α)
=
(ξ – ρ)α

�( + α)
. ()

From Eq. (), the recurrence relation becomes

un+(ζ , ξ ) = un(ζ , ξ ) + I(α)ρ

(ξ – ρ)α

�( + α)
{
L(α)ξξ un(ζ , ξ ) + R(α)

ξ un(ζ , ξ ) – g(ζ , ξ )
}
. ()

The function u(ζ , ξ ) is selected by using the fractal initial conditions given as below:

u(ζ , ξ ) = μ(ζ ) +
ξα

�( + α)
μ(ζ ). ()

Thus, the approximation expression becomes

u(x, t) = lim
n→∞φn(x, t), lim

n→∞φn(x, t) = lim
n→∞

∞∑
i=

ui(x, t). ()
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Su et al. Fixed Point Theory and Applications 2013, 2013:89 Page 6 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/89

4 Solution of dissipative wave equation with a fractal string
The dissipative wave equation with local fractional differential operator has the form

L(α)tt u(x, t) – L(α)t u(x, t) – L(α)xx u(x, t) – L(α)x u(x, t) –
tα

�( + α)

= ,  ≤ x≤ l, t >  ()

subjected to the fractal initial conditions

u(x, ) =
xα

�( + α)
, L(α)t u(x, ) = ,  ≤ x ≤ l. ()

Making use of Eq. (), the recurrence relation reads as

un+(x, t) = un(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt un(x, t) – L(α)t un(x, t)

}

– I(α)t
(τ – t)α

�( + α)

{
L(α)xx un(x, t) + L(α)x un(x, t) +

tα

�( + α)

}
. ()

If the expression from Eq. () is given, we can determine the fractal initial conditions,
which are expressed through

u(x, t) = u(x, ) =
xα

�( + α)
. ()

The first iteration yields

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)
{
L(α)xx u(x, t) + L(α)x u(x, t)

}
– I(α)t

(τ – t)α

�( + α)
tα

�( + α)

=
xα

�( + α)
+

tα

�( + α)
+

tα

�( + α)
. ()

Thus, the second iteration reads

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)
{
L(α)xx u(x, t) + L(α)x u(x, t)

}
– I(α)t

(τ – t)α

�( + α)
tα

�( + α)

=
xα

�( + α)
+

(
tα

�( + α)
+

tα

�( + α)

)
+

(
tα

�( + α)
+

tα

�( + α)

)
. ()

In similar manner, the third iteration is described by

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)
{
L(α)xx u(x, t) + L(α)x u(x, t)

}
– I(α)t

(τ – t)α

�( + α)
tα

�( + α)

http://www.fixedpointtheoryandapplications.com/content/2013/1/89
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=
xα

�( + α)
+

(
tα

�( + α)
+

tα

�( + α)

)

+
(

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)

)

=
xα

�( + α)
+

(
tα

�( + α)
+

tα

�( + α)

)
+

tα

�( + α)
+

tα

�( + α)
. ()

The fourth iteration is suggested by

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)
{
L(α)xx u(x, t) + L(α)x u(x, t)

}
– I(α)t

(τ – t)α

�( + α)
tα

�( + α)

=
xα

�( + α)
+

(
tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)

)

+
(

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)

)

=
xα

�( + α)
–

∑
i=

tiα

�( + iα)
–

∑
i=

tiα

�( + iα)

+
∑
i=

tiα

�( + iα)
+

∑
i=

tiα

�( + iα)
. ()

The fifth approximation is written as follows:

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)
{
L(α)xx u(x, t) + L(α)x u(x, t)

}
– I(α)t

(τ – t)α

�( + α)
tα

�( + α)

=
xα

�( + α)
+

(
tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)

)

+
(

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)
+

tα

�( + α)

)

=
xα

�( + α)
–

∑
i=

tiα

�( + iα)
–

∑
i=

tiα

�( + iα)

+
∑
i=

tiα

�( + iα)
+

∑
i=

tiα

�( + iα)
. ()

Proceeding in this manner, we can derive the following formula:

un(x, t) = un–(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt un–(x, t) – L(α)t un–(x, t)

}

– I(α)t
(τ – t)α

�( + α)
{
L(α)xx un–(x, t) + L(α)x un–(x, t)

}
– I(α)t

(τ – t)α

�( + α)
tα

�( + α)
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=
xα

�( + α)
–

∑
i=

tiα

�( + iα)
–

∑
i=

tiα

�( + iα)

+
n∑
i=

tiα

�( + iα)
+

n+∑
i=

tiα

�( + iα)
. ()

Finally, the compact solution becomes

u(x, t) =
xα

�( + α)
–

∑
i=

tiα

�( + iα)
–

∑
i=

tiα

�( + iα)
+ Eα

(
tα

)
. ()

5 Solution of dampedwave equation with a fractal string
The dampedwave equation with local fractional differential operator can be written in the
form

L(α)tt u(x, t) – L(α)t u(x, t) – L(α)xx u(x, t) –
xα

�( + α)
= , ≤ x ≤ l, t > , ()

and it is subjected to the initial conditions described by

u(x, ) = , L(α)t u(x, ) = –
xα

�( + α)
,  ≤ x≤ l. ()

Applying Eq. (), we arrive at the following iteration formula:

un+(x, t) = un(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt un(x, t) – L(α)t un(x, t)

}

– I(α)t
(τ – t)α

�( + α)

{
L(α)xx u(x, t) +

xα

�( + α)

}
. ()

By using Eq. (), we obtain

u(x, t) = –
tα

�( + α)
xα

�( + α)
. ()

Therefore, we deduce the first approximation as

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)

{
L(α)xx u(x, t) +

xα

�( + α)

}

= –
tα

�( + α)
xα

�( + α)
. ()

The second approximation has the form

u(x, t) = u(x, t) + I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)

{
L(α)xx u(x, t) +

xα

�( + α)

}

= –
tα

�( + α)
xα

�( + α)
. ()
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By using the same procedure, the third approximation becomes

u(x, t) = u(x, t) + +I(α)t
(τ – t)α

�( + α)
{
L(α)tt u(x, t) – L(α)t u(x, t)

}

– I(α)t
(τ – t)α

�( + α)

{
L(α)xx u(x, t) +

xα

�( + α)

}

= –
tα

�( + α)
xα

�( + α)
. ()

Thus, we have

u(x, t) = –
tα

�( + α)
xα

�( + α)
,

u(x, t) = –
tα

�( + α)
xα

�( + α)
,

u(x, t) = –
tα

�( + α)
xα

�( + α)
,

...

un(x, t) = –
tα

�( + α)
xα

�( + α)

()

and so on.
Finally, the solution is given by

u(x, t) = –
tα

�( + α)
xα

�( + α)
. ()

6 Conclusions
In this manuscript, utilizing the local fractional differential operators, we investigated the
damped and the dissipative wave equations in fractal strings. Based on the local fractional
variational iteration method, the solutions of the damped and dissipative wave equations
were presented. The iteration functions, which is local fractional continuous, is obtained
easily within the fractal Lagrange multipliers, which can be optimally determined by the
local fractional variational theory []. It is shown that the local fractional variational it-
eration method is an efficient and simple tool for handling partial differential equations
with local fractional differential operator.
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