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Abstract

In this paper, we construct some Hecke-type operators acting on the complex
polynomials space, and we prove their commutativity. By means of this
commutativity, we find a new approach to establish the generating function of the
Apostol-Bernoulli type polynomials which are eigenfunctions of these Hecke-type
operators. Moreover, we derive many useful identities related to these operators and
polynomials.
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1 Introduction

The Hecke operators have many applications in various spaces like the space of elliptic
modular forms, the space of polynomials and others. Many mathematicians applied them
to obtain applications in analytic number theory, harmonic analysis, theoretical physics,
equidistribution of Hecke points on a family of homogeneous varieties, and cohomology.
For instance, Hecke operators are used to investigate and study Fourier coefficients of
modular forms, to explore other properties of the Hecke-eigenforms, which satisfy many
interesting arithmetic relations. For more details on Hecke operators, see [1, 2]. Recently,
the Hurwitz zeta functions and the Apostol-Bernoulli polynomials have been studied by
many authors, for example, see (cf. [3—12], the others).

The main motivation of this paper is to introduce and study new Hecke-type operators
on the ring of C[x]. We study fundamental properties of these operators. We derive re-
lations between these operators, the Hurwitz zeta functions and Apostol-Bernoulli type
polynomials.

Our results are new and useful in applied mathematics and computation, analytic num-
ber theory and related areas. There are many reasons for being interested by Hecke-type
operators. In particular, these operators are linear operators and are closely related to
Raabe’s multiplication theorem [9, 10]. We recall the statement of this theorem, for any

positive integer m > 1 we have

A x+k

E Bn< ) =m"B,(x), VneN,
m

k=0
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where B, (x) are the well-known Bernoulli polynomials. Conversely, from the paper [11] of
Lehmer, it is well known that the Raabe’s theorem gives a characterization of the Bernoulli
polynomials. As an application, of the main result of this paper, the Lehmer’s [11] approach
will be generalized to the Apostol-Bernoulli type polynomials. These polynomials plays a
central role in the computational number theory.

In order to state our results, we fix the following notations and definitions. Let a, N be
positive integers and d € C\{0} and &y be a primitive root of unity of order N. We consider
the functions x,n : N — C given by

£, N>2;
L N=1

a

Xa,N(k) =

We define the partial Hecke-type operators associated to x,n and d as follows:

Toan(P ZM (’”dk), P(X) e C[x].

The total Hecke-type operators associated to N and d are defined by

Tyn = Z Taan-

a=1(N)

2 Main results

We have the following results.

Theorem 2.1 Let a, N be positive integers and d € C\{0}. Assume that a # 0(modN).
Then we have the following properties for the operators T, 4 n:

(i) The operator T,4n is linear and preserves the degree in Clx].

(i) Vm>1,
Sd,O: m = 0;
Ta,d,N (xm) = m-1 (m
a”x" +a” Y (M) Samar(Xan) &Y, m =1,
where

o Lk, N=1

Sdm v XaN XaN dk =
Z “ L ER (A, N >2

and S0 = Sa0(XaN)-

Proof A simple computation gives the linearity of the operator 7, , so we omit it. Since
a # 0(modN), we can see easily that

a-1

> xan(k) #0.
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From the above equation, we obtain

Sa0 #0.

Let us show how to compute T}, ; n(x™). For m = 0, we get

a-1
Taan(®") =Y Xan(k).
k=0

We end the proof by induction. Let m > 1, after an elementary manipulation we obtain

m a-1
Toan (") =a™ Z{ (T) D Xan(K) (k)" }x“
v=0 k=0

and, therefore, (ii) is satisfied. O

We consider the restriction of the partial Hecke operator to the finite dimensional space
Culx] = {P(x) € C[x]: degree of P(x) < m}

By writing the operator T,y in the canonical basis 8,, = (1,x,%2,...,x™), and from (ii),

we get the corresponding matrix. Using linear algebra, we will see that this matrix repre-

sentation is useful and gives interesting results.

Proposition2.2 Foranym € N, let 8,, = (1,x,%2,...,5™) be the canonical C-basis of C,,, [x].

Then the matrix Mg, (T, , ) corresponding to the operator T, , , (restricted to C,,[x]) in the
basis B, is given by
Sd,o a‘lSd,l ﬂ_zsd,g cee a_de'm
0 tl—lSd'o 2ﬂ_25d,1 ooa™ (T)Sd,m—l
0 0 61_2551,0 ooa™” (r;)Sd,m_2
Mﬁm (Ta,d,N) = 0 0 0 g (V;l)sd,m_g . 1)
0 0 0 ... aSao

Remark 2.3 For any positive integer a > 2, the eigenvalues S;0,a'S;0,a2S40,...,
a S, of the matrix (1) are distinct. Then from the theory of linear algebra we deduce that
the matrix (1) is a diagonalizable. Again, thanks to linear algebra, we know that there exists
a sequence of polynomials (P, 4n)xen, which is a sequence of eigenpolynomials of (1). For
more details, see the next section.

Theorem 2.4 The operators T, an and Ty an commute if a = b =1(modN).

Proof We consider the linear operators 7, ;n and T} 4 n and we must show that

ToanTpan = ToanTaan
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for alla = 1(mod N). This equality is obvious when N = 1. For N > 2, we have the following

equalities:
> x + dk
(Toan Tr,an) (P)) = Taan(Toan(PK))) = adN(ngl\(/lP< 5 1))
k1=0

The linearity of the of the operator 7, implies that

b-1 a-1 x+dk1 +dk2>

dk
(TaanTpan) (P(%)) Z-’EN adN( <x+ 1)) ZE 251]\(121’(

Then we deduce

b-1 a-1
k- x+d(k1+bk2)
(TadNTth) P(x) ](2;](2: sNZP(T .
1 2

By setting k = k; + bky, we obtain

ab-1

(TaanTpan)(PW)) = ZEN(

x +dk

) = Tapan (P()) = Tpaan (P(x)).

Finally, we get our desired equality

(TaaNTranN)(P)) = (ThanTaan)(P()). O

3 New characterization of Apostol-Bernoulli type polynomials
As an application of our main results, we study the polynomials P € C[x] satisfying the
functional equation

Toan(P) = a"P(x), (2)
where a = 1(N) and fixed integer n > 1.

Theorem 3.1 Let a, N be positive integers and d € C\{0} such that a = 1(N). Then we
have the following properties:
(i) There exists an unique sequence of monic polynomials P, 4n € Clx] with
deg P, 4N = n such that

Ta,d,N (Pn,d,N) = a_npn,d,N'

(i) Polynomials P, 4n(x) are eigenfunctions for the operators T, 4N with eigenvalues
N7"¢(n, %), that is

1
TynPran)(x) =NT"¢ (n, N)Pn,d,N (%),

where (s,%) = ) 10 @ is the Hurwitz zeta function.
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Proof The existence of a sequence of monic polynomials P is satisfied from Theorem 2.1
and Theorem 2.4.

Now we must observe the uniqueness of (P, ;n).en. For this end, we take two different
monic polynomials P, ;x5 and R, ;n of degree n satisfying (2).

Suppose that P, g (%) — Ryan(®) = Ay(x) = Agx™ + Aix™ 1 + ..., where 1 < m < n and
Ap #0. From (2) and the definition of T, 4, we can write

a-1
x +dk
Z Xa,N(k)Pn,d,N< ) =a” n,d,N(x) (3)
k=0 a
and
! x +dk
> Xa,N(k)Rn,d,N( P ) =a "Ryan(%). (4)
k=0

Subtracting (4) from (3), we get

< x +dk

ZX&Z,N(k)Am< ) :d_n(onm +A1xm_1 + ).
a

k=0

Identifying the coefficients of x” on both sides, we have Ay = a™A,, but this contradicts
our stipulations that Ag # 0, m < n, and a > 2. Hence, the proof of (i) is completed.
We prove (ii). It is easy to see that

TaNPran)(x) = Z TaaN(Ppan)(x) = ( Z ﬂ_">Pn,d,N(x)

a=1(N)
a=0 a>0

and putting @ = 1 + kN, we obtain

TP o) = 0+ KN) "Pyans) =N ()P,

k>0 U

Thanks to Theorem 2.4, we find the generating function of polynomials (P, 4n)xcn sat-
isfying (2). More precisely, we have the following theorem.

Theorem 3.2 For all n > 1, we have the following results:
() ZPran(®) = nPyran ().
(i) P (d) = £ Pran (0).
(ili) The difference formula of (Py,uN)nen is given by

nx"1, N=1;

Pan(x+d) — &' Pran(x) =
(1 - E}\*{l)xn’ N > 2.

Proof We prove (i). From (2) and the definition of the operators T, ; x, we have

a-1

x + dk
E Xa,N(k)Pn,d,N< P ) =a "Ppan(x),
k=0

Page5of 11
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we derive this equation and obtain

a-1 x+dk /
dN( ) P ,d,N(x)
Z Xa, N(k & ﬂl e .
n
k=0
. P;l dN(x) . . . . .
Since ~*%*— is monic with degree 7 — 1, from Theorem 3.1(i), we arrive at
P an®)

= Pr1an(®). ©)

We prove (ii). For N > 2, by taking x,n(k) = EJI\‘, and a = N + 1, we have

dk
ZsNPndN(“ ) = (N + 1) Pyan(®).

In the above equation, putting x = 0 and x = d, respectively, we arrive at

dk
ZSN ndN( - >=(N+1>-" i (0) (6)
and
N d(k +1)
k _ -n
;sNPn,d,N( k. )-<N+1> an(d). @)

Multiplying each side of (7) by £y and then substrate it from (6), we have the following

relation:

Pn,d,N(O) - 5]1\\[[+1Pn,d,N(d) = (N + 1)—;1 (Pn,d,N(O) - sNPn,d,N(d))'

Since £)*! = &y, we obtain that P, 4 x(d) = £5'Pran(0) foralln > 1 and N > 2.
We prove (iii). We can write

2 " k
x
Puan(®) = ZPMN W Prantrd)=) P @
k=0 ’
On the other hand, by using Theorem 3.2(i), we get
" (n
Pyan(x) = kzzo ( k>Pn—k,d,N(O)xk: (8)
"\ (n
Puan(x+d) = ; ( k) Py-an(dy". )

We multiply the each side of (9) by &y and then substrate (8) from (9), we arrive to

n

EnPuan(x +d) — Pyan(x) = Z <Z> (Pukan(d) = ENPrian(0))ak

k=0

Page6of 11
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From Theorem 3.2(ii) and equality Py n(d) = Poan(d) =1, we get

EnPran(x+d) — Pyan(x) = _<<Z>P0,d,N(0) - (Z) fSNPo,d,N(l))x" =(&n - 1)x".

Therefore, we obtain the desired result. O
Using Theorem 2.4 and Theorem 3.1, we can establish the following result.

Theorem 3.3 For a =1(N), the generating function of (Ppin)nen IS given by

dte* ; _1.

FunGet) = & N =1
LN\ (SN—I)EM lf‘N>2
Enedt-1"’ -

Proof Let N > 2 integer and write

ext
e Y Qe

a1
éne e

Using the difference formula in Theorem 3.2, we get

m-1

N Pran(md) — 67 Puan(0) = (1-£51) Y &L Gid)".

j=0

We consider the generating function

Z(g{,"Pn,d,N(md) ndN(O) =(@En-1) ZEN Z (Idt)

n>0 n>0
dt
et -1
Enedt -1

(En —1)emdt _ (Ev-1)
Eve —1  Eye -1

S5 Y Qualnd £ Y Qual0,bn)

n>0 : n>0

=(¢én-1

=&y

thus,

n

Y (G a0 = Paan(©) = = YR Qualmdsn) - Qual0,0)}

n>0 Yon>0

We compare the coefficients of #” in the above equation and we obtain

sI([nPn,d,N(WId) - Pn,d,N(O)EN) = EAn;Qn,d(Mdt éN) - Qn,d(o’ %-N)

In particular, if we take m = O(N), then we have

Pn,d,N(WId) - Pn,d,N(()’ SN) = Qn,d(Mdr %-N) - Qn,d(O!EN)'
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Therefore, we note that the polynomials P, ; x(x) — P, 2n (0, En) and Q,,4(x, En) — Q1,u(0, En)
are equal on the infinite set {x = md: with m = 0(mod N)}. Then we can write for allx € C,

Pn,d,N (x) - Pn,d,N(O) = Qn,d(x’ SN) - Qn,d(ox %_N)

Now, by derivation on x we get

1Py 1an(x) = P,y (%) = Q) g n(¥d) = nQp_1,an (%)

We obtain the equality

P an(x) = Quan(x).
Hence, we obtain the generating function of P, 4 n. O

Remark 3.4 The case d =1 of Theorem 3.3 recovers the so-called generalized Bernoulli
and Euler polynomials, which are studied in [9].

4 Eigenpolynomials attached to Dirichlet characters
Let d be a positive integer, ¥ be a Dirichlet character modulo d. We associate to ¥, d, N
the polynomials P,y 4(x, £y) defined by the generating function

x+h)
| En-DYy, W —, N>2;
v é edt—1
E P}’l,l//,d(xy SN) P = A yb)ehr N (10)

n=0 bol " Gl N=1

Then we have the interesting relations.

Theorem 4.1 Let d be a positive integer,  be a Dirichlet character modulo d. Then we
have the identity

d
Py a®&n) = Y Y (b)Pyan(x+b)
b=1
which is equivalent to the following equality:
n " d
Pyl én) =) ( k) Y VOPykan()b".

k=0 b=1

Proof Theprooffor N = 1istrivial, we omit it. For N > 2, by using equation (10), we obtain

n x+b
Z Py a(x, EN)% Z G él)egt Z ¥ (b) ZP” an(x + b)—.

n>0 ! b=1 n>0
Taking the coefficients of tn—n, in the left and right sides of above equation, we have
d

Puyax,€n) = ) W (b)Puan(x +b).

b=1


http://www.fixedpointtheoryandapplications.com/content/2013/1/92

Aygunes et al. Fixed Point Theory and Applications 2013, 2013:92 Page9of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/92

Now we prove (ii). By equation (10) we have

(En — D)y (b)e+?!
Pn ’
; vax EN) - ; foo 1
ext
SN
(ZPMW)—) (Z > v )b tn)
n>0 : n>0 b=1

then we have
S Puatnins -3 (3 (4 Zw W)=
. nr,d\X SN al «\ & nde I’l'
n> n> 0

Comparing the coefficients of ; in both sides in the last equality, we obtain the desired
result. 0

Theorem 4.2 For any positive integers N and a such that a = 1(N). Then the polynomials
P, .4 are eigenpolynomials for Hecke type operators T, n.

Proof From Theorem 3.1, we have
Toan(Pran(®)) = a"Pyan (%),
then for any integer b we have
TaaN(Pran(x + )Y (b) = a™"Pyan(x + b)Y (b).

Summing overalll <b <d

d

d
Y VD) Taan(Pran@+ b)) =a Y Y (b)Pyan(x +b).

b=1 b=1
Therefore, by linearity of the Hecke operator we obtain
d d
TadN (Puy.a®n)) = Taan (Z X(B)Pyan(x + b)) =Y x(O) Toan(Pran(x +b)).
b=1 b=1
We then obtain our formula

d
TadN (P y.a(,En)) Z XB)Pyan(x+b) =a Py, 4%, En). 0
b1

Theorem 4.3 For all integer n > 1, the difference formula of (P,,y.q4)(x,EN) is given by

nY ¢ w(b)x+ b)Y, N=1

Pn, S, d’ - 71Pn’ ’ ’ -
v.d(% +d,EN) = §5 Pry.a(%,6n) A-EH YL wb)x+b)", N=2.
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Proof From Theorem 3.2, we know that, for all n > 1,

o nx"L, N=1;
Puan(x+d) = §5 Pran(x) = o
1-&3)x", N=2.

Let N > 2. By using Theorem 4.1, we get

d
Pyyax+dén) = Z Y(b)Pan(x + b+ d)

-1
and
d
=Py a(x,EN) = Zlﬂ Ppan(x+ D).
b-1
Therefore,
d
Puya+d,EN) — EN Puya(®,En) = Z Y (B)(Puan(x + b +d) — £5' Pran(x + b))
b-1

d
= (1-&") Y v B)x+b)".

b=1
Let N = 1. By using Theorem 4.1, we get
d
Puyalx+d,&n) =D Y (b)Puan(e+b+d)
b=1
and
d
~Puya®En) == ) Y (B)Pran(x +b).
b=1
Therefore,
d
Poya(x+d,En) — 67 Puya(,En) = D Y (B) (Puan(e+ b+ d) - Puan(x+ b))
b=1
d
— n-1
—n;w(b)(awh) . -
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