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Abstract
The purpose of this paper is to construct a new iterative scheme and to get a strong
convergence theorem for a countable family of relatively quasi-nonexpansive
mappings and a system of equilibrium problems in a uniformly convex and uniformly
smooth real Banach space using the properties of generalized f -projection operator.
The notion of uniformly closed mappings is presented and an example will be given
which is a countable family of uniformly closed relatively quasi-nonexpansive
mappings but not a countable family of relatively nonexpansive mappings. Another
example shall be given which is uniformly closed but does not satisfy condition AKTT
and ∗AKTT. Our results can be applied to solve a convex minimization problem. In
addition, this paper clarifies an ambiguity in a useful lemma. The results of this paper
modify and improve many other important recent results.
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1 Introduction and preliminaries
Let E be a real Banach space and C be a nonempty closed convex subset of E. A mapping
T : C → C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

Let E be a real Banach space and C be a nonempty closed convex subset of E. A point
p ∈ C is said to be an asymptotic fixed point of T if there exists a sequence {xn}∞n= ⊂ C
such that xn ⇀ p and limn→∞ ‖xn –Txn‖ = . The set of asymptotic fixed point is denoted
by F̂(T). We say that a mapping T is relatively nonexpansive (see [–]) if the following
conditions are satisfied:

(I) F(T) 
= ∅;
(II) φ(p,Tx) ≤ φ(p,x), ∀x ∈ C, p ∈ F(T);
(III) F(T) = F̂(T).
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If T satisfies (I) and (II), then T is said to be relatively quasi-nonexpansive. It is easy to
see that the class of relatively quasi-nonexpansivemappings contains the class of relatively
nonexpansive mappings.
Let E be a real Banach space. The modulus of smoothness of E is the function ρE :

[,∞)→ [,∞) defined by

ρE(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ τ

}
.

E is uniformly smooth if and only if

lim
τ→

ρEτ

τ
= .

Let dimE ≥ . Themodulus of convexity of E is the function δE(ε) := inf{–‖ x+y
 ‖ : ‖x‖ =

‖y‖ = ; ε = ‖x–y‖}. E is uniformly convex if for any ε ∈ (, ], there exists δ = δ(ε) >  such
that if x, y ∈ E with ‖x‖ ≤ , ‖y‖ ≤  and ‖x – y‖ ≥ ε, then ‖ 

 (x + y)‖ ≤  – δ. Equivalently,
E is uniformly convex if and only if δE(ε) >  for all ε ∈ (, ]. A normed space E is called
strictly convex if for all x, y ∈ E, x 
= y, ‖x‖ = ‖y‖ = , we have ‖λx+ (–λ)y‖ < , ∀λ ∈ (, ).
Let E∗ be the dual space of E. We denote by J the normalized duality mapping from E

to E∗ defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}.

The following properties of J are well known (see [–] for more details):
() If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each

bounded subset of E.
() If E is reflexive, then J is a mapping from E onto E∗.
() If E is smooth, then J is single valued.
Throughout this paper, we denote by φ the functional on E × E defined by

φ(x, y) = ‖x‖ – 
〈
x, J(y)

〉
+ ‖y‖, ∀x, y ∈ E. (.)

Let E be a smooth, strictly convex, and reflexive real Banach space and let C be a
nonempty closed convex subset of E. Following Alber [], the generalized projection 	C

from E onto C is defined by

	C(x) = argmin
y∈C

φ(y,x), ∀x ∈ E.

The existence and uniqueness of 	C follows from the property of the functional φ(x, y)
and strict monotonicity of the mapping J . It is obvious that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈ E. (.)

Next, we recall the notion of generalized f -projection operator and its properties. Let
G : C × E∗ → R∪ {+∞} be a functional defined as follows:

G(ξ ,ϕ) = ‖ξ‖ – 〈ξ ,ϕ〉 + ‖ϕ‖ + ρf (ξ ), (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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where ξ ∈ C, ϕ ∈ E∗, ρ is a positive number and f : C → R ∪ {+∞} is proper, convex, and
lower semi-continuous. From the definitions of G and f , it is easy to see the following
properties:

(i) G(ξ ,ϕ) is convex and continuous with respect to ϕ when ξ is fixed;
(ii) G(ξ ,ϕ) is convex and lower semi-continuous with respect to ξ when ϕ is fixed.

Definition . [] Let E be a real Banach space with its dual E∗. Let C be a nonempty,
closed, and convex subset of E. We say that 	

f
C : E∗ → C is a generalized f -projection

operator if

	
f
Cϕ =

{
u ∈ C :G(u,ϕ) = inf

ξ∈CG(ξ ,ϕ)
}
, ∀ϕ ∈ E∗.

For the generalized f -projection operator, Wu and Huang [] proved in the following the-
orem some basic properties.

Lemma. [] Let E be a real reflexive Banach spacewith its dual E∗.Let C be a nonempty,
closed, and convex subset of E. Then the following statements hold:

(i) 	
f
C is a nonempty closed convex subset of C for all ϕ ∈ E∗.

(ii) If E is smooth, then for all ϕ ∈ E∗, x ∈ 	
f
Cϕ if and only if

〈x – y,ϕ – Jx〉 + ρf (y) – ρf (x) ≥ , ∀y ∈ C.

(iii) If E is strictly convex and f : C → R∪ {+∞} is positive homogeneous (i.e.,
f (tx) = tf (x) for all t >  such that tx ∈ C where x ∈ C), then 	

f
C is a single-valued

mapping.

Fan et al. [] showed that the condition f is positive homogeneous which appeared in
Lemma . can be removed.

Lemma . [] Let E be a real reflexive Banach space with its dual E∗ and C a nonempty,
closed, and convex subset of E. Then if E is strictly convex, then 	

f
C is a single-valued map-

ping.

Recall that J is a single-valued mapping when E is a smooth Banach space. There exists
a unique element ϕ ∈ E∗ such that ϕ = Jx for each x ∈ E. This substitution in (.) gives

G(ξ , Jx) = ‖ξ‖ – 〈ξ , Jx〉 + ‖x‖ + ρf (ξ ). (.)

Now, we consider the second generalized f -projection operator in a Banach space.

Definition . [] Let E be a real Banach space and C a nonempty, closed, and convex
subset of E. We say that 	

f
C : E → C is a generalized f -projection operator if

	
f
Cx =

{
u ∈ C :G(u, Jx) = inf

ξ∈CG(ξ , Jx)
}
, ∀x ∈ E.

Obviously, the definition of relatively quasi-nonexpansive mapping T is equivalent to
() F(T) 
= ∅;
() G(p, JTx) ≤G(p, Jx), ∀x ∈ C, p ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2014/1/103


Zhang et al. Fixed Point Theory and Applications 2014, 2014:103 Page 4 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/103

Lemma . [] Let E be a Banach space and f : E → R∪{+∞} be a lower semi-continuous
convex functional. Then there exist x ∈ E∗ and α ∈ R such that

f (x)≥ 〈
x,x∗〉 + α, ∀x ∈ E.

We know that the following lemmas hold for operator 	
f
C .

Lemma . [] Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(i) 	
f
C is a nonempty, closed, and convex subset of C for all x ∈ E;

(ii) for all x ∈ E, x̂ ∈ 	
f
Cx if and only if

〈x̂ – y, Jx – Jx̂〉 + ρf (y) – ρf (x)≥ , ∀y ∈ C;

(iii) if E is strictly convex, then 	
f
Cx is a single-valued mapping.

Lemma . [] Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Let x ∈ E and x̂ ∈ 	

f
Cx. Then

φ(y, x̂) +G(x̂, Jx) ≤G(y, Jx), ∀y ∈ C.

The fixed points set F(T) of a relatively quasi-nonexpansive mapping is closed convex
as given in the following lemma.

Lemma . [, ] Let C be a nonempty closed convex subset of a smooth, uniformly con-
vex Banach space E. Let T be a closed relatively quasi-nonexpansive mapping of C into
itself. Then F(T) is closed and convex.

Also, this following lemma will be used in the sequel.

Lemma . [] Let C be a nonempty closed convex subset of a smooth, uniformly convex
Banach space E. Let {xn}∞n= and {yn}∞n= be sequences in E such that either {xn}∞n= or {yn}∞n=
is bounded. If limn→∞ φ(xn, yn) = , then limn→∞ ‖xn – yn‖ = .

Lemma . [] Let p >  and r >  be two fixed real numbers. Then a Banach space X is
uniformly convex if and only if there is a continuous, strictly increasing and convex function
g : R+ → R+, g() = , such that

∥∥λx + ( – λ)y
∥∥p ≤ λ‖x‖p + ( – λ)‖y‖p –Wp(λ)g

(‖x – y‖)
for all x, y ∈ Br and  ≤ λ ≤ , where Wp(λ) = λ( – λ)p + λp( – λ).

Remark We can see from the Lemma . that the function g has no relation with the
selection of x, y and λ. However, the key point above, in the process of generalization and
application about this lemma, has been ambiguous gradually. For instance, the following
lemma states that the function g has something to do with λ, which always leads to failure
in the proof.
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Lemma (stated in [, Lemma .]) Let E be a uniformly convex real Banach space. For
arbitrary r > , let Br() := {x ∈ E : ‖x‖ ≤ r} and λ ∈ [, ]. Then there exists a continuous
strictly increasing convex function

g : [, r] → R, g() = 

such that for every x, y ∈ Br(), the following inequality holds:∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖).
Let F be a bifunction of C × C into R. The equilibrium problem is to find x∗ ∈ C such

that F(x∗, y) ≥ , for all y ∈ C.We shall denote the solutions set of the equilibrium problem
by EP(F). Numerous problems in physics, optimization, and economics reduce to find a
solution of equilibrium problem. The equilibrium problems include fixed point problems,
optimization problems, and variational inequality problems as special cases.
For solving the equilibrium problem for a bifunction F : C ×C → R, let us assume that

F satisfies the following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y ∈ C, limt→ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.

Lemma . [] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E and let F be a bifunction of C×C into R satisfying (A)-(A).
Let r >  and x ∈ E. Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ K .

Lemma . [] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E. Assume that F : C × C → R satisfies (A)-(A). For r > 
and x ∈ E, define a mapping TF

r : E → C as follows:

TF
r (x) =

{
z ∈ C : F(z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
for all z ∈ E. Then the following hold:
() TF

r is single valued;
() TF

r is a firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,〈
TF
r x – TF

r y, JT
F
r x – JTF

r y
〉 ≤ 〈

TF
r x – TF

r y, Jx – Jy
〉
;

() F(TF
r ) = EP(F);

() EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E. Assume that F : C ×C → R satisfies (A)-(A) and let r > .
Then for each x ∈ E and q ∈ F(TF

r ),

φ
(
q,TF

r x
)
+ φ

(
TF
r x,x

) ≤ φ(q,x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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Let {Tn} be a sequence ofmappings fromC into E, whereC is a nonempty closed convex
subset of a real Banach space E. For a subset B of C, we say that

(i) ({Tn},B) satisfies condition AKTT (see []) if

∞∑
n=

sup
{‖Tn+x – Tnx‖ : x ∈ B

}
< ∞;

(ii) ({Tn},B) satisfies condition ∗AKTT (see []) if

∞∑
n=

sup
{‖JTn+x – JTnx‖ : x ∈ B

}
<∞.

Recently, Shehu [] proved strong convergence theorems for approximation of com-
mon element of set of common fixed points of countably infinite family of relatively quasi-
nonexpansivemappings and set of common solutions to a system of equilibrium problems
in a uniformly convex and uniformly smooth real Banach space using the properties of
generalized f -projection operator. The author obtained the following theorem.

Theorem . [] Let E be a uniformly convex real Banach space which is also uniformly
smooth. Let C be a nonempty closed convex subset of E. For each k = , , . . . ,m, let Fk be a
bifunction from C×C satisfying (A)-(A) and let {Tn}∞n= be an infinite family of relatively
quasi-nonexpansive mappings of C into itself such that F := (

⋂∞
n= F(Tn))∩ (

⋂m
k= EP(Fk)) 
=

∅. Let f : E → R be a convex and lower semi-continuous mapping with C ⊂ int(D(f )) and
suppose {xn}∞n= is iteratively generated by x ∈ C, C = C, x =	

f
C
x,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yn = J–(αnJxn + ( – αn)JTnxn),
un = TFm

rm,nT
Fm–
rm–,n · · ·TF

r,nT
F
r,nyn,

Cn+ = {w ∈ Cn :G(w, Jun)≤G(w, Jxn)},
xn+ =	

f
Cn+

x, n≥ ,

(.)

where J is the duality mapping on E. Suppose {αn}∞n= is a sequence in (, ) such that
lim infn→∞ αn( – αn) >  {rk,n}∞n= ⊂ (,∞) (k = , , . . . ,m) satisfying lim infn→∞ rk,n > 
(k = , , . . . ,m). Suppose that for each bounded subset B of C, the ordered pair ({Tn},B)
satisfies either conditionAKTTor condition ∗AKTT.Let T be themapping fromC into E de-
fined by Tx = limn→∞ Tnx for all x ∈ C and suppose that T is closed and F(T) =

⋂∞
n= F(Tn).

Then {xn}∞n= converges strongly to 	
f
Fx.

In this paper we will construct a new iterative scheme and will get strong convergence
theorem for a countable family of relatively quasi-nonexpansive mappings and a system
of equilibrium problems in a uniformly convex and uniformly smooth real Banach space
using the properties of generalized f -projection operator. The notion of uniformly closed
mappings is presented and an example will be given which is a countable family of uni-
formly closed relatively quasi-nonexpansive mappings but not a countable family of rela-
tively nonexpansive mappings. Another example shall be given which is uniformly closed
but not satisfy condition AKTT and ∗AKTT.

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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2 Main results
Now, we shall first introduce the notion of uniformly closedmappings and give an example
which is a countable family of uniformly closed relatively quasi-nonexpansive mappings
but not a countable family of relatively nonexpansive mappings in the sense ofG. Another
example shall be given which is uniformly closed but not satisfy condition AKTT and
∗AKTT.

Definition . Let E be a Banach space, C be a nonempty closed convex subset of E. Let
{Tn}∞n= : C → E be a sequence of mappings of C into E such that

⋂∞
n= F(Tn) is nonempty.

{Tn}∞n= is said to be uniformly closed, if p ∈ ⋂∞
n= F(Tn), whenever {xn} ⊂ C converges

strongly to p and ‖xn – Tnxn‖ →  as n→ ∞.

Example  Let E = l, where

l =

{
ξ = (ξ, ξ, ξ, . . . , ξn, . . .) :

∞∑
n=

|ξn| <∞
}
,

‖ξ‖ =
( ∞∑

n=

|ξn|
) 



, ∀ξ ∈ l,

〈ξ ,η〉 =
∞∑
n=

ξnηn, ∀ξ = (ξ, ξ, ξ, . . . , ξn, . . .),η = (η,η,η, . . . ,ηn, . . .) ∈ l.

It is well known that l is a Hilbert space, so that (l)∗ = l. Let {xn} ⊂ E be a sequence
defined by

x = (, , , , . . .),

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

· · ·
xn = (ξn,, ξn,, ξn,, . . . , ξn,k , . . .)

· · · ,

where

ξn,k =

⎧⎨⎩, if k = ,n + ,

, if k 
= ,k 
= n + ,

for all n ≥ .
Define a countable family of mappings Tn : E → E as follows:

Tn(x) =

⎧⎨⎩ n
n+xn, if x = xn,

–x, if x 
= xn,

for all n ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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Conclusion . {Tn}∞n= has a unique fixed point , that is, F(Tn) = {} 
= ∅, ∀n≥ .

Proof The conclusion is obvious. �

Let {Tn}∞n= be a countable family of quasi-relatively quasi-nonexpansive mappings, if

∞⋂
n=

F(Tn) = F̂
({Tn}∞n=

)
,

the {Tn}∞n= is said to be a countable family of relatively nonexpansive mappings in the
sense of functional G, where

F̂
({Tn}∞n=

)
=

{
p ∈ C : ∃xn ⇀ p,‖xn – Tnxn‖ → ,xn ∈ C

}
is said to be the asymptotic fixed point set of {Tn}∞n=.

Conclusion . {Tn}∞n= is a countable family of relatively quasi-nonexpansive mappings
but not a countable family of relatively nonexpansivemappings in the sense of functional G.

Proof By Conclusion ., we only need to show that G(, JTnx) ≤ G(, Jx), ∀x ∈ E. Note
that E = l is a Hilbert space, for any n≥  we can derive

G(, JTnx)≤G(, Jx) ∀x ∈ E

⇔ φ(,Tnx) ≤ φ(,x)

⇔ ‖ – Tnx‖ ≤ ‖ – x‖

⇔ ‖Tnx‖ ≤ ‖x‖.

It is obvious that {xn} converges weakly to x = (, , , . . .), and

‖xn – Tnxn‖ =
∥∥∥∥ n
n + 

xn – xn
∥∥∥∥ =


n + 

‖xn‖ → ,

as n → ∞, so x is an asymptotic fixed point of {Tn}∞n=. Joining with Conclusion ., we
can obtain

⋂∞
n= F(Tn) 
= F̂({Tn}∞n=).

Thus, {Tn}∞n= is a countable family of relatively quasi-nonexpansive mappings but not a
countable family of relatively nonexpansive mappings in the sense of G. �

Conclusion . {Tn}∞n= is a countable family of uniformly closed relatively quasi-
nonexpansive mappings in the sense of functional G.

Proof In fact, for any strong convergent sequence {zn} ⊂ E such that zn → z and ‖zn –
Tnzn‖ →  as n→ ∞, there exists a sufficiently large nature number N , such that zn 
= xm
for any n,m > N (since xn is not a Cauchy sequence it cannot converge to any element
in E). Then Tnzn = –zn for n >N , it follows from ‖zn –Tnzn‖ →  that zn →  and hence
zn → z = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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Therefore, {Tn}∞n= is a countable family of uniformly closed relatively quasi-nonexpan-
sive mappings but not a countable family of relatively nonexpansive mappings in the sense
of functional G. �

Now, we give an example which is a countable family of uniformly closed quasi-
nonexpansive mappings but not satisfied condition AKTT and ∗AKTT.

Example  Let X = �. For any complex number x = reiθ ∈ X, define a countable family
of quasi-nonexpansive mappings as follows:

Tn : reiθ → rei(θ+n
π
 ), n = , , , . . . .

Proof It is easy to see that
⋂∞

n= F(Tn) = {}.We first prove that {Tn} is uniformly closed. In
fact, for any strong convergent sequence {xn} ⊂ X such that xn → x and ‖xn –Tnxn‖ → 
as n→ ∞, there must be x =  ∈ ⋂∞

n= F(Tn). Otherwise, if xn → x 
= , and

‖xn+ – Tn+xn+‖ → ,

since T is continuous, we have

‖xn+ – Tn+xn+‖
= ‖xn+ – Txn+‖ → ‖x – Tx‖ 
= .

This is a contradiction. Therefore, {Tn} is uniformly closed.
Besides, take any x = reiθ 
= . For any n by the definition of Tn, we have

‖Tnx – Tn+x‖ =
∥∥re π i


∥∥ = r > 

and

‖JTnx – JTn+x‖ =
∥∥re π i


∥∥ = r > .

That is to say, {Tn} does not satisfied condition AKTT and ∗AKTT. �

Now we are in a position to present our main theorems.

Theorem . Let {Tn}∞n= be a countable family of uniformly closed relatively quasi-
nonexpansive mappings of C into itself and other conditions are the same as Theorem .
except for condition AKTT, ∗AKTT and condition ‘Let T be the mapping from C into E de-
fined by Tx = limn→∞ Tnx for all x ∈ C and suppose that T is closed and F(T) =

⋂∞
n= F(Tn)’.

Then the sequence {xn}∞n= generated by (.) converges strongly to 	
f
Fx.

Proof We first show that Cn, ∀n ≥ , is closed and convex. It is obvious that C = C is
closed and convex. Suppose that Cn is closed convex for some n > . From the definition
of Cn+, we have z ∈ Cn+ implies G(z, Jun) ≤G(z, Jxn). This is equivalent to


(〈z, Jxn〉 – 〈z, Jun〉

) ≤ ‖xn‖ – ‖un‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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This implies that Cn+ is closed convex for the same n > . Hence, Cn is closed and convex
for all n ≥ . This shows that 	

f
Cn+

x is well defined for all n ≥ .
By taking θ k

n = TFk
rk,nT

Fk–
rk–,n · · ·TF

r,nT
F
r,n , k = , , . . . ,m and θ

n = I for all n ≥ , we obtain
un = θm

n yn.
We next show that F ⊂ Cn, ∀n≥ . FromLemma ., one sees thatTFk

rk,n , k = , , . . . ,m, is
relatively nonexpansive mapping. For n = , we have F ⊂ C = C. Now, assume that F ⊂ Cn

for some n≥ . Then for each x∗ ∈ F , we obtain

G
(
x∗, Jun

)
=G

(
x∗, Jθm

n yn
) ≤G

(
x∗, Jyn

)
=G

(
x∗,

(
αnJxn + ( – αn)JTnxn

))
=

∥∥x∗∥∥ – αn
〈
x∗, Jxn

〉
– ( – αn)

〈
x∗, JTnxn

〉
+

∥∥αnJxn + ( – αn)JTnxn
∥∥ + ρf

(
x∗)

≤ ∥∥x∗∥∥ – αn
〈
x∗, Jxn

〉
– ( – αn)

〈
x∗, JTnxn

〉
+ αn‖Jxn‖ + ( – αn)‖JTnxn‖ + ρf

(
x∗)

= αnG
(
x∗, Jxn

)
+ ( – αn)G

(
x∗, JTnxn

) ≤G
(
x∗, Jxn

)
. (.)

So, x∗ ∈ Cn. This implies that F ⊂ Cn, ∀n ≥  and the sequence {xn}∞n= generated by (.)
is well defined.
We now show that limn→∞ G(xn, Jx) exists. Since f : E → R is a convex and lower semi-

continuous, applying Lemma ., we see that there exist u∗ ∈ E∗ and α ∈ R such that

f (y) ≥ 〈
y,u∗〉 + α, ∀y ∈ E.

It follows that

G(xn, Jx) = ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

≥ ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρ
〈
xn,u∗〉 + ρα

= ‖xn‖ – 
〈
xn, Jx – ρu∗〉 + ‖x‖ + ρα

≥ ‖xn‖ – ‖xn‖
∥∥Jx – ρu∗∥∥ + ‖x‖ + ρα

=
(‖xn‖ – ∥∥Jx – ρu∗∥∥) + ‖x‖ –

∥∥Jx – ρu∗∥∥ + ρα. (.)

Since xn =	
f
Cnx, it follows from (.) that

G
(
x∗, Jx

) ≥G(xn, Jx) ≥
(‖xn‖ – ∥∥Jx – ρu∗∥∥) + ‖x‖ –

∥∥Jx – ρu∗∥∥ + ρα

for each x∗ ∈ F(T). This implies that {xn}∞n= is bounded and so is {G(xn, Jx)}∞n=. By the
construction of Cn, we have Cm ⊂ Cn and xm =	

f
Cmx ∈ Cn for any positive integerm ≥ n.

It then follows from Lemma . that

φ(xm,xn) +G(xn, Jx) ≤G(xm, Jx). (.)
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It is obvious that

φ(xm,xn) ≥
(‖xm‖ – ‖xn‖

) ≥ .

In particular,

φ(xn+,xn) +G(xn, Jx) ≤G(xn+, Jx)

and

φ(xn+,xn) ≥
(‖xn+‖ – ‖xn‖

) ≥ ,

and so {G(xn, Jx)}∞n= is nondecreasing. It follows that the limit of {G(xn, Jx)}∞n= exists.
By the fact that Cm ⊂ Cn and xm =	

f
Cmx ∈ Cn for any positive integerm ≥ n, we obtain

φ(xm,un)≤ φ(xm,xn).

Now, (.) implies that

φ(xm,un)≤ φ(xm,xn) ≤G(xm, Jx) –G(xn, Jx). (.)

Taking the limit asm,n→ ∞ in (.), we obtain

lim
n→∞φ(xm,xn) = .

It then follows from Lemma . that ‖xm – xn‖ →  as m,n → ∞. Hence, {xn}∞n= is a
Cauchy sequence. Since E is a Banach space and C is closed and convex, there exists p ∈ C
such that xn → p as n→ ∞.
Now since φ(xm,xn) →  as m,n → ∞ we have in particular that φ(xn+,xn) →  as

n → ∞ and this further implies that limn→∞ ‖xn+ – xn‖ = . Since xn+ = 	
f
Cn=

x ∈ Cn+

we have

φ(xn+,un) ≤ φ(xn+,xn), ∀n≥ .

Then we obtain

lim
n→∞φ(xn+,un) = .

Since E is uniformly convex and smooth, we have from Lemma .

lim
n→∞‖xn+ – xn‖ =  = lim

n→∞‖xn+ – un‖.

So,

‖xn – un‖ ≤ ‖xn+ – xn‖ + ‖xn+ – un‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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Hence,

lim
n→∞‖xn – un‖ = . (.)

Since J is uniformly norm-to-norm continuous on bounded sets and limn→∞ ‖xn–un‖ = ,
we obtain

lim
n→∞‖Jxn – Jun‖ = . (.)

Let r = supn≥{‖xn‖,‖Tnxn‖}. Since E is uniformly smooth, we know that E∗ is uniformly
convex. Then from Lemma ., we have

G
(
x∗, Jun

)
=G

(
x∗, Jθm

n yn
) ≤G

(
x∗, Jyn

)
=G

(
x∗,

(
αnJxn + ( – αn)JTnxn

))
=

∥∥x∗∥∥ – αn
〈
x∗, Jxn

〉
– ( – αn)

〈
x∗, JTnxn

〉
+

∥∥αnJxn + ( – αn)JTnxn
∥∥ + ρf

(
x∗)

≤ ∥∥x∗∥∥ – αn
〈
x∗, Jxn

〉
– ( – αn)

〈
x∗, JTnxn

〉
+ αn‖Jxn‖ + ( – αn)‖JTnxn‖

– αn( – αn)g
(‖Jxn – JTnxn‖

)
+ ρf

(
x∗)

= αnG
(
x∗, Jxn

)
+ ( – αn)G

(
x∗, JTnxn

)
– αn( – αn)g

(‖Jxn – JTnxn‖
)

≤G
(
x∗, Jxn

)
– αn( – αn)g

(‖Jxn – JTnxn‖
)
.

It then follows that

αn( – αn)g
(‖Jxn – JTnxn‖

) ≤G
(
x∗, Jxn

)
–G

(
x∗, Jun

)
.

But

G
(
x∗, Jxn

)
–G

(
x∗, Jun

)
= ‖xn‖ – ‖un‖ – 

〈
x∗, Jxn – Jun

〉
≤ ‖xn‖ – ‖un‖ + 

∣∣〈x∗, Jxn – Jun
〉∣∣

≤ ∣∣‖xn‖ – ‖un‖
∣∣(‖xn‖ + ‖un‖

)
+ 

∥∥x∗∥∥‖Jxn – Jun‖
≤ ‖xn – un‖

(‖xn‖ + ‖un‖
)
+ 

∥∥x∗∥∥‖Jxn – Jun‖.

From (.) and (.), we obtain

G
(
x∗, Jxn

)
–G

(
x∗, Jun

) → , n→ ∞.

Using the condition lim infn→∞ αn( – αn) > , we have

lim
n→∞ g

(‖Jxn – JTnxn‖
)
= .
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By the properties of g , we have limn→∞ ‖Jxn– JTnxn‖ = . Since J– is also uniformly norm-
to-norm continuous on bounded sets, we have

lim
n→∞‖xn – Tnxn‖ = .

Since {Tn}∞n= are uniformly closed, and {xn}∞n= is a Cauchy sequence. Then p ∈ F(T) =⋂∞
n= F(Tn).
Next, we show that p ∈ ⋂m

k= EP(Fk). From (.), we obtain

φ
(
x∗,un

)
= φ

(
x∗, θm

n yn
)
= φ

(
x∗,TFm

rm,nθ
m–
n yn

)
≤ φ

(
x∗, θm–

n yn
) ≤ φ

(
x∗,xn

)
. (.)

Since x∗ ∈ EP(Fm) = F(TFm
rm,n ) for all n≥ , it follows from (.) and Lemma . that

φ
(
un, θm–

n yn
)
= φ

(
TFm
rm,nθ

m–
n yn, θm–

n yn
)

≤ φ
(
x∗, θm–

n yn
)
– φ

(
x∗,un

) ≤ φ
(
x∗,xn

)
– φ

(
x∗,un

)
.

From (.) and (.), we obtain limn→∞ φ(θm
n yn, θm–

n yn) = limn→∞ φ(un, θm–
n yn) = . From

Lemma ., we have

lim
n→∞

∥∥θm
n yn – θm–

n yn
∥∥ = lim

n→∞
∥∥un – θm–

n yn
∥∥ = . (.)

Hence, we have from (.) that

lim
n→∞

∥∥Jθm
n yn – Jθm–

n yn
∥∥ = . (.)

Again, since x∗ ∈ EP(Fm–) = F(TFm–
rm–,n ) for all n ≥ , it follows from (.) and Lemma .

that

φ
(
θm–
n yn, θm–

n yn
)
= φ

(
TFm–
rm–,nθ

m–
n yn, θm–

n yn
)

≤ φ
(
x∗, θm–

n yn
)
– φ

(
x∗, θm–

n yn
) ≤ φ

(
x∗,xn

)
– φ

(
x∗,un

)
.

Again, from (.) and (.), we obtain limn→∞ φ(θm–
n yn, θm–

n yn) = . From Lemma ., we
have

lim
n→∞

∥∥θm–
n yn – θm–

n yn
∥∥ =  (.)

and hence,

lim
n→∞

∥∥Jθm–
n yn – Jθm–

n yn
∥∥ = . (.)

In a similar way, we can verify that

lim
n→∞

∥∥θm–
n yn – θm–

n yn
∥∥ = · · · = lim

n→∞
∥∥θ 

nyn – yn
∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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From (.), (.), and (.), we can conclude that

lim
n→∞

∥∥θ k
n yn – θ k–

n yn
∥∥ = , k = , , . . . ,m. (.)

Since xn → p, n→ ∞, we obtain from (.) that un → p, n→ ∞. Again, from (.), (.),
(.), and un → p, n → ∞, we have that θ k

n yn → p, n → ∞ for each k = , , . . . ,m. Also,
using (.), we obtain

lim
n→∞

∥∥Jθ k
n yn – Jθ k–

n yn
∥∥ = , k = , , . . . ,m.

Since lim infn→∞ rk,n > , k = , , . . . ,m,

lim
n→∞

‖Jθ k
n yn – Jθ k–

n yn‖
rk,n

= . (.)

By Lemma ., we have for each k = , , . . . ,m

Fk
(
θ k
n yn, y

)
+


rk,n

〈
y – θ k

n yn, Jθ
k
n yn – Jθ k–

n yn
〉 ≥ , ∀y ∈ C.

Furthermore, using (A) we obtain


rk,n

〈
y – θ k

n yn, Jθ
k
n yn – Jθ k–

n yn
〉 ≥ Fk

(
y, θ k

n yn
)
. (.)

By (A), (.), and θ k
n yn → p, we have for each k = , , . . . ,m

Fk(y,p) ≤ , y ∈ C.

For fixed y ∈ C, let zt = ty + ( – t)p for all t ∈ (, ]. This implies that zt ∈ C. This yields
Fk(zt ,p) ≤ . It follows from (A) and (A) that

 = Fk(zt , zt)≤ tFk(zt , y) + ( – t)Fk(zt ,p) ≤ tFk(zt , y)

and hence

 ≤ Fk(zt , y).

From condition (A), we obtain

Fk(p, y) ≥ , y ∈ C.

This implies that p ∈ EP(Fk), k = , , . . . ,m. Thus, p ∈ ⋂m
k= EP(Fk). Hence, we have p ∈

F =
⋂m

k= EP(Fk)∩ (
⋂∞

n= F(Tn)).
Finally, we show that p = 	

f
Fx. Since F =

⋂m
k= EP(Fk) ∩ (

⋂∞
n= F(Tn)) is a closed and

convex set, from Lemma ., we know that 	
f
Fx is single valued and denote w = 	

f
Fx.

Since xn =	
f
cnx and w ∈ F ⊂ Cn, we have

G(xn, Jx)≤G(w, Jx), ∀n≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/103
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We know that G(ξ , Jϕ) is convex and lower semi-continuous with respect to ξ when ϕ is
fixed. This implies that

G(p, Jx) ≤ lim inf
n→∞ G(xn, Jx)≤ lim sup

n→∞
G(xn, Jx)≤G(w, Jx).

From the definition of 	
f
Fx and p ∈ F , we see that p = w. This completes the proof. �

Corollary . Let E be a uniformly convex and uniformly smooth real Banach space,
and let C be a nonempty closed convex subset of E. For each k = , , . . . ,m, let Fk be
a bifunction from C × C satisfying (A)-(A) and let {Tn}∞n= be a countable family of
uniformly closed relatively quasi-nonexpansive mappings of C into itself such that F :=
(
⋂∞

n= F(Tn))∩ (
⋂m

k= EP(Fk)) 
= ∅. Suppose {xn}∞n= is iteratively generated by x ∈ C,C = C,
x =	

f
C
x,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yn = J–(αnJxn + ( – αn)JTnxn),
un = TFm

rm,nT
Fm–
rm–,n · · ·TF

r,nT
F
r,nyn,

Cn+ = {w ∈ Cn : φ(w,un) ≤ φ(w,xn)},
xn+ =	Cn+x, n≥ ,

where J is the duality mapping on E. Suppose {αn}∞n= is a sequence in (, ) such that
lim infn→∞ αn( –αn) > , and {rk,n}∞n= ⊂ (,∞) (k = , , . . . ,m) satisfying lim infn→∞ rk,n >
 (k = , , . . . ,m). Then {xn}∞n= converges strongly to 	Fx.

Proof Take f (x) =  for all x ∈ E in Theorem ., then G(ξ , Jx) = φ(ξ ,x) and 	
f
Cx =	Cx.

Then Corollary . holds. �

Take Fk ≡  (k = , , . . . ,m), it is obvious that the following holds.

Corollary . Let E be a uniformly convex and uniformly smooth real Banach space, and
let C be a nonempty closed convex subset of E. Let {Tn}∞n= be a countable family of uniformly
closed relatively quasi-nonexpansive mappings of C into itself such that F = (

⋂∞
n= F(Tn)) 
=

∅. Let f : E → R be a convex and lower semi-continuous mapping with C ⊂ int(D(f )) and
suppose {xn}∞n= is iteratively generated by x ∈ C, C = C, x =	

f
C
x,⎧⎪⎨⎪⎩

yn = J–(αnJxn + ( – αn)JTnxn),
Cn+ = {w ∈ Cn :G(w, Jyn) ≤G(w, Jxn)},
xn+ =	

f
Cn+

x, n≥ ,

where J is the duality mapping on E. Suppose {αn}∞n= is a sequence in (, ) such that
lim infn→∞ αn( –αn) > , and {rk,n}∞n= ⊂ (,∞) (k = , , . . . ,m) satisfying lim infn→∞ rk,n >
 (k = , , . . . ,m). Then {xn}∞n= converges strongly to 	Fx.

3 Applications
Let ϕ : C → R be a real-valued function. The convex minimization problem is to find
x∗ ∈ C such that

ϕ
(
x∗) ≤ ϕ(y), (.)
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∀y ∈ C. The set of solutions of (.) is denoted by CMP(ϕ). For each r >  and x ∈ E, define
the mapping

Tϕ
r (x) =

{
z ∈ C : ϕ(y) +


r
〈y – z, Jz – Jx〉 ≥ ϕ(z),∀y ∈ C

}
.

Theorem . Let E be a uniformly convex and uniformly smooth real Banach space,
and let C be a nonempty closed convex subset of E. For each k = , , . . . ,m, let ϕk be
a bifunction from C × C satisfying (A)-(A) and let {Tn}∞n= be a countable family of
uniformly closed relatively quasi-nonexpansive mappings of C into itself such that F :=
(
⋂∞

n= F(Tn)) ∩ (
⋂m

k=CMP(ϕk)) 
= ∅. Let f : E → R be a convex and lower semi-continuous
mapping with C ⊂ int(D(f )) and suppose {xn}∞n= is iteratively generated by x ∈ C, C = C,
x =	

f
C
x,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yn = J–(αnJxn + ( – αn)JTnxn),
un = Tϕm

rm,nT
ϕm–
rm–,n · · ·Tϕ

r,nT
ϕ
r,nyn,

Cn+ = {w ∈ Cn :G(w, Jun)≤G(w, Jxn)},
xn+ =	

f
Cn+

x, n≥ ,

where J is the duality mapping on E. Suppose {αn}∞n= is a sequence in (, ) such that
lim infn→∞ αn( – αn) >  and {rk,n}∞n= ⊂ (,∞) (k = , , . . . ,m) satisfying lim infn→∞ rk,n >
 (k = , , . . . ,m). Then {xn}∞n= converges strongly to 	

f
Fx.

Proof Define Fk(x, y) = ϕk(y) – ϕk(x), x, y ∈ C and k = , , . . . ,m. Then F(TFk
rk ) = EP(Fk) =

CMP(ϕk) = F(Tϕk
rk ) for each k = , , . . . ,m, and therefore {Fk}mk= satisfies conditions (A)

and (A). Furthermore, one can easily show that {Fk}mk= satisfies (A) and (A). Therefore,
from Theorem ., we obtain Theorem .. �
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