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Abstract
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1 Introduction and preliminaries
Let A be a nonempty subset of a metric space (X,d). A mapping T : A → X has a fixed
point in A if the fixed point equation Tx = x has at least one solution. That is, x ∈ A is
a fixed point of T if d(x,Tx) = . If the fixed point equation Tx = x does not possess a
solution, then d(x,Tx) >  for all x ∈ A. In such a situation, it is our aim to find an element
x ∈ A such that d(x,Tx) is minimum in some sense. The best approximation theory and
best proximity pair theorems are studied in this direction. Here we state the following
well-known best approximation theorem due to Ky Fan [].

Theorem . ([]) Let A be a nonempty compact convex subset of a normed linear space
X and T : A → X be a continuous function. Then there exists x ∈ A such that ‖x – Tx‖ =
d(Tx,A) := inf{‖Tx – a‖ : a ∈ A}.

Such an element x ∈ A in Theorem . is called a best approximant of T in A. Note
that if x ∈ A is a best approximant, then ‖x – Tx‖ need not be the optimum. Best prox-
imity point theorems have been explored to find sufficient conditions so that the min-
imization problem minx∈A ‖x – Tx‖ has at least one solution. To have a concrete lower
bound, let us consider two nonempty subsets A, B of a metric space X and a mapping
T : A → B. The natural question is whether one can find an element x ∈ A such that
d(x,Tx) = min{d(x,Tx) : x ∈ A}. Since d(x,Tx) ≥ d(A,B), the optimal solution to the
problem of minimizing the real valued function x → d(x,Tx) over the domain A of the
mapping T will be the one for which the value d(A,B) is attained. A point x ∈ A is called
a best proximity point of T if d(x,Tx) = d(A,B). Note that if d(A,B) = , then the best
proximity point is nothing but a fixed point of T . Also, best proximity point theory in
ordered metric spaces was first studied in [].
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The existence and convergence of best proximity points is an interesting topic of opti-
mization theory which recently attracted the attention of many authors [–]. Also one
can find the existence of best proximity point in the setting of partially order metric space
in [–].
On the other hand, Bhaskar and Lakshmikantham have introduced the concept called

mixed monotone mapping and proved coupled fixed point theorems for mappings satis-
fying the mixedmonotone property, which is used to investigate a large class of problems,
and they discussed the existence and uniqueness of a solution for a periodic boundary
value problem. One can find the existence of coupled fixed points in the setting of par-
tially order metric space in [–].
Now we recall the definition of a coupled fixed point which was introduced by Sintu-

navarat and Kumam in []. Let X be a nonempty set and F : X ×X → X be a given map-
ping. An element (x, y) ∈ X×X is called a coupled fixed point of themapping F if F(x, y) = x
and F(y,x) = y.
The authors mentioned above also introduced the notion of mixed monotone mapping.

If (X,≤) is a partially ordered set, the mapping F is said to have the mixed monotone
property if

x,x ∈ X, x ≤ x �⇒ F(x, y) ≤ F(x, y), ∀y ∈ X

and

y, y ∈ X, y ≤ y �⇒ F(x, y) ≥ F(x, y), ∀x ∈ X.

In [] Luong and Thuan obtained a more general result. For this, let Φ denote all func-
tions φ : [,∞)→ [,∞) which satisfy

(i) φ is continuous and nondecreasing,
(ii) φ(t) =  if and only if t = ,
(iii) φ(t + s) ≤ φ(t) + φ(s), ∀t, s ∈ (,∞].

Again, let Ψ denote all functions ψ : (,∞] → (,∞] which satisfy limt→r ψ(t) >  for all
r >  and limt→+ ψ(t) = .
The main theoretical results of Luong and Thuan, in [] is the following.

Theorem . ([]) Let (X,≤) be a partially ordered set and suppose there is a metric d
on X such that (X,d) is a complete metric space. Let F : X × X → X be a mapping having
the mixed monotone property on X such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d(x,u) + d(y, v)

)
–ψ

(
d(x,u) + d(y, v)



)
()

for all x, y,u, v ∈ X with x ≥ u and y ≤ v, where ψ ∈ Ψ and φ ∈ Φ . If there exist x, y ∈ X
such that x ≤ F(x, y) and y ≥ F(y,x). Suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn ≤ x for all n,
(ii) if a nonincreasing sequence {yn} → y, then y≥ yn for all n,

then there exist x, y ∈ X such that F(x, y) = x and F(y,x) = y.
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Motivated by the above theorems, we introduce the concept of the proximal mixed
monotone property and of a proximally coupled weak (ψ ,φ) contraction on A. We also
explore the existence and uniqueness of coupled best proximity points in the setting of
partially ordered metric spaces. Further, we attempt to give the generalization of Theo-
rem ..
Let X be a nonempty set such that (X,d) is a metric space. Unless otherwise specified, it

is assumed throughout this section that A and B are nonempty subsets of the metric space
(X,d); the following notions are used subsequently:

d(A,B) := inf
{
d(x, y) : x ∈ A and y ∈ B

}
,

A =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
.

In [], the authors discussed sufficient conditions which guarantee the nonemptiness of
A and B. Also, in [], the authors proved that A is contained in the boundary of A.
Moreover, the authors proved that A is contained in the boundary of A in the setting of
normed linear spaces.

Definition . Let (X,d,≤) be a partially ordered metric space and A, B are nonempty
subsets of X. Amapping F : A×A → B is said to have proximal mixedmonotone property
if F(x, y) is proximally nondecreasing in x and is proximally nonincreasing in y, that is, for
all x, y ∈ A

x ≤ x,
d(u,F(x, y)) = d(A,B),
d(u,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ u ≤ u

and

y ≤ y,
d(u,F(x, y)) = d(A,B),
d(u,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ u ≤ u

where x,x, y, y,u,u,u,u ∈ A.

One can see that, if A = B in the above definition, the notion of the proximal mixed
monotone property reduces to that of the mixed monotone property.

Lemma. Let (X,d,≤) be a partially orderedmetric space andA,B are nonempty subsets
of X.Assume A is nonempty.Amapping F : A×A → B has the proximal mixedmonotone
property with F(A ×A) ⊆ B whenever x, x, x, y, y in A such that

x ≤ x and y ≥ y,
d(x,F(x, y)) = d(A,B),
d(x,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ x ≤ x. ()
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Proof By hypothesis F(A × A) ⊆ B, therefore F(x, y) ∈ B. Hence there exists x∗
 ∈ A

such that

d
(
x∗
 ,F(x, y)

)
= d(A,B). ()

Using F is proximal mixed monotone (in particular F is proximally nondecreasing in x) to
() and (), we get

x ≤ x,
d(x,F(x, y)) = d(A,B),
d(x∗

 ,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ x ≤ x∗

 . ()

Analogously, using the fact that F is proximal mixed monotone (in particular F is proxi-
mally nonincreasing in y) to () and (), we get

y ≤ y,
d(x,F(x, y)) = d(A,B),
d(x∗

 ,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ x∗

 ≤ x. ()

From () and (), one can conclude the x ≤ x. Hence the proof. �

Lemma. Let (X,d,≤) be a partially orderedmetric space andA,B are nonempty subsets
of X. Assume A is nonempty. A mapping F : A × A → B has proximal mixed monotone
property with F(A ×A) ⊆ B whenever x, x, y, y, y in A such that

x ≤ x and y ≥ y,
d(y,F(y,x)) = d(A,B),
d(y,F(y,x)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ y ≥ y. ()

Proof The proof is the same as Lemma .. �

Definition . Let (X,d,≤) be a partially ordered metric space and A, B are nonempty
subsets of X. A mapping F : A×A→ B is said to be proximally coupled weak (ψ ,φ) con-
traction on A, whenever

x ≤ x and y ≥ y,
d(u,F(x, y)) = d(A,B),
d(u,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭

�⇒ φ
(
d(u,u)

) ≤ 

φ
(
d(x,x) + d(y, y)

)
–ψ

(
d(x,x) + d(y, y)



)
, ()

where x,x, y, y,u,u ∈ A.

One can see that, if A = B in the above definition, the notion of a proximally coupled
weak (ψ ,φ) contraction on A reduces to that of a coupled weak (ψ ,φ) contraction. Let us
recall the notion of the P-property: The pair (A,B) of nonempty subsets of a metric space
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(X,d) with A = ∅. is said to have the P-property if and only if

d(x, y) = d(A,B),
d(x, y) = d(A,B)

}
�⇒ (

d(x,x) = d(y, y)
)
, ()

where x,x ∈ A and y, y ∈ B. It is interesting to note that if the pair (A,B) considered
in the above definition has the P-property, then the mapping F in Theorem . satisfies
the inequality ().

2 Coupled best proximity point theorems
Let (X,d,≤) be a partially ordered completemetric space endowed with the product space
X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v)≤ (x, y) ⇐⇒ x≥ u, y ≤ v.

Theorem . Let (X,≤,d) be a partially ordered complete metric space. Let A and B be
nonempty closed subsets of the metric space (X,d) such that A = ∅. Let F : A × A → B
satisfy the following conditions.

(i) F is a continuous proximally coupled weak (ψ ,φ) contraction on A having the
proximal mixed monotone property on A such that F(A ×A) ⊆ B.

(ii) There exist elements (x, y) and (x, y) in A ×A such that

d
(
x,F(x, y)

)
= d(A,B) with x ≤ x and

d
(
y,F(y,x)

)
= d(A,B) with y ≥ y.

Then there exists (x, y) ∈ A×A such that d(x,F(x, y)) = d(A,B) and d(y,F(y,x)) = d(A,B).

Proof By hypothesis there exist elements (x, y) and (x, y) in A ×A such that

d
(
x,F(x, y)

)
= d(A,B) with x ≤ x and

d
(
y,F(y,x)

)
= d(A,B) with y ≥ y.

Because of the fact that F(A ×A) ⊆ B, there exists an element (x, y) in A ×A such
that

d
(
x,F(x, y)

)
= d(A,B) and

d
(
y,F(y,x)

)
= d(A,B).

Hence from Lemma . and Lemma ., we obtain x ≤ x and y ≥ y.
Continuing this process, we can construct the sequences (xn) and (yn) in A such that

d
(
xn+,F(xn, yn)

)
= d(A,B), ∀n ∈N with x ≤ x ≤ x ≤ · · · ≤ xn ≤ xn+ ≤ · · · ()

and

d
(
yn+,F(yn,xn)

)
= d(A,B), ∀n ∈N with y ≥ y ≥ y ≥ · · · ≥ yn ≥ yn+ ≥ · · · . ()

Then d(xn,F(xn–, yn–)) = d(A,B), d(xn+,F(xn, yn)) = d(A,B) and also we have xn– ≤ xn,
yn– ≥ yn, ∀n ∈ N. Now using the fact that F is a proximally coupled weak (ψ ,φ) contrac-
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tion on A we get

φ
(
d(xn,xn+)

) ≤ 

φ
(
d(xn–,xn) + d(yn–, yn)

)
–ψ

(
d(xn–,xn) + d(yn–, yn)



)
, ∀n ∈N. ()

Similarly

φ
(
d(yn, yn+)

) ≤ 

φ
(
d(yn–, yn) + d(xn–,xn)

)
–ψ

(
d(yn–, yn) + d(xn–,xn)



)
, ∀n ∈N. ()

Adding () and (), we get

φ
(
d(xn,xn+)

)
+ φ

(
d(yn, yn+)

) ≤ φ
(
d(xn–,xn) + d(yn–, yn)

)
– ψ

(
d(xn–,xn) + d(yn–, yn)



)
. ()

By the property (iii) of φ we have

φ
(
d(xn,xn+) + d(yn, yn+)

) ≤ φ
(
d(xn,xn+)

)
+ φ

(
d(yn, yn+)

)
. ()

From () and (), we get

φ
(
d(xn,xn+) + d(yn, yn+)

) ≤ φ
(
d(xn–,xn) + d(yn–, yn)

)
– ψ

(
d(xn–,xn) + d(yn–, yn)



)
. ()

Using the fact that φ is nondecreasing, we get

d(xn,xn+) + d(yn, yn+) ≤ d(xn–,xn) + d(yn–, yn). ()

Set δn = d(xn,xn+) + d(yn, yn+); then the sequence (δn) is decreasing. Therefore, there is
some δ ≥  such that

lim
n→∞ δn = lim

n→∞
[
d(xn,xn+) + d(yn, yn+)

]
= δ. ()

We shall show that δ = . Suppose, to the contrary, that δ > . Then taking the limit as
n → ∞ on both sides of () and having in mind that we assume limt→r ψ(t) >  for all
r >  and φ is continuous, we have

φ(δ) = lim
n→∞φ(δn) ≤ lim

n→∞φ(δn–) – ψ
(

δn–



)
= φ(δ) –  lim

n→∞ψ

(
δn–



)
< φ(δ),

a contradiction. Thus δ = , that is,

lim
n→∞ δn = lim

n→∞
[
d(xn+,xn) + d(yn+, yn)

]
= . ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/107
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Now we prove that (xn) and (yn) are Cauchy sequences. Assume that at least one of the
sequences (xn) or (yn) is not a Cauchy sequence. This implies that limn,m→∞ d(xn,xm)� 
or limn,m→∞ d(yn, ym)� , and, consequently,

lim
n,m→∞

[
d(xn,xm) + d(yn, ym)

]
� .

Then there exists ε >  for whichwe can find subsequences (xn(k)), (xm(k)) of (xn) and (yn(k)),
(ym(k)) of (yn) such that n(k) is the smallest index for which n(k) >m(k) > k,

[
d(xn(k),xm(k)) + d(yn(k), ym(k))

] ≥ ε. ()

This means that

d(xn(k)–,xm(k)) + d(yn(k)–, ym(k)) < ε. ()

Using (), (), and the triangle inequality, we have

ε ≤ rk := d(xn(k),xm(k)) + d(yn(k), ym(k))

≤ d(xn(k),xn(k)–) + d(xn(k)–,xm(k)) + d(yn(k), yn(k)–) + d(yn(k)–, ym(k))

≤ d(xn(k),xn(k)–) + d(yn(k), yn(k)–) + ε.

Letting k → ∞ and using (), we obtain

lim
k→∞

rk = lim
k→∞

[
d(xn(k),xm(k)) + d(yn(k), ym(k))

]
= ε. ()

By the triangle inequality

rk = d(xn(k),xm(k)) + d(yn(k), ym(k))

≤ d(xn(k),xn(k)+) + d(xn(k)+,xm(k)+) + d(xm(k)+,xm(k))

+ d(yn(k), yn(k)+) + d(yn(k)+, ym(k)+) + d(ym(k)+, ym(k))

= δn(k) + δm(k) + d(xn(k)+,xm(k)+) + d(yn(k)+, ym(k)+).

Using the property of φ, we obtain

φ(rk) = φ
(
δn(k) + δm(k) + d(xn(k)+,xm(k)+) + d(yn(k)+, ym(k)+)

)
≤ φ(δn(k)) + φ(δm(k)) + φ

(
d(xn(k)+,xm(k)+)

)
+ φ

(
d(yn(k)+, ym(k)+)

)
. ()

Since xn(k) ≥ xm(k) and yn(k) ≤ ym(k), using the fact that F is a proximally coupledweak (ψ ,φ)
contraction on A we get

φ
(
d(xn(k)+,xm(k)+)

) ≤ 

φ
(
d(xn(k),xm(k)) + d(yn(k), ym(k))

)
–ψ

(
d(xn(k),xm(k)) + d(yn(k), ym(k))



)

≤ 

φ(rk) –ψ

(
rk


)
. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/107
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Similarly, we also have

φ
(
d(ym(k)+, yn(k)+)

) ≤ 

φ
(
d(ym(k), yn(k)) + d(xm(k),xn(k))

)
–ψ

(
d(ym(k), yn(k)) + d(xm(k),xn(k))



)

≤ 

φ(rk) –ψ

(
rk


)
. ()

From ()-(), we have

φ(rk) ≤ φ(δn(k) + δm(k)) + φ(rk) – ψ
(
rk


)
.

Letting k → ∞ and using () and (), we have

φ(ε) ≤ φ() + φ(ε) –  lim
k→∞

ψ

(
rk


)
= φ(ε) –  lim

k→∞
ψ

(
rk


)
< φ(ε),

a contradiction. This shows that (xn) and (yn) are Cauchy sequences. Since A is a closed
subset of a completemetric spaceX, these sequences have limits. Thus, there exist x, y ∈ A
such that xn → x and yn → y. Therefore (xn, yn) → (x, y) in A× A. Since F is continuous,
we have F(xn, yn) → F(x, y) and F(yn,xn) → F(y,x).
Hence the continuity of the metric function d implies that d(xn+,F(xn, yn)) → d(x,

F(x, y)) and d(yn+,F(yn,xn))→ d(y,F(y,x)). But from () and ()we see that the sequences
(d(xn+,F(xn, yn))) and (d(yn+,F(yn,xn))) are constant sequences with the value d(A,B).
Therefore, d(x,F(x, y)) = d(A,B) and d(y,F(y,x)) = d(A,B). This completes the proof of the
theorem. �

Corollary . Let (X,≤,d) be a partially ordered complete metric space. Let A be
nonempty closed subsets of the metric space (X,d). Let F : A×A → A satisfy the following
conditions.

(i) F is continuous having the proximal mixed monotone property and proximally
coupled weak (ψ ,φ) contraction on A.

(ii) There exist (x, y) and (x, y) in A×A such that x = F(x, y) with x ≤ x and
y = F(y,x) with y ≥ y.

Then there exists (x, y) ∈ A×A such that d(x,F(x, y)) =  and d(y,F(y,x)) = .

In what follows we prove that Theorem . is still valid for F not necessarily continuous,
assuming the following hypotheses in A. A has the property that

(xn) is a nondecreasing sequence in A such that xn → x; then xn ≤ x, ()

(yn) is a nonincreasing sequence in A such that yn → y; then y ≤ yn. ()

Theorem . Assume the conditions (), () and A is closed in X instead of continuity
of F in Theorem ., then the conclusion of Theorem . holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/107
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Proof Following the proof of Theorem ., there exist sequences (xn) and (yn) in A satis-
fying the following conditions:

d
(
xn+,F(xn, yn)

)
= d(A,B) with xn ≤ xn+,∀n ∈N and ()

d
(
yn+,F(yn,xn)

)
= d(A,B) with yn ≥ yn+,∀n ∈N. ()

Moreover, xn converges to x and yn converges to y in A. From () and (), we get xn ≤ x
and yn ≥ y. Note that the sequences (xn) and (yn) are in A and A is closed. Therefore,
(x, y) ∈ A × A. Since F(A × A) ⊆ B, there exist F(x, y) and F(y,x) in B. Therefore,
there exists (x∗, y∗) ∈ A ×A such that

d
(
x∗,F(x, y)

)
= d(A,B) and ()

d
(
y∗,F(y,x)

)
= d(A,B). ()

Since xn ≤ x and yn ≥ y. By using the fact that F is a proximally coupled weak (ψ ,φ) con-
traction on A for () and (), and also for () and (), we get

φ
(
d
(
xn+,x∗)) ≤ 


φ
(
d(xn,x) + d(yn, y)

)
–ψ

(
d(xn,x) + d(yn, y)



)
for all n and

φ
(
d
(
y∗, yn+

)) ≤ 

φ
(
d(y, yn) + d(x,xn)

)
–ψ

(
d(y, yn) + d(x,xn)



)
for all n.

Since xn → x and yn → y, by taking the limit on the above two inequalities, we get x =
x∗ and y = y∗. Hence, from () and (), we get d(x,F(x, y)) = d(A,B) and d(y,F(y,x)) =
d(A,B). �

Corollary . Assume the conditions () and () instead of continuity of F in Corol-
lary ., then the conclusion of Corollary . holds.

Now, we present an example where it can be appreciated that the hypotheses in The-
orem . and Theorem . do not guarantee uniqueness of the coupled best proximity
point.

Example . Let X = {(, ), (, ), (–, ), (,–)} ⊂ R
 and consider the usual order

(x, y) � (z, t) ⇔ x ≤ z and y≤ t.
Thus, (X,�) is a partially ordered set. Besides, (X,d) is a complete metric space con-

sidering d the Euclidean metric. Let A = {(, ), (, )} and B = {(,–), (–, )} be a closed
subset of X. Then d(A,B) =

√
, A = A and B = B. Let F : A × A → B be defined

as F((x,x), (y, y)) = (–x, –x). Then, it can be seen that F is continuous such that
F(A ×A) ⊆ B. The only comparable pairs of points in A are x � x for x ∈ A, hence the
proximal mixed monotone property and the proximally coupled weak (ψ ,φ) contraction
on A are satisfied trivially.
It can be shown that the other hypotheses of the theorem are also satisfied. However, F

has three coupled best proximity points, ((, ), (, )), ((, ), (, )), and ((, ), (, )).

One can prove that the coupled best proximity point is in fact unique, provided that the
product space A×A endowed with the partial order mentioned earlier has the following

http://www.fixedpointtheoryandapplications.com/content/2014/1/107
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property:

Every pair of elements has either a lower bound or an upper bound. ()

It is known that this condition is equivalent to the following.
For every pair of (x, y), (x∗, y∗) ∈ A×A, there exists (z, z) in A×A

that is comparable to (x, y) and
(
x∗, y∗). ()

Theorem . In addition to the hypothesis of Theorem . (resp. Theorem .), suppose
that for any two elements (x, y) and (x∗, y∗) in A ×A,

there exists (z, z) ∈ A ×A such that

(z, z) is comparable to (x, y) and
(
x∗, y∗), ()

then F has a unique coupled best proximity point.

Proof From Theorem . (resp. Theorem .), the set of coupled best proximity points of
F is nonempty. Suppose that there exist (x, y) and (x∗, y∗) in A×A which are coupled best
proximity points. That is,

d
(
x,F(x, y)

)
= d(A,B),d

(
y,F(y,x)

)
= d(A,B) and

d
(
x∗,F

(
x∗, y∗)) = d(A,B),d

(
y∗,F

(
y∗,x∗)) = d(A,B).

We distinguish two cases.
Case : Suppose (x, y) is comparable. Let (x, y) is comparable to (x∗, y∗) with respect to the

ordering inA×A. Applying the fact that F is a proximally coupledweak (ψ ,φ) contraction
on A to d(x,F(x, y)) = d(A,B) and d(x∗,F(x∗, y∗)) = d(A,B), we get

φ
(
d
(
x,x∗)) ≤ 


φ
(
d
(
x,x∗) + d

(
y, y∗)) –ψ

(
d(x,x∗) + d(y, y∗)



)
. ()

Similarly, one can prove that

φ
(
d
(
y, y∗)) ≤ 


φ
(
d
(
y, y∗) + d

(
x,x∗)) –ψ

(
d(y, y∗) + d(x,x∗)



)
. ()

Adding () and (), we get

φ
(
d
(
x,x∗)) + φ

(
d
(
y, y∗)) ≤ φ

(
d
(
x,x∗) + d

(
y, y∗)) – ψ

(
d(x,x∗) + d(y, y∗)



)
. ()

By the property (iii) of φ, we have

φ
(
d
(
x,x∗) + d

(
y, y∗)) ≤ φ

(
d
(
x,x∗)) + φ

(
d
(
y, y∗)). ()

From () and (), we have

φ
(
d
(
x,x∗)) + φ

(
d
(
y, y∗)) ≤ φ

(
d
(
x,x∗)) + φ

(
d
(
y, y∗)) – ψ

(
d(x,x∗) + d(y, y∗)



)
; ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/107
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this implies that ψ( d(x,x
∗)+d(y,y∗)
 ) ≤ , and using the property of ψ , we get d(x,x∗) +

d(y, y∗) = , hence x = x∗ and y = y∗.
Case : Suppose (x, y) is not comparable. Let (x, y) be not comparable to (x∗, y∗), then

there exists (u, v) ∈ A ×A which is comparable to (x, y) and (x∗, y∗).
Since F(A ×A)⊆ B, there exists (u, v) ∈ A ×A such that d(u,F(u, v)) = d(A,B)

and d(v,F(v,u)) = d(A,B). Without loss of generality assume that (u, v) ≤ (x, y) (i.e.,
x ≥ u and y ≤ v). Note that (u, v) ≤ (x, y) implies that (y,x) ≤ (v,u). From Lemma .
and Lemma ., we get

u ≤ x and v ≥ y,
d(u,F(u, v)) = d(A,B),
d(x,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ u ≤ x

and

u ≤ x and v ≥ y,
d(v,F(v,u)) = d(A,B),
d(y,F(y,x)) = d(A,B)

⎫⎪⎬
⎪⎭ �⇒ v ≥ y.

From the above two inequalities, we obtain (u, v) ≤ (x, y). Continuing this process, we get
sequences (un) and (vn) such that d(un+,F(un, vn)) = d(A,B) and d(vn+,F(vn,un)) = d(A,B)
with (un, vn) ≤ (x, y), ∀n ∈ N. By using the fact that F is a proximally coupled weak (ψ ,φ)
contraction on A, we get

un ≤ x and vn ≥ y,
d(un+,F(un, vn)) = d(A,B),
d(x,F(x, y)) = d(A,B)

⎫⎪⎬
⎪⎭

�⇒ φ
(
d(un+,x)

) ≤ 

φ
(
d(un,x) + d(vn, y)

)
–ψ

(
d(un,x) + d(vn, y)



)
. ()

Similarly, we can prove that

y ≤ vn and x ≥ un,
d(y,F(y,x)) = d(A,B),
d(vn+,F(vn,un)) = d(A,B)

⎫⎪⎬
⎪⎭

�⇒ φ
(
d(y, vn+)

) ≤ 

φ
(
d(y, vn) + d(x,un)

)
–ψ

(
d(y, vn) + d(x,un)



)
. ()

Adding () and (), we obtain

φ
(
d(un+,x)

)
+ φ

(
d(y, vn+)

) ≤ φ
(
d(un,x) + d(vn, y)

)
– ψ

(
d(un,x) + d(vn, y)



)
. ()

But φ(d(un+,x) + d(y, vn+))≤ φ(d(un+,x)) + φ(d(y, vn+)), hence

φ
(
d(un+,x) + d(y, vn+)

) ≤ φ
(
d(un,x) + d(vn, y)

)
– ψ

(
d(un,x) + d(vn, y)



)

≤ φ
(
d(un,x) + d(vn, y)

)
. ()
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Using the fact that φ is nondecreasing, we get

d(un+,x) + d(y, vn+) ≤ d(un,x) + d(vn, y). ()

That is, the sequence (d(un,x) + d(y, vn)) is decreasing. Therefore, there exists α ≥  such
that

lim
n→∞

[
d(un,x) + d(y, vn)

]
= α. ()

We shall show that α = . Suppose, to the contrary, that α > . Taking the limit as n→ ∞
in (), we have

φ(α)≤ φ(α) –  lim
n→∞ψ

(
d(un,x) + d(vn, y)



)
< φ(α),

a contradiction. Thus, α = , that is,

lim
n→∞

[
d(un,x) + d(y, vn)

]
=  ()

so that un → x and vn → y. Analogously, one can prove that un → x∗ and vn → y∗.
Therefore, x = x∗ and y = y∗. Hence the proof. �

The following result, due to Theorem . in Luong and Thuan [] follows by taking
A = B.

Corollary . In addition to the hypothesis of Corollary . (resp. Corollary .), suppose
that for any two elements (x, y) and (x∗, y∗) in A×A,

there exists (z, z) ∈ A×A such that (z, z) is comparable to (x, y) and
(
x∗, y∗), ()

then F has a unique coupled fixed point.
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