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Abstract
The purpose of this research is to study a finite family of the set of solutions of
variational inequality problems and to prove a convergence theorem for the set of
such problems and the sets of fixed points of nonexpansive and strictly
pseudo-contractive mappings in a uniformly convex and 2-uniformly smooth Banach
space. We also prove a fixed point theorem for finite families of nonexpansive and
strictly pseudo-contractive mappings in the last section.
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1 Introduction
Let E and E∗ be a Banach space and the dual space of E, respectively, and let C be a
nonempty closed convex subset of E. Throughout this paper, we use ‘→’ and ‘⇀’ to denote
strong and weak convergence, respectively. The duality mapping J : E → E∗ is defined by
J(x) = {x∗ ∈ E∗ : 〈x,x∗〉 = ‖x‖,‖x‖ = ‖x∗‖} for all x ∈ E.

Definition . Let E be a Banach space. Then a function δX : [, ] → [, ] is said to be
the modulus of convexity of E if

δE(ε) = inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}
.

If δE(ε) >  for all ε ∈ (, ], then E is uniformly convex.
The function ρE :R+ →R

+ is said to be the modulus of smoothness of E if

ρE(t) = sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ = t
}
, t ≥ .

If limt→
ρE(t)
t = , then E is uniformly smooth. It is well known that every uniformly

smooth Banach space is smooth and if E is smooth, then J is single-valued which is de-
noted by j. A Banach space E is said to be q-uniformly smooth if there exists a fixed con-
stant c >  such that ρE(t)≤ ctq. If E is q-uniformly smooth, then q ≤  and E is uniformly
smooth.
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A mapping T : C → C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.
T is called η-strictly pseudo-contractive if there exists a constant η ∈ (, ) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – η
∥∥(I – T)x – (I – T)y

∥∥ (.)

for every x, y ∈ C and for some j(x – y) ∈ J(x – y). It is clear that (.) is equivalent to the
following:

〈
(I – T)x – (I – T)y, j(x – y)

〉 ≥ η
∥∥(I – T)x – (I – T)y

∥∥ (.)

for every x, y ∈ C and for some j(x – y) ∈ J(x – y). Let C and D be nonempty subsets of
a Banach space E such that C is nonempty closed convex and D ⊂ C, then a mapping
P : C → D is sunny (see []) provided P(x + t(x – P(x))) = P(x) for all x ∈ C and t ≥ ,
whenever x + t(x – P(x)) ∈ C. A mapping P : C → D is called a retraction if Px = x for all
x ∈D. Furthermore, P is a sunny nonexpansive retraction fromC ontoD if P is a retraction
from C onto D which is also sunny and nonexpansive.
A subset D of C is called a sunny nonexpansive retract of C (see []) if there exists a

sunny nonexpansive retraction from C onto D.
An operator A of C into E is said to be accretive if there exists j(x– y) ∈ J(x– y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ , ∀x, y ∈ C.

A mapping A : C → E is said to be α-inverse strongly accretive if there exist j(x – y) ∈
J(x – y) and α >  such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

A mapping A : C → E is called γ -strongly accretive if there exist j(x – y) ∈ J(x – y) and a
constant γ >  such that

〈
Ax –Ay, j(x – y)

〉 ≥ γ ‖x – y‖

for all x, y ∈ C.
In , Aoyama et al. [] studied the variational inequality problem in Banach spaces.

Such a problem is to find a point x∗ ∈ C such that for some j(x – x∗) ∈ J(x – x∗),

〈
Ax∗, j

(
x∗ – x

)〉 ≥ , ∀x ∈ C. (.)

The set of solutions of (.) in Banach spaces is denoted by S(C,A), that is,

S(C,A) =
{
u ∈ C :

〈
Au, J(v – u)

〉 ≥ ,∀v ∈ C
}
. (.)

They introduced the strong convergence theorem involving the variational inequality
problem in Banach spaces as follows.
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Theorem . Let E be a uniformly convex and -uniformly smooth Banach space, and let
C be a nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from
E onto C, let α > , and let A be an α-inverse strongly accretive operator of C into E with
S(C,A) �= ∅. Suppose x = x ∈ C and {xn} is given by

xn+ = αnxn + ( – αn)QC(xn – λnAxn)

for every n = , , . . . ,where {λn} is a sequence of positive real numbers and {αn} is a sequence
in [, ]. If {λn} and {αn} are chosen so that λn ∈ [a, α

K ] for some a >  and αn ∈ [b, c] for
some b, c with  < b < c < , then {xn} converges weakly to some element z of S(C,A), where
K is the -uniformly smoothness constant of E.

Many authors have studied the variational inequality problem; see, for example, [–].
The variational inequality problem is an important tool for studying fixed point theory,
equilibrium problems, optimization problems and partial differential equations with ap-
plications principally drawn from mechanics; see, e.g., [, ].
Recently, Kangtunyakarn [] introduced a new mapping in uniformly convex and

-smooth Banach spaces to prove a strong convergence theorem for finding a common
element of the set of fixed points of finite families of nonexpansive and strictly pseudo-
contractive mappings and two sets of solutions of variational inequality problems as fol-
lows.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E
onto C, and let A, B be α and β-inverse strongly accretive mappings of C into E, respec-
tively. Let {Si}Ni= be a finite family of κi-strict pseudo-contractions of C into itself, and let
{Ti}Ni= be a finite family of nonexpansive mappings of C into itself with F =

⋂N
i= F(Si) ∩⋂N

i= F(Ti) ∩ S(C,A) ∩ S(C,B) �= ∅ and κ = min{κi : i = , , . . . ,N} with K ≤ κ , where K
is the -uniformly smooth constant of E. Let αj = (αj

,α
j
,α

j
) ∈ I × I × I , where I = [, ],

α
j
 + α

j
 + α

j
 = , α

j
 ∈ (, ], α

j
 ∈ [, ] and α

j
 ∈ (, ) for all j = , , . . . ,N . Let SA be the

SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and α,α, . . . ,αN . Let {xn} be the se-
quence generated by x, u ∈ C and

xn+ = αnu + βnxn + γnQC(I – aA)xn + δnQC(I – bB)xn + ηnSAxn, ∀n≥ , (.)

where {αn}, {βn}, {γn}, {δn}, {ηn} ∈ [, ] and αn+βn+γn+δn+ηn =  and satisfy the following
conditions:

(i) limn→∞ αn = ,
∑∞

n= αn =∞;
(ii) {γn}, {δn}, {ηn} ⊆ [c,d] ⊂ (, ) for some c,d > ;
(iii)

∑∞
n= |βn+ –βn|,∑∞

n= |γn+ –γn|,∑∞
n= |δn+ –δn|,∑∞

n= |ηn+ –ηn|,∑∞
n= |αn+ –αn| <

∞;
(iv)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(v) a ∈ (, α

K ) and b ∈ (, β

K ).
Then {xn} converges strongly to z =QFu, where QF is the sunny nonexpansive retraction
of C onto F .
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For every i = , , . . . ,N , let Ai : C →H be a mapping. From (.), we introduce the com-
bination of variational inequality problems in Banach spaces as follows: to find a point
x∗ ∈ C such that for some j(x – x∗) ∈ J(x – x∗),

〈 N∑
i=

aiAix∗, j
(
x∗ – x

)〉 ≥  (.)

for all x ∈ C and ai is a positive real number for all i = , , . . . ,N with
∑N

i= ai = . The set
of solutions of (.) in Banach spaces is denoted by S(C,

∑N
i= aiAi), that is,

S

(
C,

N∑
i=

aiAi

)
=

{
u ∈ C :

〈 N∑
i=

aiAiu, J(v – u)

〉
≥ ,∀v ∈ C

}
. (.)

By using (.) we prove the convergence theorem for a finite family of the set of solutions
of variational inequality problems and two sets of fixed points of nonlinear mappings in a
Banach space.

2 Preliminaries
The following lemmas are important tools to prove our main results in the next section.

Lemma . (See []) Let E be a real -uniformly smooth Banach space with the best
smooth constant K . Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ ‖Ky‖

for any x, y ∈ E.

Lemma . (See []) Let X be a uniformly convex Banach space and Br = {x ∈ X : ‖x‖ ≤
r}, r > .Then there exists a continuous, strictly increasing and convex function g : [,∞] →
[,∞], g() =  such that

‖αx + βy + γ z‖ ≤ α‖x‖ + β‖y‖ + γ ‖z‖ – αβg
(‖x – y‖)

for all x, y, z ∈ Br and all α,β ,γ ∈ [, ] with α + β + γ = .

Remark. For every i = , , . . . ,N , if xi ∈ Br(), fromLemma.,we have ‖∑N
i= aixi‖ ≤∑N

i= ai‖xi‖, where ai ∈ [, ] and
∑N

i= ai = .

Lemma . (See []) Let C be a nonempty closed convex subset of a smooth Banach
space E. Let QC be a sunny nonexpansive retraction from E onto C, and let A be an ac-
cretive operator of C into E. Then, for all λ > ,

S(C,A) = F
(
QC(I – λA)

)
.

Lemma . (See []) Let r > . If E is uniformly convex, then there exists a continuous,
strictly increasing and convex function g : [,∞) → [,∞), g() =  such that for all x, y ∈
Br() = {x ∈ E : ‖x‖ ≤ r} and for any α ∈ [, ], we have ‖αx + ( – α)y‖ ≤ α‖x‖ + ( –
α)‖y‖ – α( – α)g(‖x – y‖).

http://www.fixedpointtheoryandapplications.com/content/2014/1/108


Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:108 Page 5 of 16
http://www.fixedpointtheoryandapplications.com/content/2014/1/108

Lemma . (See []) Let C be a closed and convex subset of a real uniformly smooth
Banach space E, and let T : C → C be a nonexpansive mapping with a nonempty fixed
point F(T). If {xn} ⊂ C is a bounded sequence such that limn→∞ ‖xn –Txn‖ = , then there
exists a unique sunny nonexpansive retraction QF(T) : C → F(T) such that

lim sup
n→∞

〈
u –QF(T)u, J(xn –QF(T)u)

〉 ≤ 

for any given u ∈ C.

Lemma . (See []) Let {sn} be a sequence of nonnegative real numbers satisfying sn+ ≤
( – αn)sn + δn, ∀n≥ , where {αn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= αn =∞,

() lim supn→∞
δn
αn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ sn = .

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space E. Let T,
T andT be three nonexpansivemappings fromC into itself with F(T)∩F(T)∩F(T) �= ∅.
Define a mapping S by

Sx = αTx + βTx + γTx, ∀x ∈ C,

where α, β , γ is a constant in (, ) and α + β + γ = . Then S is a nonexpansive mapping
and F(S) = F(T)∩ F(T)∩ F(T).

Lemma . Let C be a nonempty closed convex subset of a real smooth Banach space E.
For every i = , , . . . ,N , let Ai : C → E be an αi-strongly accretive mapping with α =
mini=,,...,N {αi} and ⋂N

i= S(C,Ai) �= ∅. Then S(C,
∑N

i= aiAi) =
⋂N

i= S(C,Ai),where ai ∈ [, ]
and

∑N
i= ai = .

Proof It is easy to see that
⋂N

i= S(C,Ai) ⊆ S(C,
∑N

i= aiAi). Let x ∈ S(C,
∑N

i= aiAi) and
x∗ ∈ ⋂N

i= S(C,Ai). Then there exist j(y – x∗) ∈ J(y – x∗) and j(y – x) ∈ J(y – x) such that

〈 N∑
i=

aiAix, j(y – x)

〉
≥ , ∀y ∈ C (.)

and
〈 N∑

i=

aiAix∗, j
(
y – x∗)〉 ≥ , ∀y ∈ C. (.)

From (.), (.) and x,x∗ ∈ C, we have

〈 N∑
i=

aiAix, j
(
x∗ – x

)〉 ≥  (.)

and
〈 N∑

i=

aiAix∗, j
(
x – x∗)〉 ≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/108
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From (.) and (.), we have

 ≤
〈 N∑

i=

aiAix –
N∑
i=

aiAix∗, j
(
x∗ – x

)〉

= –

〈 N∑
i=

aiAix∗ –
N∑
i=

aiAix, j
(
x∗ – x

)〉

= –
N∑
i=

ai
〈
Aix∗ –Aix, j

(
x∗ – x

)〉 ≤ –
N∑
i=

aiαi
∥∥x∗ – x

∥∥

≤ –
N∑
i=

aiα
∥∥x∗ – x

∥∥ = –α
∥∥x∗ – x

∥∥.

It implies that x∗ = x, that is, x ∈ ⋂N
i= S(C,Ai). Therefore S(C,

∑N
i= aiAi) ⊆ ⋂N

i= S(C,Ai).
�

3 Main results
Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Ai : C → E be αi-strongly accretive and Li-Lipschitz
continuous with α =mini=,,...,N αi and L =maxi=,,...,N Li. Let T : C → C be a nonexpansive
mapping and S : C → C be an η-strictly pseudo-contractive mapping with K ≤ η,where K
is the -uniformly smooth constant of E. Assume that F = F(T)∩ F(S)∩ ⋂N

i= S(C,Ai) �= ∅.
Let {xn} be a sequence generated by u, x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
zn = cnxn + ( – cn)Sxn,

yn = bnxn + ( – bn)Tzn,

xn+ = αnu + βnxn + γnQC(I – λ
∑N

i= aiAi)yn, ∀n≥ ,

(.)

where ai ∈ [, ] for all i = , , . . . ,N and {αn}, {βn}, {γn} ⊆ [, ] with αn +βn + γn =  for all
n ∈N satisfy the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < a ≤ βn,γn, cn,bn ≤ b <  for some a,b > , ∀n ∈ N and

∑N
i= ai = ;

(iii) ≤ λK ≤ α

L
;

(iv)
∑∞

n= |αn+ – αn|,∑∞
n= |βn+ – βn|,∑∞

n= |bn+ – bn|,∑∞
n= |cn+ – cn| <∞.

Then {xn} converges strongly to z =QFu, where QF is the sunny nonexpansive retraction
of C onto F .

Proof First, we show that
∑N

i= aiAi is an α

L
-inverse strongly monotone mapping.

Let x, y ∈ C, there exists j(x – y) ∈ J(x – y) and

〈 N∑
i=

aiAix –
N∑
i=

aiAiy, j(x – y)

〉
=

N∑
i=

ai
〈
Aix –Aiy, j(x – y)

〉

≥
N∑
i=

aiαi‖x – y‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/108
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≥
N∑
i=

ai
αi

Li
‖Aix –Aiy‖

≥ α

L
N∑
i=

ai‖Aix –Aiy‖

≥ α

L

∥∥∥∥∥
N∑
i=

aiAix –
N∑
i=

aiAiy

∥∥∥∥∥


. (.)

Next, we show that QC(I – λ
∑N

i= aiAi) is a nonexpansive mapping. From (.), we have

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
x –QC

(
I – λ

N∑
i=

aiAi

)
y

∥∥∥∥∥


≤
∥∥∥∥∥x – y – λ

( N∑
i=

aiAix –
N∑
i=

aiAiy

)∥∥∥∥∥


≤ ‖x – y‖ – λ

〈 N∑
i=

aiAix –
N∑
i=

aiAiy, j(x – y)

〉

+ Kλ

∥∥∥∥∥
N∑
i=

ai(Aix –Aiy)

∥∥∥∥∥


≤ ‖x – y‖ – λ
α

L

∥∥∥∥∥
N∑
i=

aiAix –
N∑
i=

aiAiy

∥∥∥∥∥


+ Kλ

∥∥∥∥∥
N∑
i=

ai(Aix –Aiy)

∥∥∥∥∥


= ‖x – y‖

– λ
(

α

L
–Kλ

)∥∥∥∥∥
N∑
i=

aiAix –
N∑
i=

aiAiy

∥∥∥∥∥


≤ ‖x – y‖

for all x, y ∈ C. Let x∗ ∈F , we have

∥∥xn+ – x∗∥∥ =

∥∥∥∥∥αn
(
u – x∗) + βn

(
xn – x∗) + γn

(
QC

(
I – λ

N∑
i=

aiAi

)
yn – x∗

)∥∥∥∥∥
≤ αn

∥∥u – x∗∥∥ + βn
∥∥xn – x∗∥∥ + γn

∥∥yn – x∗∥∥
= αn

∥∥u – x∗∥∥ + βn
∥∥xn – x∗∥∥ + γn

∥∥bn(xn – p) + ( – bn)
(
Tzn – x∗)∥∥

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥
+ γn

(
bn‖xn – p‖ + ( – bn)

∥∥zn – x∗∥∥)
= αn

∥∥u – x∗∥∥ + βn
∥∥xn – x∗∥∥ + γn

(
bn‖xn – p‖

+ ( – bn)
∥∥cn(xn – x∗) + ( – cn)

(
Sxn – x∗)∥∥)

. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/108
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Since S is a strictly pseudo-contractive mapping, we have

∥∥cn(xn – x∗) + ( – cn)
(
Sxn – x∗)∥∥ =

∥∥xn – x∗ + ( – cn)(Sxn – xn)
∥∥

≤ ∥∥xn – x∗∥∥ + ( – cn)
〈
Sxn – xn, j

(
xn – x∗)〉

+ K( – cn)‖Sxn – xn‖

=
∥∥xn – x∗∥∥ – ( – cn)

〈
(I – S)xn, j

(
xn – x∗)〉

+ K( – cn)
∥∥(I – S)xn

∥∥

≤ ∥∥xn – x∗∥∥ – ( – cn)η
∥∥(I – S)xn

∥∥

+ K( – cn)
∥∥(I – S)xn

∥∥

≤ ∥∥xn – x∗∥∥ – ( – cn)η
∥∥(I – S)xn

∥∥

+ K( – cn)
∥∥(I – S)xn

∥∥

≤ ∥∥xn – x∗∥∥ – ( – cn)
(
η –K)∥∥(I – S)xn

∥∥

≤ ∥∥xn – x∗∥∥. (.)

From (.) and (.), we have

∥∥xn+ – x∗∥∥ ≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
(
bn‖xn – p‖

+ ( – bn)
∥∥cn(xn – x∗) + ( – cn)

(
Sxn – x∗)∥∥)

≤ αn
∥∥u – x∗∥∥ + ( – αn)

∥∥xn – x∗∥∥
≤ max

{∥∥u – x∗∥∥,∥∥x – x∗∥∥}
.

From induction we can conclude that {xn} is bounded and so are {yn}, {zn}.
Next, we show that limn→∞ ‖xn+ – xn‖ = .
For every n ∈N, we have

‖xn+ – xn‖ =

∥∥∥∥∥αnu + βnxn + γnQC

(
I – λ

N∑
i=

aiAi

)
yn

– αn–u – βn–xn– – γn–QC

(
I – λ

N∑
i=

aiAi

)
yn–

∥∥∥∥∥
≤ |αn – αn–|‖u‖ + βn‖xn – xn–‖ + |βn – βn–|‖xn–‖

+ γn

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn –QC

(
I – λ

N∑
i=

aiAi

)
yn–

∥∥∥∥∥
+ |γn – γn–|

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn–

∥∥∥∥∥
≤ |αn – αn–|‖u‖ + βn‖xn – xn–‖ + |βn – βn–|‖xn–‖

+ γn‖yn – yn–‖ + |γn – γn–|
∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn–

∥∥∥∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/108
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From the definition of yn, we have

‖yn – yn–‖ =
∥∥bnxn + ( – bn)Tzn – bn–xn– – ( – bn–)Tzn–

∥∥
≤ bn‖xn – xn–‖ + |bn – bn–|‖xn–‖ + ( – bn)‖Tzn – Tzn–‖

+ |bn – bn–|‖Tzn–‖
≤ bn‖xn – xn–‖ + |bn – bn–|‖xn–‖ + ( – bn)‖zn – zn–‖

+ |bn – bn–|‖Tzn–‖. (.)

From the definition of zn, we have

‖zn – zn–‖ =
∥∥cnxn + ( – cn)Sxn – cn–xn– – ( – cn–)Sxn–

∥∥
=

∥∥cn(xn – xn–) + (cn – cn–)xn– + ( – cn)(Sxn – Sxn–)

+ (cn– – cn)Sxn–
∥∥

≤ ∥∥cn(xn – xn–) + ( – cn)(Sxn – Sxn–)
∥∥ + |cn – cn–|‖xn–‖

+ |cn – cn–|‖Sxn–‖. (.)

Since S is an η-strictly pseudo-contractive mapping, we have

∥∥cn(xn – xn–) + ( – cn)(Sxn – Sxn–)
∥∥

=
∥∥xn – xn– – ( – cn)

(
(I – S)xn – (I – S)xn–

)∥∥

≤ ‖xn – xn–‖ – ( – cn)
〈
(I – S)xn – (I – S)xn–, j(xn – xn–)

〉
+ K( – cn)

∥∥(I – S)xn – (I – S)xn–
∥∥

≤ ‖xn – xn–‖

– ( – cn)η
∥∥(I – S)xn – (I – S)xn–

∥∥

+ K( – cn)
∥∥(I – S)xn – (I – S)xn–

∥∥

≤ ‖xn – xn–‖

– ( – cn)
(
η –K)∥∥(I – S)xn – (I – S)xn–

∥∥

≤ ‖xn – xn–‖. (.)

From (.), (.) and (.), we have

‖yn – yn–‖ ≤ bn‖xn – xn–‖ + |bn – bn–|‖xn–‖ + ( – bn)‖zn – zn–‖
+ |bn – bn–|‖Tzn–‖

≤ bn‖xn – xn–‖ + |bn – bn–|‖xn–‖ + ( – bn)
(∥∥cn(xn – xn–)

+ ( – cn)(Sxn – Sxn–)
∥∥ + |cn – cn–|‖xn–‖

+ |cn – cn–|‖Sxn–‖
)
+ |bn – bn–|‖Tzn–‖

≤ bn‖xn – xn–‖ + |bn – bn–|‖xn–‖
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+ ( – bn)
(‖xn – xn–‖ + |cn – cn–|‖xn–‖

+ |cn – cn–|‖Sxn–‖
)
+ |bn – bn–|‖Tzn–‖

≤ ‖xn – xn–‖ + |bn – bn–|‖xn–‖ + |cn – cn–|‖xn–‖
+ |cn – cn–|‖Sxn–‖ + |bn – bn–|‖Tzn–‖. (.)

From (.) and (.), we have

‖xn+ – xn‖ ≤ |αn – αn–|‖u‖ + βn‖xn – xn–‖ + |βn – βn–|‖xn–‖

+ γn‖yn – yn–‖ + |γn – γn–|
∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn–

∥∥∥∥∥
≤ ( – αn)‖xn – xn–‖ + |βn – βn–|‖xn–‖ + |αn – αn–|‖u‖

+ |γn – γn–|
∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn–

∥∥∥∥∥
+ |bn – bn–|‖xn–‖ + |cn – cn–|‖xn–‖
+ |cn – cn–|‖Sxn–‖ + |bn – bn–|‖Tzn–‖

≤ ( – αn)‖xn – xn–‖ + |βn – βn–|M + |αn – αn–|M
+ |γn – γn–|M + |bn – bn–|M + |cn – cn–|M,

where M = maxn∈N{‖xn‖,‖u‖,‖QC(I – λ
∑N

i= aiAi)yn‖,‖Sxn‖,‖Tzn‖}. Applying Lem-
ma ., conditions (i) and (iv), we have

lim
n→∞‖xn+ – xn‖ = . (.)

Next, we show that

lim
n→∞

∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
xn – xn

∥∥∥∥∥ = lim
n→∞‖xn – Txn‖ = lim

n→∞‖xn – Sxn‖ = .

From the definition of xn, we have

∥∥xn+ – x∗∥∥ =

∥∥∥∥∥αn
(
u – x∗) + βn

(
xn – x∗) + γn

(
QC

(
I – λ

N∑
i=

aiAi

)
yn – x∗

)∥∥∥∥∥


≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – x∗

∥∥∥∥∥


– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥yn – x∗∥∥

– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)
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= αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥bn(xn – x∗) + ( – bn)

(
Tzn – x∗)∥∥

– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥

+ γn
(
bn

∥∥xn – x∗∥∥ + ( – bn)
∥∥zn – x∗∥∥ – bn( – bn)g

(‖xn – Tzn‖
))

– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥

+ γn
(
bn

∥∥xn – x∗∥∥ + ( – bn)
(∥∥xn – x∗∥∥

– ( – cn)
(
η –K)‖Sxn – xn‖

)
– bn( – bn)g

(‖xn – Tzn‖
))

– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥

+ γn
∥∥xn – x∗∥∥ – γn( – bn)( – cn)

(
η –K)‖Sxn – xn‖

– γnbn( – bn)g
(‖xn – Tzn‖

)
– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

≤ αn
∥∥u – x∗∥∥ +

∥∥xn – x∗∥∥

– γn( – bn)( – cn)
(
η –K)‖Sxn – xn‖

– γnbn( – bn)g
(‖xn – Tzn‖

)
– βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)
.

It implies that

γn( – bn)( – cn)
(
η –K)‖Sxn – xn‖ + γnbn( – bn)g

(‖xn – Tzn‖
)

+ βnγng

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

≤ αn
∥∥u – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

≤ αn
∥∥u – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖.

From (.), conditions (i) and (ii), we have

lim
n→∞‖Sxn – xn‖ = lim

n→∞ g

(∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
)

= lim
n→∞ g

(‖xn – Tzn‖
)
= . (.)
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From the properties of g and g, we have

lim
n→∞

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥ = lim
n→∞‖xn – Tzn‖ = . (.)

From (.) and the definition of zn, we have

lim
n→∞‖zn – xn‖ = . (.)

From (.) and the definition of yn, we have

lim
n→∞‖yn – xn‖ = . (.)

From (.) and (.), we have

lim
n→∞‖yn – zn‖ = . (.)

From (.) and (.), we have

lim
n→∞

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – yn

∥∥∥∥∥ = . (.)

Then

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
xn – xn

∥∥∥∥∥ ≤
∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
xn –QC

(
I – λ

N∑
i=

aiAi

)
yn

∥∥∥∥∥
+

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥
≤ ‖xn – yn‖ +

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
yn – xn

∥∥∥∥∥.
From (.) and (.), we have

lim
n→∞

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
xn – xn

∥∥∥∥∥ = . (.)

Since

‖Txn – xn‖ ≤ ‖Txn – Tzn‖ + ‖Tzn – xn‖
≤ ‖xn – zn‖ + ‖Tzn – xn‖,

from (.) and (.), we have

lim
n→∞‖Txn – xn‖ = . (.)
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Define the mapping G : C → C by Gx = αQC(I – λ
∑N

i= aiAi)x + βTx + γWx, where Wx =
cx + ( – c)Sx for all x ∈ C and α,β ,γ , c ∈ [, ] with α + β + γ = . We show that W is a
nonexpansive mapping. Let x, y ∈ C, we have

‖Wx –Wy‖ =
∥∥c(x – y) + ( – c)(Sx – Sy)

∥∥

=
∥∥x – y – ( – c)

(
(I – S)x – (I – S)y

)∥∥

≤ ‖x – y‖ – ( – c)
〈
(I – S)x – (I – S)y, j(x – y)

〉
+ K( – c)

∥∥(I – S)x – (I – S)y
∥∥

≤ ‖x – y‖ – ( – c)η
∥∥(I – S)x – (I – S)y

∥∥

+ K( – c)
∥∥(I – S)x – (I – S)y

∥∥

≤ ‖x – y‖ – ( – c)
(
η –K)∥∥(I – S)x – (I – S)y

∥∥

≤ ‖x – y‖.

ThenW is a nonexpansive mapping. It is easy to see that the mapping G is nonexpansive.
From the definition ofW , we have

F(S) = F(W ). (.)

From (.) Lemmas ., . and the definition of G, we have F(G) = F(T) ∩ F(S) ∩⋂N
i= S(C,Ai) =F . Since

‖Gxn – xn‖ ≤ α

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
xn – xn

∥∥∥∥∥ + β‖Txn – xn‖ + γ ‖Wxn – xn‖

= α

∥∥∥∥∥QC

(
I – λ

N∑
i=

aiAi

)
xn – xn

∥∥∥∥∥ + β‖Txn – xn‖ + γ ( – c)‖Sxn – xn‖,

and (.), (.) and (.), we have

lim
n→∞‖Gxn – xn‖ = . (.)

From Lemma ., we have

lim sup
n→∞

〈
u – z, j(xn – z)

〉 ≤ , (.)

where z =QFu.
Finally, we show that the sequence {xn} converges strongly to z =QFu. From the defi-

nition of xn, we have

‖xn+ – z‖ =

∥∥∥∥∥αn(u – z) + βn(xn – z) + γn

(
QC

(
I – λ

N∑
i=

aiAi

)
yn – z

)∥∥∥∥∥


≤
∥∥∥∥∥βn(xn – z) + γn

(
QC

(
I – λ

N∑
i=

aiAi

)
yn – z

)∥∥∥∥∥
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+ αn
〈
u – z, j(xn+ – z)

〉
≤ ( – αn)‖xn – z‖ + αn

〈
u – z, j(xn+ – z)

〉
.

From Lemma . and condition (i), we can conclude that the sequence {xn} converges
strongly to z =QFu. This completes the proof. �

The following corollary is a direct sequel of Theorem .. Therefore, we omit the proof.

Corollary . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E
onto C. Let A : C → E be α-strongly accretive and L-Lipschitz continuous. Let T : C → C
be a nonexpansive mapping and S : C → C be an η-strictly pseudo-contractive map-
ping with K ≤ η, where K is the -uniformly smooth constant of E. Assume that F =
F(T)∩ F(S)∩ S(C,A) �= ∅. Let {xn} be the sequence generated by u,x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
zn = cnxn + ( – cn)Sxn,

yn = bnxn + ( – bn)Tzn,

xn+ = αnu + βnxn + γnQC(I – λA)yn, ∀n≥ ,

where {αn}, {βn}, {γn} ⊆ [, ] with αn + βn + γn =  for all n ∈N satisfy the following condi-
tions:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < a ≤ βn,γn, cn,bn ≤ b < , for some a,b > , ∀n ∈N;
(iii) ≤ λK ≤ α

L ;
(iv)

∑∞
n= |αn+ – αn|,∑∞

n= |βn+ – βn|,∑∞
n= |bn+ – bn|,∑∞

n= |cn+ – cn| <∞.
Then {xn} converges strongly to z =QFu, where QF is the sunny nonexpansive retraction
of C onto F .

4 Applications
Using the concepts of the SA-mapping and Theorem ., we prove the strong convergence
theorem for the set of fixed points of two finite families of nonlinear mappings. We need
the following definition and lemma to prove our result.

Definition . [] Let C be a nonempty convex subset of a real Banach space. Let {Si}Ni=
and {Ti}Ni= be two finite families of the mappings of C into itself. For each j = , , . . . ,N ,
let αj = (αj

,α
j
,α

j
) ∈ I × I × I , where I ∈ [, ] and α

j
 + α

j
 + α

j
 = . Define the mapping

SA : C → C as follows:

U = T = I,

U = T
(
α
SU + α

U + α
I

)
,

U = T
(
α
 SU + α

U + α
I

)
,

U = T
(
α
 SU + α

U + α
I

)
,

...
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UN– = TN–
(
αN–
 SN–UN– + αN–

 UN– + αN–
 I

)
,

SA =UN = TN
(
αN
 SNUN– + αN

 UN– + αN
 I

)
.

This mapping is called the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and
α,α, . . . ,αN .

Lemma . [] Let C be a nonempty closed convex subset of a -uniformly smooth
and uniformly convex Banach space. Let {Si}Ni= be a finite family of κi-strict pseudo-
contractions of C into itself, and let {Ti}Ni= be a finite family of nonexpansive mappings
of C into itself with

⋂N
i= F(Si)∩

⋂N
i= F(Ti) �= ∅ and κ =min{κi : i = , , . . . ,N} with K ≤ κ ,

where K is the -uniformly smooth constant of E. Let αj = (αj
,α

j
,α

j
) ∈ I × I × I , where

I = [, ], α
j
 + α

j
 + α

j
 = , α

j
 ∈ (, ], α

j
 ∈ [, ] and α

j
 ∈ (, ) for all j = , , . . . ,N . Let

SA be the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and α,α, . . . ,αN . Then
F(SA) =

⋂N
i= F(Si)∩

⋂N
i= F(Ti) and SA is a nonexpansive mapping.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction from E
onto C. For every i = , , . . . ,N , let Ai : C → E be αi-strongly accretive and Li-Lipschitz
continuous with α = mini=,,...,N αi and L = maxi=,,...,N Li. Let S : C → C be an η-strictly
pseudo-contractive mapping with K ≤ η,where K is the -uniformly smooth constant of E.
Let {Si}Ni= be a finite family of κi-strict pseudo-contractions of C into itself, and let {Ti}Ni=
be a finite family of nonexpansive mappings of C into itself with κ =min{κi : i = , , . . . ,N}
with K ≤ κ . Let αj = (αj

,α
j
,α

j
) ∈ I × I × I , where I = [, ], αj

 + α
j
 + α

j
 = , αj

 ∈ (, ],
α
j
 ∈ [, ] and α

j
 ∈ (, ) for all j = , , . . . ,N . Let SA be the SA-mapping generated by

S,S, . . . ,SN , T,T, . . . ,TN and α,α, . . . ,αN . Assume that F = F(S) ∩ ⋂N
i= S(C,Ai) ∩⋂N

i= F(Si)∩
⋂N

i= F(Ti) �= ∅. Let {xn} be the sequence generated by u,x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
zn = cnxn + ( – cn)Sxn,

yn = bnxn + ( – bn)SAzn,

xn+ = αnu + βnxn + γnQC(I – λ
∑N

i= aiAi)yn, ∀n≥ ,

(.)

where ai ∈ [, ] for all i = , , . . . ,N and {αn}, {βn}, {γn} ⊆ [, ] with αn +βn + γn =  for all
n ∈N and satisfy the following conditions:

(i) limn→∞ αn =  and
∑∞

n= αn =∞;
(ii)  < a ≤ βn,γn, cn,bn ≤ b <  for some a,b > , ∀n ∈ N and

∑N
i= ai = ;

(iii) ≤ λK ≤ α

L
;

(iv)
∑∞

n= |αn+ – αn|,∑∞
n= |βn+ – βn|,∑∞

n= |bn+ – bn|,∑∞
n= |cn+ – cn| <∞.

Then {xn} converges strongly to z =QFu, where QF is the sunny nonexpansive retraction
of C onto F .

Proof From Lemma . and Theorem ., we can reach the desired conclusion. �
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