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Abstract
In this paper, we introduce the concept of ordered metric spaces with respect to
some ordered vector spaces, which is an extension of the normal metric spaces. Then
we investigate some properties of ordered metric spaces and provide several fixed
point theorems. As applications we prove several existence theorems for best ordered
approximation.
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1 Introduction
Let S be a nonempty set and let X be a Banach space. Let K be a closed convex cone in X.
The conemetric defined on S, with respect to the coneK inX, is a bifunction d : S×S → X,
for which the following properties hold:
(a) d(u, v) ∈ K and d(u, v) =  if and only if u = v;
(b) d(u, v) = d(v,u);
(c) d(u, s) + d(s, v) – d(u, v) ∈ K , for all s,u, v ∈ S.

Note that if we take X to be the set of real numbers and take K = [,∞), then any cone
metric space with respect to K turns out to be a normal metric space. Hence the concept
of vector metric spaces extends the notion of the normal metric spaces.
In the field of nonlinear analysis, vectormetric spaces have been widely studied bymany

authors (see []). Similarly to ordinary analysis, the concepts of continuity and of the Lips-
chitz condition for mapping on vector metric spaces have been introduced and have been
applied for proving the existence of fixed points (see [–]).
Since the definition of vector metrics is based on closed convex cones in normed vector

spaces, and every closed convex cone in a vector space can induce a partial order on it,
which equips this vector space to be an ordered vector space, it is natural to generalize the
concept of cone metric spaces to ordered metric spaces (see Section ).
This paper is organized as follows: in Section , we recall some concepts of ordered

vector spaces and order-convergence of sequences; in Section , we introduce the concept
of ordered metric spaces and investigate some properties; in Section , several fixed point
theorems on ordered metric spaces are provided; in Section , we extend the concept of
best ordered approximation and prove several existence theorems by applying the fixed
point theorems provided in Section .
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2 Preliminaries
In this section, we recall some concepts of ordered sets and some properties of order-
limits. For more details, the readers are referred to [–]. Then we extend the concept of
order-continuity of mappings on ordered vector spaces and provide some properties that
are similar to those of ordinary limits in analysis. These properties will be frequently used
throughout this paper.
In this paper, all vector spaces considered are real vector spaces. A vector space X

equipped with a partial order �X (that is, �X is a reflexive, antisymmetric, and transi-
tive binary relation on X) is called a partially ordered vector space, or is simply called an
ordered vector space, which is written as (X,�X), if the following (order-linearity) prop-
erties hold:
(v) x�X y implies x + z�X y + z, for all x, y, z ∈ X .
(v) x�X y implies αx�X αy, for all x, y ∈ X and α ≥ .

A sequence {xn} in an ordered vector space (X,�X) is said to be order-decreasing, which
is denoted by xn ↓, wheneverm > n implies xm �X xn. An order-decreasing sequence {xn}
is said to order-converge to x, if xn ↓ and

∧{xn} exists with ∧{xn} = x, which is denoted
by {xn} ↓ x. The meaning of xn ↑ is analogously defined for an order-increasing sequence
{xn}; and {xn} ↑ x, if and only if xn ↑ and

∨{xn} exists with ∨{xn} = x.

Lemma . Let {xn}, {yn} be two sequences in an arbitrary ordered vector space (X,�X).
The following properties hold:
. xn ↓ x implies axn ↓ ax, for every a≥ .
. xn ↓ x and yn ↓ y imply (xn + yn) ↓ (x + y).
. xn ↓ x and yn ↓ y imply (axn + byn) ↓ (ax+ by), for any nonnegative numbers a and b.

Definition . An ordered vector space (X,�X) is said to be generalized Archimedean if
and only if for any given element x�X  and any decreasing sequence of positive numbers
{an} with limit , we have

anx ↓ .

Let X be a vector space and K a closed convex cone in X. Define a binary relation �K

on X as follows:

x�K y if and only if x – y ∈ K , for every x, y in X. ()

Then �K is a partial order on X, which satisfies conditions (v) and (v), and therefore
(X,�K ) is an ordered vector space, which is said to be induced by the closed convex coneK .

Lemma . Every ordered vector space induced by a closed convex cone is generalized
Archimedean.

The proof of Lemma . is straightforward and it is omitted here.
In order theory, the order completeness of a poset is as important as the topological

counterpart of a topological space in analysis. Recall that a subset C of an ordered vector
space (X,�X) is said to be chain complete if and only if for any chain {xα} in X,

∨{xα}
exists. Next, we define a special case of chain-complete subsets.

http://www.fixedpointtheoryandapplications.com/content/2014/1/109


Li et al. Fixed Point Theory and Applications 2014, 2014:109 Page 3 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/109

Definition . Let (X,�X) be an ordered vector space and C a subset of X. C is said to be
(sequentially) conditionally chain complete if and only if for any sequence {xn} in C, the
following properties hold:
. If xn ↓ and {xn} has a lower bound, then ∧{xn} exists satisfying xn ↓ ∧{xn} ∈ C.
. If xn ↑ and {xn} has an upper bound, then

∨{xn} exists satisfying xn ↑ ∨{xn} ∈ C.

3 Orderedmetric spaces
We extend the concept of cone metric to the following ordered metric with respect to
ordered vector spaces.

Definition . Let S be a nonempty set and let (X,�X) be an ordered vector space. A bi-
function dX : S× S → X is called an ordered metric on S, with respect to X if, for every u,
v, and s in S, it satisfies the following conditions:
(m) dX(u, v)�X  with dX(u, v) = , if and only if u = v;
(m) dX(u, v) = dX(v,u);
(m) dX(u, v)�X dX(u, s) + dX(s, v).

Then (S,dX) is called an ordered metric space, and dX(u, v) is called the ordered distance
between u and v, with respect to the ordered vector space (X,�X).

We offer some examples below to demonstrate that the class of ordered metric spaces
is a very broad one. First, note that (R,≥) is an ordered vector space with the ordinal real
order ≥. Then we have the following results.

Example . The metric defined on a metric space is an ordered metric; and therefore,
every metric space is an ordered metric space.

Example . Let B be a Banach space with the norm ‖ · ‖ and let d be the metric on B
induced by ‖ · ‖. Then d is an ordered metric; and therefore, every Banach space with the
metric induced by its norm is an ordered metric space (where the metric d is defined by
d(u, v) = ‖u – v‖, for every u, v ∈ B).

Example . Every cone metric on a nonempty set is an ordered metric; and therefore,
every cone metric space is an ordered metric space.

As amatter of fact, if an ordered vector space (X,�K ) is induced by a closed convex cone
K in X, then from (), d(u, v) ∈ K if and only if dX(u, v) �K ; and therefore, the ordered
metrics on sets extend the concept of cone metrics.

Example . Let (X,�X) be a Riesz space (vector lattice). Then the bifunction dX : X ×
X → X induced by the (ordered) absolute values onX as dX(x, y) = |x–y|, for every x, y ∈ X,
is an ordered metric on X. Hence every Riesz space with the ordered metric induced by
its (ordered) absolute values is an ordered metric space.

Here, as usual, for any x ∈ X, x+ = x ∨ , x– = (–x) ∨  and |x| = x+ ∨ x– are called the
(ordered) positive part, negative part, and (ordered) absolute value of x, respectively.
In real analysis, an arbitrary metric on a metric space is a function with positive values

in R, which is totally ordered with respect to the ordinal order of real numbers. This prop-
erty implies that the distances of pairs of elements are comparable. But in ordered metric
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space, the ordered distances of pairs of elements are not always comparable. Thus, this
idea provides us a useful tool to study some problems, which have outcomes in a poset.

Definition . A sequence {sn} in an ordered metric space (S,dX) is said to order-
converge to an element s ∈ S, which is denoted by sn o–→s, whenever there exists another
sequence {xn} in (X,�X) with xn ↓  such that

dX(sn, s)�X xn holds, for each n. ()

In this case, s is called an order-limit of the sequence {sn}.

Lemma . If a sequence {sn} in an ordered metric space (S,dX) is order-convergent, then
its order-limit is unique.

Proof Let u and v be order-limits of {sn}. Then there are sequences {xn} and {zn} in X with
xn ↓  and zn ↓  such that

dX(sn,u)�X xn and dX(sn, v)�X zn, for each n.

From condition (m), they imply

dX(u, v)�X dX(sn,u) + dX(sn, v)�X xn + zn, for each n.

FromPart  of Lemma.,
∧
(xn+zn) = . It implies �X dX(u, v)�X .Hence dX(u, v) = .

From condition (m) in the definition of ordered metric, it follows that v = u. �

Definition . A sequence {sn} in an ordered metric space (S,dX) is called an order-
Cauchy sequence, whenever there exists another sequence {xn} in (X,�X) with xn ↓ 
such that

dX(sm, sn)�X xn holds, for each n, and for everym ≥ n. ()

Definition. Anorderedmetric space (S,dX) is said to be order-metric complete, when-
ever every order-Cauchy sequence in S is order-convergent.

Definition . Let (S,dX) and (T ,dY ) be ordered metric spaces, with respect to the or-
dered vector spaces (X,�X) and (Y ,�Y ), respectively. A mapping f : S → T is said to be
sequentially or σ -continuous, whenever, for any sequence {sn} ⊂ S, sn o–→s, with respect to
the orderedmetric dX on S, implies f (sn) o–→f (s), with respect to the orderedmetric dY onT .

4 Several fixed point theorems on orderedmetric spaces
Theorem. Let (S,dX) be an order-metric complete orderedmetric space,with respect to
a generalized Archimedean ordered vector space (X,�X). Let f : S → S be a self-mapping.
Suppose there is a positive number α < , such that

dX
(
f (s), f (s)

)
�X αdX(s, s), for all s, s ∈ S. ()

Then f has a unique fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/109
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Proof Taking any s ∈ S, we define a sequence {f n(s)} ⊂ S. From condition (), it follows
that

dX
(
f n+(s), f n(s)

)
�X αdX

(
f n(s), f n–(s)

)
, for all positive integer n.

Iterating the above order-inequality yields

dX
(
f n+(s), f n(s)

)
�X αndX

(
f (s), s

)
, for all positive integer n.

By property (m) of order-metric and properties of partial orders in ordered vector spaces,
for any positive integer i, we get

dX
(
f n+i(s), f n(s)

)
�X αn+idX

(
f (s), s

)
+ αn+i–dX

(
f (s), s

)

+ · · · + αndX
(
f (s), s

)

= αn(αi + αi– + · · · + 
)
dX

(
f (s), s

)

�X αn

 – α
dX

(
f (s), s

)
, for all positive integer n.

Take

xn =
αn

 – α
dX

(
f (s), s

)
, for all positive integer n. ()

Since (X,�X) is generalized Archimedean, from Definition ., it yields xn ↓ . It implies
that {f n(s)} is an order-Cauchy sequence in (S,dX), which is an order-metric complete
ordered metric space. Hence, {f n(s)} has an order-limit, say s∗ ∈ C; that is,

f n(s) o–→s∗.

Then, from Definition ., there is a sequence {yn} ⊂ X, with yn ↓  such that

dX
(
f n(s), s∗

)
�X yn, for each n.

Since the mapping f : S → S has the ordered Lipschitzian property given by () with xn
defined in (), from the above order inequality, it yields

dX
(
f
(
s∗

)
, s∗

)
�X dX

(
f n+(s), f

(
s∗

))
+ dX

(
f n+(s), s∗

)

�X αdX
(
f n(s), s∗

)
+ dX

(
f n+(s), s∗

)

�X ( + α)yn, for each n.

From Lemma ., yn ↓  implies ( + α)yn ↓ . So we obtain

�X dX
(
f
(
s∗

)
, s∗

)
�X

∧{
( + α)yn

}
= .

It implies

dX
(
f
(
s∗

)
, s∗

)
= .
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It follows that f (s∗) = s∗; and therefore, s∗ is a fixed point of f . The uniqueness of the
fixed point of f immediately follows from condition () of the mapping f and condition
(m) of the ordered metric. �

From Example ., any arbitrary Riesz space (vector lattice) (X,�X) is an orderedmetric
space with the orderedmetric induced by its (ordered) absolute values. Then the following
result immediately follows from Theorem ..

Corollary . Let S be a nonempty order-metric complete subset of a generalized
Archimedean Riesz space. Let f : S → S be a self-mapping. Suppose there is a positive num-
ber α < , such that

∣∣f (s) – f (s)
∣∣ �X |s – s|, for all s, s ∈ S.

Then f has a unique fixed point.
Next we generalize the concept of order-increasing of mappings on ordered vector

spaces.
(S,dX) and (T ,dY ) be ordered metric spaces, with respect to ordered vector spaces

(X,�X) and (Y ,�Y ), respectively. A set-valuedmapping F : S → T \∅ is said to be ordered
metric increasing upward from S to T \∅, whenever there are elements s′ ∈ S, t′ ∈ T such
that, for any given s, s ∈ S, dX(s, s′) �X dX(s, s′) implies that, for every t ∈ F(s), there
is t ∈ F(s) satisfying dY (t, t′) �Y dY (t, t′) (with respect to points s′ and t′). F is said to
be ordered metric increasing downward from S to T \ ∅ (with respect to points s and t),
whenever for any given s, s ∈ S, dX(s, s′) �X dX(s, s′) implies that, for every t ∈ F(s),
there is t ∈ F(s) satisfying dY (t, t′)�Y dY (t, t′). F is said to be ordered metric increas-
ing from S to T \ ∅ (with respect to points s′ and t′), whenever F is both ordered metric
increasing downward and ordered metric increasing upward. In particular, if S = T and
s′ = t′, then F is said to be ordered metric increasing (upward, downward) on S (with re-
spect to point s′).
A single-valued mapping f : S → T is said to be ordered metric increasing (decreas-

ing) with respect to elements s′ ∈ S, t′ ∈ T , whenever, for any given s, s ∈ S, dX(s, s′)�X

dX(s, s′) implies dY (f (s), t′)�Y dY (f (s), t′)(dY (f (s), t′)�Y dY (f (s), t′)).

Definition . Let (S,dX) be an ordered metric space with respect to an ordered vector
space (X,�X). (S,dX) is called a monodromy ordered metric space, with respect to an
element s′ ∈ S, whenever the map dX(·, s′) : S → X is one to one. Such an element s′ ∈ S is
called a monotonized point of the ordered metric space (S,dX).

Example . For an arbitrary positive integer n, let (Rn,�n) denote the ordered vector
space, where n is the coordinate ordering on the n-dimensional Euclidean space Rn. Let S
be a subset of the positive cone of (Rn,�n) containing the origin of Rn. Define an ordered
metric dn on S as: for any x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ S,

dn(x, y) =
(|x – y|, |x – y|, . . . , |xn – yn|

)
.

It follows that

dn(x, ) = x, for any x ∈ S.

http://www.fixedpointtheoryandapplications.com/content/2014/1/109
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It implies that the ordered metric space (S,dn) is a monodromy ordered metric space with
respect to its monotonized point  ∈ S.

Example . Let (X,�X) be a Riesz space and let the ordered metric dX on X be defined
in Example .. Similarly to Example ., we can see that every subset S of the positive
cone of X containing the origin of X is a monodromy ordered metric space with the same
metric dX on S and with respect to a monotonized point  ∈ S.

Recall that a nonempty subset A of a poset (P,�) is said to be inductive if every chain in
A has an upper bound in A. The next definition extends this concept.

Definition . A nonempty subset A of a poset (P,�) is said to be totally inductive in P
whenever, for any given chain {xα} ⊂ P, every element xβ ∈ {xα} has an upper bound in A
implies that the chain {xα} has an upper bound in A.

It is clear that every totally inductive subset of a poset is inductive. However, the inverse
may not true. The following lemma provides a sufficient condition for an inductive set to
be totally inductive.

Lemma. Let A be an inductive subset of a poset (P,�). If A has finite number ofmaximal
elements, then A is totally inductive.

Proof Take an arbitrary chain {xα} ⊂ P satisfying that every element xβ ∈ {xα} has an up-
per bound zβ ∈ A. We write the set of maximal elements of A by {u,u, . . . ,um} ⊂ A, for
some positive integer m. We claim that, for any given xβ ∈ {xα}, we must have

xβ � zβ � ui, for some i with ≤ i≤m. ()

To prove (), assume, by way of contradiction, that () does not hold for some xγ ∈ {xα}.
Then we define

E(zγ ) = {z ∈ A : z� zγ }.

Since zγ ∈ E(zγ ), we get E(zγ ) �= ∅. For any arbitrary chain C in E(zγ ) ⊂ A, it is also a chain
in A. It follows that the inductivity of A implies that C has an upper bound d ∈ A. It is
clear that d ∈ E(zγ ). Thus, it shows that d is an upper bound of C in E(zγ ), hence E(zγ )
is inductive. Using Zorn’s Lemma, E(zγ ) has a maximal element w of E(zγ ). In the case if
there is v ∈ A with v� w and w� v, then v ∈ E(zγ ) and w could not be a maximal element
in E(zγ ). It shows that w is also a maximal element of A. From the hypotheses that zγ does
not satisfy (), then the maximal element w /∈ {u,u, . . . ,um}. It is a contradiction to the
assumption that {u,u, . . . ,um} is the collection of all maximal elements of A. The claim
is proved.
Following (), a collection of subsets of C is recursively defined as below:

E =
{
x ∈ {xα} : x� u

}
;

E =
{
x ∈ {xα} \ E : x� u

}
;

http://www.fixedpointtheoryandapplications.com/content/2014/1/109
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E =
{
x ∈ {xα} \ (E ∪ E) : x� u

}
;

· · ·
Em– =

{
x ∈ {xα} \ (E ∪ E · · ·Em–) : x� um–

}
;

Em =
{
x ∈ {xα} \ (E ∪ E · · ·Em–) : x� um

}
.

By (), it follows that {E,E, . . . ,Em} is a partition of {xα} with some empty members.
Next we show that in {E,E, . . . ,Em}, there is one and only one nonempty member. To

this end, contrarily assume that there are two numbers  ≤ i < j ≤ m, such that Ei and Ej

both are nonempty. Then we take xα(i) ∈ Ei and xα(j) ∈ Ej. Since {xα} is a chain, which is
totally ordered, so wemust have either xα(i) � xα(j) or xα(j) � xα(i). It implies either xα(i) ∈ Ej

or xα(j) ∈ Ei. It is a contradiction to the fact that Ei ∩Ej = ∅. It proves that in {E,E, . . . ,Em},
there is a unique nonempty member. Thus, this lemma follows immediately. �

Theorem . Let (S,dX) be a monodromy ordered metric space with respect to an ordered
vector space (X,�X) and with a monotonized point s′ ∈ S. Suppose a set-valued mapping
F : S → S \ {∅} satisfies the following conditions:
. F is ordered metric increasing upward on S with respect to the point s′ ∈ S;
. For every s ∈ S, the set {dX(u, s′) : u ∈ F(s)} is a totally inductive subset of X ;
. The set

⋃
s∈S{dX(u, s′) : u ∈ F(s)} is a chain-complete subset of X ;

. There is an element s ∈ S such that dX(s, s′)�X dX(u, s′), for some u ∈ F(s).
Then F has a fixed point.

Proof We define the ordered metric image set for the given mapping F as follows:

A(F) =
{
dX

(
s, s′

)
: s ∈ S, there is u ∈ F(s) such that dX

(
s, s′

)
�X dX

(
u, s′

)}
.

From condition , dX(s, s′) ∈ A(F); and therefore, A(F) is a nonempty subset of X.
For any dX(s, s′) ∈ A(F), if u ∈ F(s) satisfying dX(s, s′)�X dX(u, s′), then from condition 

and u ∈ F(s), there is v ∈ F(u) such that dX(u, s′)�X dX(v, s′). It implies dX(u, s′) ∈ A(F). So
we get

dX
(
s, s′

) ∈ A(F) and u ∈ F(s) with dX
(
s, s′

)
�X dX

(
u, s′

)

⇒ dX
(
u, s′

) ∈ A(F). ()

Next, we show that A(F) is inductive.
For any given chain {xα} ⊂ A(F), suppose that xα = dX(sα , s′) with uα ∈ F(sα) such that

dX
(
sα , s′

)
�X dX

(
uα , s′

)
, for all α. ()

From condition ,
∨{dX(sα , s′)} exists and is in

⋃
s∈S{dX(u, s′) : u ∈ F(s)}. So there are ŝ ∈ S

and û ∈ F (̂s) such that

∨{
dX

(
sα , s′

)}
= dX

(̂
u, s′

)
. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/109
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It implies

dX
(
sα , s′

)
�X dX

(̂
u, s′

)
, for all α. ()

For every α, since uα ∈ F(sα), from condition , () implies that there is vα ∈ F (̂u) such
that

dX
(
uα , s′

)
�X dX

(
vα , s′

)
.

From (), we have

dX
(
sα , s′

)
�X dX

(
vα , s′

)
with vα ∈ F (̂u), for every α. ()

From condition , {dX(v, s′) : v ∈ F (̂u)} is a totally inductive subset of X. Then () implies
that the chain {dX(sα , s′)} has an upper bound in {dX(v, s′) : v ∈ F (̂u)}, which is denoted by
dX (̂v, s′) with v̂ ∈ F (̂u). Hence

dX
(
sα , s′

)
�X dX

(̂
v, s′

)
, v̂ ∈ F (̂u), for all α. ()

From (), it implies

dX (̂u, s) =
∨{

dX
(
sα , s′

)}
�X dX

(̂
v, s′

)
with v̂ ∈ F (̂u).

It follows that
∨{dX(sα , s′)} = dX (̂u, s′) ∈ A(F). It implies that the chain {dX(sα , s′)} has an

upper bound in A(F); and therefore, A(F) is inductive.
Applying Zorn’s lemma, A(F) has a maximal element, say dX(x∗, s′), for some s∗ ∈ S,

which satisfies

dX
(
s∗, s′

)
�X dX

(
u∗, s′

)
, for some u∗ ∈ F

(
s∗

)
. ()

From (), we have dX(u∗, s′) ∈ A(F). Since dX(s∗, s′) is amaximal element ofA(F), from (),
it implies that

dX
(
u∗, s′

)
= dX

(
s∗, s′

)
. ()

Since (S,dX) is monodromy with respect to this element s′ ∈ S, () implies that s∗ = u∗ ∈
F(s∗). Hence s∗ is a fixed point of F . �

Recall that every Riesz space (vector lattice) (X,�X) can be considered as an ordered
metric space with the ordered metric induced by its ordered absolute values. The positive
cone of (X,�X) is denoted by

X+ =
{
x ∈ X : x�X 

}
.

Let S be an arbitrary nonempty subset S of X+ containing . From Example ., (S,dX) is
a monodromy ordered metric space with respect to the ordered vector space (X,�X), and

http://www.fixedpointtheoryandapplications.com/content/2014/1/109
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with  ∈ S as a monotonized point. It satisfies, for any s ∈ S, dX(s, ) = s; and therefore, for
any s, s ∈ S, dX(s, ) �X dX(s, ) if and only if s �X s. Hence, if a set-valued mapping
F : S → S \ {∅} is ordered metric increasing upward, with respect to point , then it is
ordered increasing upward, that is, whenever for any given s, s ∈ S, s �X s implies that,
for every t ∈ F(s), there is t ∈ F(s) satisfying t �X t. As a consequence of Theorem.,
we have the following.

Corollary . Let (S,dX) be a nonempty subset of the positive cone of a Riesz space (X,�X),
which contains . Suppose a set-valued mapping F : S → S \ {∅} satisfies the following
conditions:
. F is ordered increasing upward on S;
. for every s ∈ S, the set F(s) is a totally inductive subset of X ;
. the set

⋃
s∈S F(s) is a chain-complete subset of X ;

. there is an element s ∈ S such that s �X u, for some u ∈ F(s).
Then F has a fixed point.

Remark . From Lemma ., Theorem . and Corollary . still hold if condition 
is, respectively, replaced by

′ For every s ∈ S, the set {dX(u, s′) : u ∈ F(s)}, or F(s), is an inductive subset of X with finite
number of maximal elements.

Considering single-valued mappings as special cases of set-valued mappings, the fol-
lowing result follows immediately from Theorem ..

Corollary . Let (S,dX) be amonodromy orderedmetric spacewith respect to an ordered
vector space (X,�X) and with a monotonized point s′ ∈ S. If a single-valued self-mapping
f on S satisfies the following conditions:
. f is ordered metric increasing on S with respect to the point s′ ∈ S;
. The set {dX(f (s), s′) : s ∈ S} is a chain-complete subset of X ;
. There is an element s ∈ S such that dX(s, s′)�X dX(f (s), s′).

Then f has a fixed point.

5 Applications to best ordered approximation problems
Since Fan [] proved a best approximation theorem by applying fixed point theorem on
normed linear spaces, many authors have extended this theorem to more general topo-
logical spaces and have provided applications to approximation theory (see [–]). As
applications of the fixed point theorems proved in previous section, in this section, we ex-
tend the concept of best approximation from metric spaces to ordered metric spaces and
give some best ordered approximation theorems.

Definition . Let (S,dX) be an ordered metric space with respect to an ordered vector
space (X,�X) and K a nonempty subset of S. Let f : K → S be a map. An element u ∈ K is
called a best ordered approximation of f on K , if it satisfies

dX
(
u, f (u)

)
=min

{
dX

(
s, f (u)

)
: s ∈ K

}
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/109


Li et al. Fixed Point Theory and Applications 2014, 2014:109 Page 11 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/109

where min{dX(s, f (u)) : s ∈ K} is the smallest (minimum) element of the set {dX(s, f (u)) :
s ∈ K} with respect to the ordering �X on X.

For any given single-valued map f : K → S, define a set-valued map Tf : K → K by

Tf (t) =
{
v ∈ K : dX

(
v, f (t)

)
=min

{
dX

(
s, f (t)

)
: s ∈ K

}}
, for all t ∈ K .

This mapping Tf is called the approximating mapping of the map f .
It is worthy to note that if (S,dX) is monodromy, then, for any given map f : K → S and

for t ∈ K , the value of its approximating mapping Tf (t) is either ∅ or a singleton.
As a consequence of Corollary ., we have the following.

Theorem . Let (S,dX) be a monodromy ordered metric space with respect to an ordered
vector space (X,�X) and with a monotonized point s′ ∈ S and K a nonempty order-metric
complete subset of S containing s′. Let f : K → S be a map. Suppose the approximating
mapping Tf of f satisfies the following conditions:
. Tf (s) �= ∅; and therefore it is a singleton, for every s ∈ K ;
. Tf is ordered metric increasing on K with respect to the point s′ ∈ K ;
. the set {dX(Tf (s′)) : s ∈ K} is a chain-complete subset of X ;
. there is an element s ∈ K such that dX(s, s′)�X dX(f (s), s′).

Then f has a best ordered approximation on K .

Proof Since s′ ∈ K , it is easily to see that (K ,dX) is also amonodromy orderedmetric space
with respect to an ordered vector space (X,�X) and with this monotonized points s′ ∈ S.
Condition  implies that the map Tf : K → S is well defined. From conditions - in this
theorem, the map Tf satisfies all conditions in Corollary .. Then it follows that Tf has
a fixed points s∗ = Tf (s∗). It implies

dX
(
s∗, f

(
s∗

))
=min

{
dX

(
s∗, f

(
s∗

))
: s ∈ K

}
.

Hence s∗ is a best ordered approximation of f on K . �

Theorem . Let (S,dX) be a monodromy ordered metric space, with respect to a general-
ized Archimedean ordered vector space (X,�X) and with a monotonized point s′ ∈ S and
K a nonempty order-metric complete subset of S containing s′. Let f : K → S be a map.
Suppose the approximating mapping Tf : K → K of f satisfies the following conditions:
. Tf (s) �= ∅, for every s ∈ K ;
. there is a positive number α < , such that dX(Tf (s),Tf (s))�X αdX(s, s), for all

s, s ∈ S.
Then f has a best ordered approximation on K .

Proof Since (S,dX) is monodromy, from condition , it implies that, for every t ∈ K , the
value of its approximating mapping Tf (t) is a singleton. Hence, we can consider Tf as a
single-valued map from K to K . By condition  of this theorem, Tf satisfies condition ()
in Theorem .. It follows that Tf has a fixed point. Similarly to the proof of Theorem .,
the fixed point of Tf is a best ordered approximation of f on K . �

http://www.fixedpointtheoryandapplications.com/content/2014/1/109
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Definition . Let (S,dX) be an ordered metric space with respect to an ordered vector
space (X,�X) and K a nonempty subset of S. Let f : K → S be a map. An element u ∈ K is
called an extended best ordered approximation of f on K , if it satisfies

dX
(
u, f (u)

) ∈Min
{
dX

(
s, f (u)

)
: s ∈ K

}
,

whereMin{dX(s, f (u)) : s ∈ K} is the set of minimal elements of the set {dX(s, f (u)) : s ∈ K}
with respect to the ordering �X on X.

It is clear that even in the case if (S,dX) is a monodromy, for any given map f : K → S
and for t ∈ K , the value of its approximating mapping Tf (t) may not be a singleton. As a
consequence of Theorem ., we have the following.

Theorem . Let (S,dX) be a monodromy ordered metric space with respect to an ordered
vector space (X,�X) and with a monotonized point s′ ∈ S and K a nonempty subset of S
containing s′. Let f : K → S be a map. Suppose the approximating mapping Tf : K → K of
f satisfies the following conditions:
. Tf (s) �= ∅, for every s ∈ K ;
. Tf is ordered metric increasing upward on K with respect to the point s′ ∈ K ;
. for every s ∈ K , the set {dX(u, s′) : u ∈ Tf (s)} is a totally inductive subset of X ;
. the set

⋃
s∈K {dX(u, s′) : u ∈ Tf (s)} is a chain-complete subset of X ;

. there is an element s ∈ K such that dX(s, s′)�X dX(u, s′), for some u ∈ Tf (s).
Then f has a best ordered approximation on K .
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