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Abstract
The purpose of this paper is to introduce a concept of Tf -orbitally lower
semi-continuous mappings which is more general than the concept of T -orbitally
lower semi-continuous mappings and continuous mappings and also prove
Mizoguchi-Takahashi’s type coincidence point theorems by using this concept.
Moreover, we show that the existence of common fixed points for
Mizoguchi-Takahashi’s type multi-valued mappings do not require the condition of
T -weakly commuting mappings. Finally, some invariant approximation results are
obtained as applications. Our results unify, extend, and complement several
well-known results.
MSC: 47H10; 54H25
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1 Introduction and preliminaries
Throughout this paper, we denote by N the set of all positive integers, by R the set of all
real numbers, and by R+ the set of all nonnegative real numbers.
Let (X,d) be a metric space. We denote by X the class of all nonempty subsets of X, by

K (X) the class of all nonempty compact subsets of X, by CL(X) the class of all nonempty
closed subsets of X, by CB(X) the class of all nonempty closed bounded subsets of X.
A functional H : CL(X) × CL(X) → R+ ∪ {+∞} is said to be the Pompeiu-Hausdorff gen-
eralized metric induced by d is given by

H(A,B) =

{
max{supa∈A d(a,B), supb∈B d(b,A)}, if the maximum exists;
+∞, otherwise,

for all A,B ∈ CB(X), where d(a,B) = inf{d(a,b) : b ∈ B} is the distance from a to B ⊆ X.

Remark . The following properties of the Pompeiu-Hausdorff generalized metric in-
duced by d are well known:
() H is a metric on CB(X).
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() If A,B ∈ CB(X) and q > , then, for all a ∈ A, there exists b ∈ B such that
d(a,b)≤ qH(A,B).

() (CB(X),H) is a complete metric space provided (X,d) is a complete metric space.

Definition . Let (X,d) be a metric space, f : X → X and T : X → X be mappings.
() A point x ∈ X is said to be a fixed point of f (resp., T ) if x = fx (resp., x ∈ Tx). The set

of all fixed points of f (resp., T ) is denoted by F(f ) (resp., F(T)).
() A point x ∈ X is said to be a coincidence point of f and T if fx ∈ Tx. The set of all

coincidence points of f and T is denoted by C(f ,T).
() A point x ∈ X is said to be a common fixed point of f and T if x = fx ∈ Tx. The set of

all common fixed points of f and T is denoted by F(f ,T).

Definition . Let (X,d) be a metric space, f : X → X and T : X → X be mappings.
() If, for any x ∈ X , there exists a sequence {xn} in X such that xn ∈ Txn– for all n ∈N,

then O(T ,x) := {x,x,x, . . .} is said to be an orbit of T .
() If, for any x ∈ X , there exists a sequence {fxn} in f (X) such that fxn ∈ Txn– for all

n ∈N, then Of (T ,x) := {fx, fx, fx, . . .} is said to be an f -orbit of T .

In , Nadler [] extended the Banach contraction principle tomulti-valuedmappings
as follows.

Theorem . (Nadler []) Let (X,d) be a complete metric space and T : X → CB(X) such
that

H(Tx,Ty) ≤ kd(x, y) (.)

for all x, y ∈ X, where k ∈ [, ). Then T has at least one fixed point.

Since the theory of multi-valuedmappings hasmany applications inmany areas, a num-
ber of authors have focused on the topic and have published some interesting fixed point
theorems in this frame. Following this trend, in , Reich [] extended Theorem . in
the following way.

Theorem . (Reich []) Let (X,d) be a complete metric space and T : X → K (X) be a
mapping satisfying

H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y) (.)

for all x, y ∈ X, where α : (,∞)→ [, ) is R-function, that is,

lim sup
x→t+

α(x) < 

for all t ∈ (,∞). Then T has at least one fixed point.

Furthermore, Reich [] also raised the following question in his work:
Can the range of T , that is, K (X), be replaced by CB(X) or CL(X)?
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In , Mizoguchi and Takahashi [] gave the positive answer for the conjecture of
Reich [], when the inequality holds also for t = , as follows.

Theorem . (Mizoguchi and Takahashi []) Let (X,d) be a complete metric space and
T : X → CB(X). Assume that

H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y) (.)

for all x, y ∈ X, where α : [,∞)→ [, ) is MT-function, that is,

lim sup
x→t+

α(x) < 

for all t ∈ [,∞). Then T has at least one fixed point.

Remark . It is well known that, if α : [,∞) → [, ) is a nondecreasing function or a
nonincreasing function, then α is aMT-function. Therefore, the class ofMT-functions is
a rich class and so this class has been investigated heavily by many authors.

In , Eldred et al. [] claimed that Theorem . is equivalent to Theorem . in the
following sense:
If amappingT : X → CB(X) satisfies (.), then there exists a nonempty complete subset

M of X satisfying the following:
() M is T-invariant, that is, Tx⊆ M for all x ∈M.
() T satisfies (.) for all x, y ∈M.
In the same year, Suzuki [] produced an example which shows that Mizoguchi-

Takahashi’s fixed point theorem for multi-valued mappings is a real generalization of
Nadler’s contraction principle. Since the primitive proof of Mizoguchi-Takahashi’s fixed
point theorem is quite difficult, Suzuki gave a very simple proof of Mizoguchi-Takahashi’s
theorem. Several authors devoted their attention to investigate its generalizations in vari-
ous different directions of theMizoguchi-Takahashi’s fixed point theorem (see [–] and
references therein).
In , Kamran [] extended the result of Mizoguchi and Takahashi [] for closed

multi-valued mappings and proved a fixed point theorem by using the concept of T-
orbitally lower semi-continuous mappings as follows:

Definition . ([]) Let (X,d) be a metric space, T : X → CL(X) be a mapping multi-
valued, and let ξ ∈ X.
() A mapping g : X →R is said to be lower semi-continuous at ξ if, for any sequence

{xn} in X such that xn → ξ as n→ ∞,

gξ ≤ lim inf
n→∞ gxn.

() A mapping g : X →R is said to be T-orbitally lower semi-continuous at ξ if, for any
sequence {xn} in O(T ,x) such that x ∈ X and xn → ξ as n → ∞,

gξ ≤ lim inf
n→∞ gxn.
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The following result is a main result of Kamran [].

Theorem . (Kamran []) Let (X,d) be a complete metric space and T : X → CL(X) be
a mapping satisfying

d(y,Ty) ≤ α
(
d(x, y)

)
d(x, y) (.)

for all x ∈ X and y ∈ Tx, where α : [,∞)→ [, ) is MT-function. Then:
(K) For each x ∈ X , there exist an orbit {xn} of T and ξ ∈ X such that limn→∞ xn = ξ .
(K) ξ is a fixed point of T if and only if the function g : X →R defined by

g(x) := d(x,Tx) for all x ∈ X is T-orbitally lower semi-continuous at ξ .

Recently, Ali [] extended the above result to common fixed point theorem by using
the concept of T-weakly commuting as follows:

Definition . ([]) Let (X,d) be a metric space, f : X → X and T : X → CL(X) be map-
pings. The mapping f is said to be T-weakly commuting at x ∈ X if ffx ∈ Tfx.

The following result is a main result of Ali [].

Theorem . (Ali []) Let (X,d) be a metric space, f : X → X and T : X → CL(X) be two
mappings such that T(X)⊆ f (X) and

d(fy,Ty) ≤ α
(
d(fx, fy)

)
d(fx, fy) (.)

for all x ∈ X and fy ∈ Tx,where α : [,∞)→ [, ) is MT-function. If (f (X),d) is a complete
metric space, then
(A) For any x ∈ X , there exists an f -orbit {fxn} of T and f ξ ∈ f (X) such that

limn→∞ fxn = f ξ .
(A) ξ is a coincidence point of f and T if and only if the function h : X →R defined by

h(x) := d(fx,Tx) for all x ∈ X is lower semi-continuous at ξ .
(A) If ff ξ = f ξ and f is T-weakly commuting at ξ , then f and T have a common fixed

point.

In this paper, we introduce the concept of Tf -orbitally lower semi-continuousmappings
and, using this concept, prove Mizoguchi-Takahashi’s type coincidence point theorems.
Also, we show that the condition of ‘T-weakly commuting of f ’ can be omit to prove
Mizoguchi-Takahashi’s type common fixed point theorems. By the same procedure, we
can improve Theorem . by dropping the condition of ‘f is T-weakly commuting at ξ ’
in (A). As applications, we derive the invariant approximation results.

2 Mizoguchi-Takahashi’s type coincidence and common fixed point theorems
In this section, we start with the following concept.

Definition . Let (X,d) be a metric space, f : X → X, T : X → CL(X) be mappings, and
let x, ξ ∈ X.
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() A mapping h : f (X)→R is said to be lower semi-continuous at f ξ if, for any
sequence {fxn} in f (X) such that fxn → f ξ as n→ ∞,

h(f ξ ) ≤ lim inf
n→∞ h(fxn).

() A mapping h : f (X) →R is said to be Tf -orbitally lower semi-continuous at f ξ if, for
any sequence {fxn} in Of (T ,x) such that fxn → f ξ as n→ ∞,

h(f ξ ) ≤ lim inf
n→∞ h(fxn).

Next, we apply the following useful lemma due to Haghi et al. [] and Theorem . to
obtain new Mizoguchi-Takahashi’s type common fixed point theorem.

Lemma . ([]) Let X be a nonempty set and f : X → X be a mapping. Then there exists
a subset E of X such that f (E) = f (X) and f |E : E → X is one-to-one.

The following result is a main result in this paper.

Theorem . Let (X,d) be ametric space, f : X → X and T : X → CL(X) be twomappings
such that T(X)⊆ f (X) and

d(fy,Ty) ≤ α
(
d(fx, fy)

)
d(fx, fy) (.)

for all x ∈ X and fy ∈ Tx,where α : [,∞)→ [, ) is MT-function. If (f (X),d) is a complete
metric space, then
(S) For each x ∈ X , there exist an f -orbit {fxn} of T and f ξ ∈ f (X) such that

limn→∞ fxn = f ξ .
(S) ξ is a coincidence point of f and T if and only if the function h : f (S)→R defined by

h(fx) := d(fx,Tx) for all fx ∈ f (S) is Tf -orbitally lower semi-continuous at f ξ , where
S ⊆ X and f |S is one-to-one.

(S) If ξ is a coincidence point of f and T such that ff ξ = f ξ , then f and T have a
common fixed point.

Proof Let f : X → X be a mapping. Using Lemma ., there exists E ⊆ X such that f (E) =
f (X) and f |E is one-to-one. Now, we can define a mapping G : f (E)→ CL(X) by

G(fx) = Tx (.)

for all x ∈ E. Since f |E is one-to-one, it follows that G is well defined. Since T satisfies the
contractive condition (.), we have

d(fy,Ty) ≤ α
(
d(fx, fy)

)
d(fx, fy) (.)

for all x ∈ X and fy ∈ Tx. By the construction of G, we get

d
(
fy,G(fy)

) ≤ α
(
d(fx, fy)

)
d(fx, fy) (.)
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for all fx ∈ f (E) and fy ∈ G(fx). This implies that G is satisfies the contractive condition
(.). From (S), it follows that, for each x ∈ X, there exist an orbit {fxn} ofG and f ξ ∈ f (E)
such that limn→∞ fxn = f ξ . This implies that (K) in Theorem . holds.
Again, by the construction of G, it follows that (S) is equivalent to the following condi-

tion:
‘f ξ is a fixed point of G, that is, f ξ ∈G(f ξ ) if and only if the function g : f (E)→R

defined by g(fx) = d(fx,G(fx)) for all fx ∈ f (E) is G-orbitally lower semi-continuous at
f ξ .’

Thus (S) holds. Let ξ is a coincidence point of f and T , that is, f ξ ∈ Tξ . Next, we
suppose that ff ξ = f ξ . Let z := f ξ and so z = f ξ = ff ξ = fz ∈ Tξ . Since fz ∈ Tξ , it follows
from the contractive condition (.) that

d(fz,Tz) ≤ α
(
d(f ξ , fz)

)
d(f ξ , fz)

= α() · 
= ,

which shows that fz ∈ Tz. Therefore, z = fz ∈ Tz, that is, z is a common fixed point of f
and T . This completes the proof. �

Remark . Theorem . generalizes many results in the following sense:
() The inequality (.) is weaker than some kinds of the contractive conditions such as

Mizoguchi-Takahashi’s contractive condition [], Nadler’s contractive condition [],
Kamran’s contractive condition [], etc.

() The range of T is CL(X) which is more general than CB(X).
() For the existence of coincidence point, we merely require that the condition in (S),

whereas other result demands stronger than this condition.
() For the existence of common fixed point, we only requires the condition ff ξ = f ξ ,

whereas Theorem . requires both of this condition and the ‘T-weakly commuting
at ξ ’ condition.

Consequently, Theorem . extends and improves Nadler’s contraction principle [],
Mizoguchi-Takahashi’s theorem [], Theorem . of Kamran [], Theorem . of Ali [],
and several results in the literature.Moreover, for the single-valued case, Theorem . also
unifies Banach’s contraction principle [] and many well-known results.

Corollary . Let (X,d) be ametric space, f : X → X and T : X → CL(X) be twomappings
such that T(X)⊆ f (X) and

H(Tx,Ty) ≤ α
(
d(fx, fy)

)
d(fx, fy) (.)

for all x ∈ X and fy ∈ Tx, where α : [,∞) → [, ) is an MT-function. If (f (X),d) is a
complete metric space, then
(S) For each x ∈ X , there exist an f -orbit {fxn} of T and f ξ ∈ f (X) such that

limn→∞ fxn = f ξ .
(S) ξ is a coincidence point of f and T if and only if the function h : f (S)→R defined by

h(fx) := d(fx,Tx) for all fx ∈ f (S) is Tf -orbitally lower semi-continuous at f ξ , where
S ⊆ X and f |S is one-to-one.

http://www.fixedpointtheoryandapplications.com/content/2014/1/112
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(S) If ξ is a coincidence point of f and T such that ff ξ = f ξ , then f and T have a
common fixed point.

Proof Since d(fy,Ty) ≤ H(Tx,Ty) for all fy ∈ Tx, it follows from the contractive condition
(.) that the inequality (.) holds. Therefore, we get the result. �

Corollary . Let (X,d) be ametric space, f : X → X and T : X → CL(X) be twomappings
such that T(X)⊆ f (X) and

H(Tx,Ty) ≤ α
(
d(fx, fy)

)
d(fx, fy) (.)

for all x, y ∈ X,where α : [,∞)→ [, ) is anMT-function. If (f (X),d) is a complete metric
space, then:
(S) For each x ∈ X , there exist an f -orbit {fxn} of T and f ξ ∈ f (X) such that

limn→∞ fxn = f ξ .
(S) ξ is a coincidence point of f and T if and only if the function h : f (S)→R defined by

h(fx) := d(fx,Tx) for all fx ∈ f (S) is Tf -orbitally lower semi-continuous at f ξ , where
S ⊆ X and f |S is one-to-one.

(S) If ξ is a coincidence point of f and T such that ff ξ = f ξ , then f and T have a
common fixed point.

Proof Since the condition (.) implies the condition (.), we get the result. �

If we take α(t) = k for all t ∈ [,∞), where k is constant number with k ∈ [, ), then we
get the following result.

Corollary . Let (X,d) be ametric space, f : X → X and T : X → CL(X) be twomappings
such that T(X)⊆ f (X) and satisfying

d(fy,Ty) ≤ kd(fx, fy), (.)

for each x ∈ X and fy ∈ Tx, where k ∈ [, ). If (f (X),d) is a complete metric space, then:
(S) For each x ∈ X , there exist an f -orbit {fxn} of T and f ξ ∈ f (X) such that

limn→∞ fxn = f ξ .
(S) ξ is a coincidence point of f and T if and only if the function h : f (S)→R defined by

h(fx) := d(fx,Tx) for all fx ∈ f (S) is Tf -orbitally lower semi-continuous at f ξ , where
S ⊆ X and f |S is one-to-one.

(S) If ξ is a coincidence point of f and T such that ff ξ = f ξ , then f and T have a
common fixed point.

Corollary . Let (X,d) be ametric space, f : X → X and T : X → CL(X) be twomappings
such that T(X)⊆ f (X) and

H(Tx,Ty) ≤ kd(fx, fy) (.)

for all x ∈ X and fy ∈ Tx, where k ∈ [, ). If (f (X),d) is a complete metric space, then:

http://www.fixedpointtheoryandapplications.com/content/2014/1/112
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(S) For each x ∈ X , there exist an f -orbit {fxn} of T and f ξ ∈ f (X) such that
limn→∞ fxn = f ξ ;

(S) ξ is a coincidence point of f and T if and only if the function h : f (S)→R defined by
h(fx) := d(fx,Tx) for all fx ∈ f (S) is Tf -orbitally lower semi-continuous at f ξ , where
S ⊆ X and f |S is one-to-one;

(S) If ξ is a coincidence point of f and T such that ff ξ = f ξ , then f and T have a
common fixed point.

Corollary . Let (X,d) be ametric space, f : X → X and T : X → CL(X) be twomappings
such that T(X)⊆ f (X) and

H(Tx,Ty) ≤ kd(fx, fy) (.)

for all x, y ∈ X, where k ∈ [, ). If (f (X),d) is a complete metric space, then:
(S) For each x ∈ X , there exist an f -orbit {fxn} of T and f ξ ∈ f (X) such that

limn→∞ fxn = f ξ .
(S) ξ is a coincidence point of f and T if and only if the function h : f (S)→R defined by

h(fx) := d(fx,Tx) for all fx ∈ f (S) is Tf -orbitally lower semi-continuous at f ξ , where
S ⊆ X and f |S is one-to-one.

(S) If ξ is a coincidence point of f and T such that ff ξ = f ξ , then f and T have a
common fixed point.

3 Invariant approximation results
Several problems concerning invariant approximations for self-mappings were obtained
as applications of fixed point, coincidence point, and common fixed point results (see
[–] and references therein). Also, Kamran [], Latif and Bano [], and O’Regan and
Shahzad [, ] obtained invariant approximation results for multi-valued mappings.
In this section, we study invariant approximation results for nonlinear single-valued

mapping and multi-valued mapping as applications of main results in Section .
LetM be a subset of a normed space E and p ∈ E. The set

BestM(p) :=
{
x ∈M : ‖x – p‖ = d(p,M)

}
is called the set of best M-approximants to p ∈ X out ofM, where d(p,M) = infy∈M ‖y– p‖.
Here, we derive some invariant approximation results.

Theorem . Let M be subset of normed space (E,‖ · ‖), p ∈ E, f :M → M be a mapping
and T :M → CL(M) be a multi-valued mappings such that

d(fy,Ty) ≤ α
(‖fx – fy‖)‖fx – fy‖ (.)

for each x ∈ BM(p) and fy ∈ Tx, where α : [,∞) → [, ) is an MT-function. Suppose that
the following conditions hold:
() T(BestM(p)) ⊆ f (BestM(p)) = BestM(p).
() f (BestM(p)) is a complete subspace ofM.
() f |BestM(p) is one-to-one.
() supy∈Tx ‖y – p‖ ≤ ‖fx – p‖ for all x ∈ BestM(p).

http://www.fixedpointtheoryandapplications.com/content/2014/1/112


Sintunavarat et al. Fixed Point Theory and Applications 2014, 2014:112 Page 9 of 10
http://www.fixedpointtheoryandapplications.com/content/2014/1/112

Then we have the following:
(S) For each x ∈ BestM(p), there exists an f -orbit {fxn} of T and f ξ ∈ f (BestM(p)) such

that limn→∞ fxn = f ξ .
(S) ξ ∈ C(f ,T)∩BestM(p) if and only if the function h : f (BestM(p)) →R defined by

h(fx) := d(fx,Tx) for all fx ∈ f (BestM(p)) is Tf -orbitally lower semi-continuous at f ξ .
(S) If ξ ∈ C(f ,T)∩BestM(p) such that ff ξ = f ξ , then f ξ ∈ F(f ,T)∩BestM(p).

Proof From the assumption, it follows that f |BestM(p) is a single-valued mapping from
BestM(p) to BestM(p). Now, we show that T |BestM(p) is a multi-valued mapping from
BestM(p) to CL(BestM(p)). First, we claim that Tx ⊆ BestM(p) for all x ∈ BestM(p). Let
x ∈ BestM(p) and z ∈ Tx. Since f (BestM(p)) = BestM(p), we have fx ∈ BestM(p) and hence
‖fx – p‖ = d(p,M).
Now, we obtain

d(p,M) ≤ ‖z – p‖ ≤ sup
y∈Tx

‖y – p‖ ≤ ‖fx – p‖ = d(p,M).

This implies that ‖z–p‖ = d(p,M) and thus z ∈ BestM(p). Therefore, Tx ⊆ BestM(p) for all
x ∈ BestM(p). SinceTx is closed for all x ∈ M, it follows thatTx is closed for all x ∈ BestM(p).
Hence T |BestM(p) is a multi-valued mapping from BestM(p) to CL(BestM(p)). It is easy to
obtain that

F(f |BestM(p),T |BestM(p)) = F(f ,T)∩BestM(p).

Thus the result follows from Theorem . with X = BestM(p). This completes the proof.
�

Theorem . Let M be subset of normed space (E,‖ · ‖), p ∈ E, and T :M → CL(M) be a
multi-valued mapping such that

d(y,Ty) ≤ α
(‖x – y‖)‖x – y‖ (.)

for all x ∈ BestM(p) and y ∈ Tx, where α : [,∞) → [, ) is an MT-function. Suppose that
the following conditions hold:
() T(BestM(p)) ⊆ BestM(p);
() BestM(p) is complete subspace ofM;
() supy∈Tx ‖y – p‖ ≤ ‖x – p‖ for all x ∈ BestM(p).

Then we have the following:
(S) For each x ∈ BestM(p), there exists an orbit {xn} of T and ξ ∈ BestM(p) such that

limn→∞ xn = ξ ;
(S) ξ ∈ F(T)∩BestM(p) if and only if the function g : BestM(p) →R, defined by

g(x) := d(x,Tx) for all x ∈ f (BestM(p)), is T-orbitally lower semi-continuous at ξ .

Proof Take f as the identity mapping from M into M in Theorem ., we get the result.
�
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