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Abstract
The purpose of this paper is to present a new method for the research of best
proximity point theorems of nonlinear mappings in metric spaces. In this paper, the
P-operator technique, which changes non-self-mapping to self-mapping, provides a
new and simple method of proof. Best proximity point theorems for weakly
contractive and weakly Kannan mappings, generalized best proximity point theorems
for generalized contractions, and best proximity points for proximal cyclic contraction
mappings have been proved by using this new method. Meanwhile, many recent
results in this area have been improved.
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1 Introduction and preliminaries
Several problems can be changed to equations of the form Tx = x, where T is a given
self-mapping defined on a subset of a metric space, a normed linear space, a topological
vector space or some suitable space. However, if T is a non-self-mapping from A to B,
then the aforementioned equation does not necessarily admit a solution. In this case, one
would contemplate finding an approximate solution x in A such that the error d(x,Tx)
is minimum, where d is the distance function. In view of the fact that d(x,Tx) is at least
d(A,B), a best proximity point theorem (for short BPPT) guarantees the global minimiza-
tion of d(x,Tx) by the requirement that an approximate solution x satisfies the condition
d(x,Tx) = d(A,B). Such optimal approximate solutions are called best proximity points of
the mapping T . Interestingly, best proximity point theorems also serve as a natural gen-
eralization of fixed point theorems, for a best proximity point becomes a fixed point if the
mapping under consideration is a self-mapping. Research on the best proximity point is
an important topic in the nonlinear functional analysis and applications (see [–]).
Let A, B be two nonempty subsets of a complete metric space and consider a mapping

T : A → B. The best proximity point problem is whether we can find an element x ∈ A
such that d(x,Tx) =min{d(x,Tx) : x ∈ A}. Since d(x,Tx) ≥ d(A,B) for any x ∈ A, in fact,
the optimal solution to this problem is the one for which the value d(A,B) attained.
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Let A, B be two nonempty subsets of a metric space (X,d). We denote by A and B the
following sets:

A =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
,

where d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.
It is interesting to notice that A and B are contained in the boundaries of A and B,

respectively, provided A and B are closed subsets of a normed linear space such that
d(A,B) >  (see []).

2 BPPT for weakly contractive and weakly Kannanmappings
Let A and B be nonempty subsets of a metric space (X,d). An operator T : A → B is said
to be contractive if there exists k ∈ [, ) such that d(Tx,Ty) ≤ kd(x, y) for any x, y ∈ A. The
well-known Banach contraction principle says: Let (X,d) be a complete metric space, and
T : X → X be a contraction of X into itself. Then T has a unique fixed point in X.
In the last  years, the Banach contraction principle has been extensively studied and

generalized in many settings. One of the generalizations is the weakly contractive map-
ping.

Definition . [] Let (X,d) be a metric space. A mapping f : X → X is said to be weakly
contractive provided that

d
(
f (x), f (y)

) ≤ ᾱ(x, y)d(x, y)

for all x, y ∈ X, where the function ᾱ : X ×X → [, ), holds, for every  < a < b, that

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< .

The fixed point theorem for weakly contractive mapping was presented in [].

Theorem . Let (X,d) be a complete metric space. If f : X → X is a weakly contractive
mapping, then f has a unique fixed point x∗ and the Picard sequence of iterates {f n(x)}n∈N
converges, for every x ∈ X, to x∗.

One type of contraction which is different from the Banach contraction is Kannanmap-
pings. In [], Kannan obtained the following fixed point theorem.

Theorem . [] Let (X,d) be a complete metric space and let f : X → X be a mapping
such that

d
(
f (x), f (y)

) ≤ α


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)]
for all x, y ∈ X and some α ∈ [, ), then f has a unique fixed point x∗ ∈ X. Moreover, the
Picard sequence of iterates {f n(x)}n∈N converges, for every x ∈ X, to x∗.

In [], the authors introduce a more general weakly Kannan mapping and obtain its
fixed point theorem.
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Definition . [] Let (X,d) be a metric space. Amapping f : X → X is said to beweakly
Kannan if there exists ᾱ : X × X → [, ), which satisfies for every  < a ≤ b and for all
x, y ∈ X

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< 

and

d
(
f (x), f (y)

) ≤ ᾱ(x, y)


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)]
.

Theorem . [] Let (X,d) be a complete metric space. If f : X → X is a weakly Kannan
mapping, then f has a unique fixed point x∗ and the Picard sequence of iterates {f n(x)}n∈N
converges, for every x ∈ X, to x∗.

In this section, we first obtain best proximity point theorems for weakly contractive
mapping and weakly Kannan mapping in metric spaces. Further, we extend the results
to partial metric spaces. The P-operator technique, which changes non-self-mapping to
self-mapping, provides a new and simple proof. Many recent results in this area have been
improved.
Before giving the main results, we need the following notations and basic facts.

Definition . [] Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A �= ∅. Then the pair (A,B) is said to have the P-property if and only if for any x,x ∈ A

and y, y ∈ B,

{
d(x, y) = d(A,B),
d(x, y) = d(A,B)

⇒ d(x,x) = d(y, y).

In [], the author proves that any pair (A,B) of nonempty closed convex subsets of a
real Hilbert space H satisfies the P-property.
In [], the P-property has been weakened to the weak P-property. An example that sat-

isfies the P-property but not the weak P-property can be found there.

Definition . [] Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A �= ∅. Then the pair (A,B) is said to have theweak P-property if and only if for any x,x ∈
A and y, y ∈ B,

{
d(x, y) = d(A,B),
d(x, y) = d(A,B)

⇒ d(x,x) ≤ d(y, y).

Example [] Consider (R,d), where d is the Euclidean distance and the subsets A =
{(, )} and B = {y =  +

√
 – x}.

Obviously, A = {(, )}, B = {(–, ), (, )} and d(A,B) =
√
. Furthermore,

d
(
(, ), (–, )

)
= d

(
(, ), (, )

)
=

√
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/116


Sun et al. Fixed Point Theory and Applications 2014, 2014:116 Page 4 of 18
http://www.fixedpointtheoryandapplications.com/content/2014/1/116

however,

 = d
(
(, ), (, )

)
< d

(
(–, ), (, )

)
= .

We can see that the pair (A,B) satisfies the weak P-property but not the P-property.

Firstly, we present the following definitions.

Definition . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d). A mapping f : A→ B is said to be weakly contractive provided that

d
(
f (x), f (y)

) ≤ ᾱ(x, y)d(x, y)

for all x, y ∈ A, where the function ᾱ : X ×X → [, ) holds, for every  < a < b, and

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< .

Definition . Let (A,B) be a pair of nonempty closed subsets of a completemetric space.
A mapping f : A → B is said to be weakly Kannan if there exists ᾱ : X × X → [, ) which
satisfies for every  < a ≤ b and for all x, y ∈ X

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< 

and

d
(
f (x), f (y)

) ≤ ᾱ(x, y)


[
d
(
x, f (x)

)
+ d

(
y, f (y)

)
– d(A,B)

]
.

Next we prove the best proximity point theorems for weakly contractive and weakly
Kannan mappings in metric spaces.

Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A �= ∅. Let T : A → B be a weakly contractive mapping defined as Defini-
tion .. Suppose that T(A) ⊆ B and the pair (A,B) has the weak P-property. Then T has
a unique best proximity point x∗ ∈ A and the iteration sequence {xk}∞n= defined by

xk+ = Txk , d(xk+,xk+) = d(A,B), k = , , , . . .

converges, for every x ∈ A, to x∗.

Proof We first prove that B is closed. Let {yn} ⊆ B be a sequence such that yn → q ∈ B.
It follows from the weak P-property that

d(yn, ym) →  ⇒ d(xn,xm) → ,

as n,m → ∞, where xn,xm ∈ A and d(xn, yn) = d(A,B), d(xm, ym) = d(A,B). Then {xn} is
a Cauchy sequence so that {xn} converges strongly to a point p ∈ A. By the continuity of
metric d we have d(p,q) = d(A,B), that is, q ∈ B and hence B is closed.
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Let A be the closure of A; we claim that T(A) ⊆ B. In fact, if x ∈ A \A, then there
exists a sequence {xn} ⊆ A such that xn → x. By the continuity of T and the closedness
of B we have Tx = limn→∞ Txn ∈ B. That is T(A) ⊆ B.
Define an operator PA : T(A) → A, by PAy = {x ∈ A : d(x, y) = d(A,B)}. Since the

pair (A,B) has the weak P-property, we have

d(PATx,PATx)≤ d(Tx,Tx)≤ ᾱ(x,x)d(x,x)

for any x,x ∈ A. This shows that PAT : A → A is a weak contraction from complete
metric subspaceA into itself. Using Theorem ., we can see that PAT has a unique fixed
point x∗. That is, PATx∗ = x∗ ∈ A, which implies that

d
(
x∗,Tx∗) = d(A,B).

Therefore, x∗ is the unique one in A such that d(x∗,Tx∗) = d(A,B). It is easy to see that x∗

is also the unique one in A such that d(x∗,Tx∗) = d(A,B). The Picard iteration sequence

xn+ = PATxn, n = , , , . . .

converges, for every x ∈ A, to x∗. The iteration sequence {xk}∞n= defined by

xk+ = Txk , d(xk+,xk+) = d(A,B), k = , , , . . . ,

is exactly the subsequence of {xn}, so that it converges, for every x ∈ A, to x∗. This com-
pletes the proof. �

Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A �= ∅. Let T : A → B be a continuous weakly Kannan mapping defined as
Definition .. Suppose that T(A)⊆ B and the pair (A,B) has the weak P-property. Then
T has a unique best proximity point x∗ ∈ A and the iteration sequence {xk}∞n= defined by

xk+ = Txk , d(xk+,xk+) = d(A,B), k = , , , . . .

converges, for every x ∈ A, to x∗.

Proof The closedness of B and T(A) ⊆ B have been proved in Theorem .. Now we
define an operator PA : T(A) → A, by PAy = {x ∈ A : d(x, y) = d(A,B)}. Since the pair
(A,B) has weak P-property, we have

d(PATx,PATx) ≤ d(Tx,Tx)

≤ ᾱ(x, y)


[
d(x,Tx) + d(x,Tx) – d(A,B)

]
≤ ᾱ(x, y)


[
d(x,PATx) + d(PATx,Tx)

+ d(x,PATx) + d(PATx,Tx) – d(A,B)
]

=
ᾱ(x, y)


[
d(x,PATx) + d(x,PATx)

]
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Sun et al. Fixed Point Theory and Applications 2014, 2014:116 Page 6 of 18
http://www.fixedpointtheoryandapplications.com/content/2014/1/116

for any x,x ∈ A. This shows that PAT : A → A is a weakly Kannan mapping from
completemetric subspaceA into itself. UsingTheorem., we can see that PAT a unique
fixed point x∗. That is, PATx∗ = x∗ ∈ A, which implies that

d
(
x∗,Tx∗) = d(A,B).

Therefore, x∗ is the unique one in A such that d(x∗,Tx∗) = d(A,B). It is easy to see that x∗

is also the unique one in A such that d(x∗,Tx∗) = d(A,B). The Picard iteration sequence

xn+ = PATxn, n = , , , . . .

converges, for every x ∈ A, to x∗. Since the iteration sequence {xk}∞n= defined by

xk+ = Txk , d(xk+,xk+) = d(A,B), k = , , , . . . ,

is exactly the subsequence of {xn}, it converges, for every x ∈ A, to x∗. This completes
the proof. �

Example . Let X = R, A = {(, y) : y ≥ }, B = {(, y) : y ≥ }, and define f : A → B as
follows:

f (, y) =
(
,

y

y + 

)
.

We have A = A �= ∅, B = B, f (A) ⊆ B. It is obvious that (A,B) satisfy the P-property so
it must satisfy the weakly P-property. Meanwhile

d
(
f (, y), f (, y)

)
=

∣∣∣∣ y
y + 

–
y

y + 

∣∣∣∣
=

|y (y + ) – y(y + )|
(y + )(y + )

=
|(yy + y + y)(y – y)|

(y + )(y + )

=
yy + y + y
(y + )(y + )

|y – y|

=
yy + y + y

yy + y + y + 
|y – y|

=
yy + y + y

yy + y + y + 
d
(
(, y), (, y)

)
= ᾱ

(
(, y), (, y)

)
d
(
(, y), (, y)

)
,

where

ᾱ
(
(, y), (, y)

)
=

yy + y + y
yy + y + y + 

.

That is, f is a weakly contractive mapping. All conditions of Theorem . hold, the
conclusion of Theorem . is also correct, that is, f has a unique best proximity point

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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z∗ = (, ) ∈ A such that d(z∗, f (z∗)) = d((, ), (, )) =  = d(A,B). On the other hand, it is
obvious that the iteration sequence {zk}∞n= defined by

zk+ = f (zk), d(zk+, zk+) = d(A,B) = , k = , , , . . . ,

converges, for every z ∈ A, to z∗, since

z(k+) = (, y(k+)) =
(
,

yk
yk + 

)
→ (, ).

In fact, from y(k+) =
yk

yk+
we know that y(k+) ≤ yk , so there exists a number y∗ such that

yk → y∗. Furthermore, y∗ = (y∗)
y∗+ and hence y∗ = .

Example . Let X = R, A = {(, y), y ≥ }, B = {(, y), y ≥ }. For y ≥ , z ≥ , we have
the following equivalence relations:

z =
√
(y – z) +  – 

⇔ z +  =
√
(y – z) + 

⇔ (z + ) = (y – z) +  = y – yz + z + 

⇔ z + z +  = y – yz + z + 

⇔ z + ( + y)z – y = 

⇔ z =
√
( + y) + y – ( + y)


.

We define a function f : [, +∞)→ [, +∞) as follows:

z = f (y) =
√
( + y) + y – ( + y)


.

From the above equivalence relations, we get

f (y) =
√(

y – f (y)
) +  – .

Therefore, we define a mapping T : A → B as follows:

T : (, y) �→ (
, f (y)

)
=

(
,

√
( + y) + y – ( + y)



)
.

We have A = A �= ∅, B = B, T(A) ⊆ B. It is obvious that (A,B) satisfy the P-property
and so must satisfy the weakly P-property. Meanwhile the following inequality holds:

d
(
T(, y) – T(,h)

)
=

∣∣f (y) – f (h)
∣∣ = 


∣∣f (y) – f (h)

∣∣
=



∣∣(√(

y – f (y)
) +  – 

)
–

(√(
h – f (h)

) +  – 
)∣∣

=


∣∣√(

y – f (y)
) +  +

√(
h – f (h)

) +  – 
√(

h – f (h)
) + 

∣∣

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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≤ 

∣∣√(

y – f (y)
) +  +

√(
h – f (h)

) +  – 
∣∣

=


∣∣d(

(, y),T(, y)
)
+ d

(
(,h),T(,h)

)
– d(A,B)

∣∣
≤ y + h + 

(y + h + )
∣∣d(

(, y),T(, y)
)
+ d

(
(,h),T(,h)

)
– d(A,B)

∣∣
=

ᾱ(y,h)


∣∣d(
(, y),T(, y)

)
+ d

(
(,h),T(,h)

)
– d(A,B)

∣∣,
where ᾱ(y,h) = y+h+

(y+h+) . That is, T is a continuous weakly Kannan mapping. All conditions
of Theorem. hold, the conclusion ofTheorem. is also correct, that is,T has a unique
best proximity point z∗ = (, ) ∈ A such that d(z∗,T(z∗)) = d((, ), (, )) =  = d(A,B).
On the other hand, it is obvious that the iteration sequence {zk}∞n= defined by

zk+ = T(zk), d(zk+, zk+) = d(A,B) = , k = , , , . . . ,

converges, for every z ∈ A, to z∗, since z(k+) = (, 
√
(yk – f (yk)) +  – ) → (, ).

3 Generalized BPPT for generalized contractions
Definition . [] A mapping T : A → B is said to be a proximal contraction of the first
kind if there exists a non-negative number α <  such that

{
d(u,Tx) = d(A,B),
d(u,Tx) = d(A,B)

⇒ d(u,u)≤ αd(x,x)

for all u,u,x,x ∈ A.

Recently in [], Amini-Harandi et al. introduced the following new class of proximal
contractions and proved the following result.

Definition . [] A mapping T : A → B is said to be a (ϕ, g)-contraction if

{
d(u,Tx) = d(A,B),
d(u,Tx) = d(A,B)

⇒ d(u,u)≤ ϕ
(
d
(
g(x), g(x)

))

for all u,u,x,x ∈ A, where ϕ : [,∞) → [,∞) is a function obeying the following con-
ditions:

ϕ() = , ϕ(t) < t, lim sup
s→t+

ϕ(s) < t, ∀t > ,

and g : A → A is a mapping. If g is the identity operator, T : A → B is said to be a ϕ-con-
traction.

Definition . An element x in A is said to be a best proximity point of the mapping
T : A→ B if it satisfies the condition that d(x,Tx) = d(A,B).

Theorem. [] Let A and B be nonempty closed subsets of a complete metric space (X,d)
such that B is approximately compact with respect to A.Moreover, assume that A and B

are nonempty. Let T : A→ B and g : A→ A satisfy the following conditions.

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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(a) T is a (ϕ, g)-proximal contraction,
(b) T(A) ⊆ B,
(c) g is a one-to-one continuous map such that g– : g(A) → A is uniformly continuous,
(d) A ⊆ g(A).

Then there exists a unique element x ∈ A such that d(g(x),Tx) = d(A,B). Further, for any
fixed element x ∈ A, the sequence {xn} defined by d(g(xn+),Txn) = d(A,B) converges to x.

The purpose of this section is to improve the result of Amini-Harandi et al. by using a
new simple method of proof without the hypothesis of approximate compactness to B.
The following lemma is important for our results, which is actually a generalized

Banach’s fixed point theorem.

Lemma . Let A be a subset of a complete metric space (X,d), and let T : X → X a con-
tinuous mapping with conditions

d(Tx,Ty) ≤ ϕ
(
d(x, y)

)
, ∀x, y ∈ A,

and T(A) ⊆ A, where ϕ : [,∞)→ [,∞) is a function obeying the following conditions:

ϕ() = , ϕ(t) < t, lim sup
s→t+

ϕ(s) < t, ∀t > .

Then for any fixed element x ∈ X, the sequence {xn} defined by xn+ = Txn converges to a
point x ∈ A. Further, x is a fixed point of T .

Proof We claim that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is not
a Cauchy sequence. Then there exist ε >  and two subsequences of integers {nk}, {mk}
such that

d(xnk ,xmk ) ≥ ε, k = , , , . . . . (.)

Since d(xn,xn+) →  (n→ ∞) is obvious, we may also assume

d(xnk ,xmk–) < ε (.)

by choosing mk to be the smallest number exceeding nk for which (.) holds. From (.)
and (.) we have

ε ≤ d(xnk ,xmk ) ≤ d(xnk ,xmk–) + d(xmk–,xmk ) < ε + d(xmk–,xmk ).

Taking the limit as k → ∞, we get

lim
k→∞

d(xnk ,xmk ) = ε.

By the triangle inequality

d(xnk ,xmk )≤ d(xnk ,xnk+) + d(xnk+,xmk+) + d(xmk+,xmk )

≤ d(xnk ,xnk+) + ϕ
(
d(xnk ,xmk )

)
+ d(xmk+,xmk ).

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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Taking the sup-limit as k → ∞, we get

ε ≤ lim sup
k→∞

ϕ
(
d(xnk ,xmk )

)
< ε,

a contradiction. Therefore {xn} is a Cauchy sequence. Since X is complete, there exists
x ∈ X such that xn → x. It is obvious from the continuity of T and d(xn,Txn) →  that x is
a fixed point of T . This completes the proof. �

Now, we are ready to state our main result in this section.

Theorem. Let A and B be nonempty closed subsets of a complete metric space such that
A and B are nonempty. Let T : A→ B and g : A→ A satisfy the following conditions.
(a) g is a one-to-one continuous map such that g– : g(A) → A is uniformly continuous;
(b) T is a (ϕ, g)-contraction with T(A) ⊂ B.

Then there exists a unique element x∗ ∈ A such that d(g(x∗),Tx∗) = d(A,B). Further, for any
fixed element x ∈ A, the sequence defined by d(g(xn+),Txn) = d(A,B), converges to x∗.

Proof Let

D(x, y) = d
(
g(x), g(y)

)
, ∀x, y ∈ A.

It is obvious that D(x, y) is a metric on the A. Now we prove (A,D) is a complete metric
space. Let {xn} ⊆ (A,D) be a Cauchy sequence, we have

lim
n,m→∞D(xn,xm) = lim

n,m→∞d
(
g(xn), g(xm)

)
= .

Since g– : g(A) → A is uniformly continuous, we have

lim
n,m→∞d(xn,xm) = lim

n,m→∞d
(
g–g(xn), g–g(xm)

)
= 

and hence {xn} ⊆ (A,d) is a Cauchy sequence. Since (A,d) is a completemetric space, there
exists an element x ∈ A such that d(xn,x) →  as n → ∞. Since g is continuous, we have
D(xn,x)→  as n→ ∞. This completes the proof of the completeness of (A,D).
For any x ∈ A, from (b) we know Tx ∈ B. Since T is a (ϕ, g)-contraction, there exists a

unique z ∈ A such that d(z,Tx) = d(A,B). We denote z = TTx. Then T : S(A)→ A is a
mapping. Further, we define a composite mapping u = TTx from A into itself. Since T is
a (ϕ, g)-contraction, we have

d(TTx,TTx) ≤ ϕ
(
d
(
g(x), g(x)

))
for any x,x ∈ A,

d
(
gg–(TTx), gg–(TTx)

) ≤ ϕ
(
d
(
g(x), g(x)

))
for any x,x ∈ A, and

D
(
g–TTx, g–TTx

) ≤ ϕ
(
D(x,x)

)
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for any x,x ∈ A. From the above inequality, we also know that the mapping u = g–TTx
is continuous on the A, so we can expand the definition of u = g–TTx onto A such
that it is still continuous on the A. By using Lemma ., we know for any fixed element
x ∈ A, that the sequence {xn} defined by

xn+ = g–TTxn,

which is equivalent to d(g(xn+),Txn) = d(A,B), converges to a point x∗ ∈ A. Further, x∗ is a
fixed point of g–TT . That is, x∗ = g–TTx∗ which is equivalent to d(g(x∗),Tx∗) = d(A,B).
Since T is a (ϕ, g)-contraction, this x∗ is unique. This completes the proof. �

Corollary . Let A and B be nonempty closed subsets of a completemetric space such that
A and B are nonempty. Let T : A→ B and g : A→ A satisfy the following conditions.
(a) g is a one-to-one continuous map such that g– : g(A) → A is uniformly continuous;
(b) T is a proximal contraction of the first kind with T(A) ⊂ B.

Then there exists a unique element x∗ ∈ A such that d(g(x∗),Tx∗) = d(A,B). Further, for any
fixed element x ∈ A, the sequence defined by d(g(xn+),Txn) = d(A,B) converges to x∗.

Corollary . Let A and B be nonempty closed subsets of a completemetric space such that
A and B are nonempty. Let T : A→ B be is a ϕ-contraction with T(A) ⊂ B. Then there
exists a unique best proximity point x∗ ∈ A of T . Further, for any fixed element x ∈ A, the
sequence defined by d(xn+,Txn) = d(A,B) converges to x∗.

Remark . In Theorem ., we do not need the hypothesis of approximate compactness
to B. Therefore, Theorem . improved substantially the results of Theorem .. On the
other hand, the method of proof is also different.

4 BPPT for proximal cyclic contractionmappings
Definition . [] Given non-self-mappings S : A → B and T : B → A, the pair (S,T) is
said to form a proximal cyclic contraction if there exists a non-negative number α <  such
that {

d(u,Sx) = d(A,B),
d(v,Ty) = d(A,B)

⇒ d(u, v) ≤ αd(x, y) + ( – α)d(A,B)

for all u,x ∈ A and v, y ∈ B.

Definition . [] A mapping S : A → B is said to be a proximal contraction of the first
kind if there exists a non-negative number α <  such that{

d(u,Sx) = d(A,B),
d(u,Sx) = d(A,B)

⇒ d(u,u) ≤ αd(x,x)

for all u,u,x,x ∈ A.

Definition . An element x in A is said to be a best proximity point of the mapping
S : A→ B if it satisfies the condition that d(x,Sx) = d(A,B).

In [], the author proved the following result, a generalized best proximity point theorem
for non-self-proximal contractions of the first kind.

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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Theorem . [] Let A and B be nonempty closed subsets of a complete metric space such
that A and B are nonempty. Let S : A → B, T : B → A and g : A ∪ B → A ∪ B satisfy the
following conditions.
(a) S and T are proximal contractions of the first kind.
(b) S(A)⊂ B and T(B) ⊂ A.
(c) The pair (S,T) forms a proximal cyclic contraction.
(d) g is an isometry.
(e) A ⊂ g(A) and B ⊂ g(B).

Then there exist a unique element x in A and a unique element y in B satisfying the condi-
tions that

d(x, y) = d(gx,Sx) = d(gy,Ty) = d(A,B).

Further, for any fixed element x in A, the sequence {xn}, defined by

d(gxn+,Sxn) = d(A,B),

converges to the element x. For any fixed element y in B, the sequence {yn}, defined by

d(gyn+,Tyn) = d(A,B),

converges to the element y.
On the other hand, a sequence {un} of elements in A converges to x if there is a sequence

{εn} of positive numbers for which limn→∞ εn = , d(un+, zn+) ≤ εn,where zn+ ∈ A satisfies
the condition that d(zn+,Sun) = d(A,B).

In , Geraghty introduced the Geraghty-contraction and obtained Theorem ..

Definition . [] Let (X,d) be a metric space. A mapping T : X → X is said to be a
Geraghty-contraction if there exists β ∈ Γ such that for any x, y ∈ X

d(Tx,Ty) ≤ β
(
d(x, y)

) · d(x, y),

where the class Γ denotes those functions β : [,∞) → [, ) satisfying the following con-
dition:

β(tn)→  ⇒ tn → .

Theorem . [] Let (X,d) be a complete metric space and T : X → X be a Geraghty-
contraction. Then T has a unique fixed point x∗ and, for any x ∈ X, the iterative sequence
xn+ = Txn converges to x∗.

Definition . [] A mapping S : A → B is called Geraghty’s proximal contraction of the
first kind if there exists β ∈ Γ such that

{
d(u,Sx) = d(A,B),
d(u,Sx) = d(A,B)

⇒ d(u,u) ≤ β
(
d(x,x)

)
d(x,x)

for all u,u,x,x ∈ A.

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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In [], the authors proved the following result.

Theorem . [] Let A and B be nonempty closed subsets of a complete metric space such
that A and B are nonempty. Let S : A → B, T : B → A, and g : A∪ B → A∪ B satisfy the
following conditions.
(a) S, T are Geraghty’s proximal contractions of the first kind.
(b) S(A)⊂ B and T(B) ⊂ A.
(c) The pair (S,T) forms a proximal cyclic contraction.
(d) g is an isometry.
(e) A ⊂ g(A) and B ⊂ g(B).

Then there exist a unique element x∗ in A and a unique element y∗ in B satisfying the
conditions that

d
(
x∗, y∗) = d

(
gx∗,Sx∗) = d

(
gy∗,Ty∗) = d(A,B).

Further, for any fixed element x in A, the sequence {xn}, defined by

d(gxn+,Sxn) = d(A,B),

converges to the element x∗. For any fixed element y in B, the sequence {yn}, defined by

d(gyn+,Tyn) = d(A,B),

converges to the element y∗.
On the other hand, a sequence {un} of elements in A converges to x if there is a sequence

{εn} of positive numbers for which limn→∞ εn = , d(un+, zn+) ≤ εn,where zn+ ∈ A satisfies
the condition that d(zn+,Sun) = d(A,B).

The purpose of this section is to prove best proximity point theorems for proximal cyclic
contractions and weakly proximal contractions by using the new method of proof. Our
results improve and extend the recent results of some others. Meanwhile, we point out a
mistake in Theorem ..

Theorem . Let A and B be nonempty closed subsets of a complete metric space such
that A and B are nonempty. Let S : A → B, T : B → A, and g : A∪ B → A∪ B satisfy the
following conditions.
(a) S, T are Geraghty’s proximal contractions of the first kind.
(b) S(A)⊂ B and T(B) ⊂ A.
(c) The pair (S,T) forms a proximal cyclic contraction.
(d) g is an isometry.
(e) A ⊂ g(A) and B ⊂ g(B).

Then there exist a unique element x∗ in A and a unique element y∗ in B satisfying the
conditions that

d
(
x∗, y∗) = d

(
gx∗,Sx∗) = d

(
gy∗,Ty∗) = d(A,B).

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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Further, for any fixed element x in A, the sequence {xn}, defined by

d(gxn+,Sxn) = d(A,B),

converges to the element x∗. For any fixed element y in B, the sequence {yn}, defined by

d(gyn+,Tyn) = d(A,B),

converges to the element y∗.
On the other hand, assume β(t) ≤ α < . Then a sequence {un} of elements in A converges

to x∗ if there is a sequence {εn} of positive numbers for which limn→∞ εn = , d(un+, zn+) ≤
εn, where zn+ ∈ A satisfies the condition that d(gzn+,Sun) = d(A,B).

Proof For any x ∈ A, from (b) we know Sx ∈ B. Since S is a Geraghty-contraction, there
exists a unique z ∈ A such that d(z,Sx) = d(A,B). We denote z = SSx. Then S : S(A) →
A is a mapping. Further, we define a composite mapping u = g–SSx from A into itself.
Since S is a Geraghty-contraction, we have

d
(
g–SSx, g–SSx

)
= d(SSx,SSx) ≤ β

(
d(x,x)

)(
d(x,x)

)
(.)

for any x,x ∈ A. From the above inequality, we also know that the mapping u = g–SSx
is continuous, so we can expand the definition of u = g–SSx onto A. Because we do not
need the continuity of function β(t), we define another function β̄(t) : [,∞) → [, ) as
follows:

β̄(t) =

⎧⎨
⎩β(), t = ,

max{lim suprn→t β(rn),β(t)}, t > .

It is easy to see β̄(t) ∈ Γ . From (.) we get

d
(
g–SSx, g–SSx

)
= d(SSx,SSx) ≤ β̄

(
d(x,x)

)(
d(x,x)

)
(.)

for any x,x ∈ A. From (.) we know g–SS : A → A is a Geraghty-contraction. By
usingTheorem.,we claim g–SS has a unique fixed point x∗ inA, that is, x∗ = g–SSx∗,
which implies gx∗ = SSx∗ and hence d(gx∗,Sx∗) = d(A,B). By using the same method, we
can prove that there exists a unique element y∗ in B such that d(gy∗,Ty∗) = d(A,B). On
the other hand, from (c) we have

d
(
x∗, y∗) = d

(
gx∗, gy∗) ≤ αd

(
x∗, y∗) + ( – α)d(A,B),

which implies d(x∗, y∗) ≤ d(A,B) and hence d(x∗, y∗) = d(A,B).
Since g–SS is a Geraghty-contraction, for any fixed element x in A, the sequence

{xn}, defined by xn+ = g–SSxn converges to the element x∗. This sequence {xn} also is
defined by d(gxn+,Sxn) = d(A,B). For the same reason, for any fixed element y in B, the
sequence {yn}, defined by yn+ = g–TTxn, converges to the element y∗. This sequence {yn}
also is defined by d(gyn+,Tyn) = d(A,B).

http://www.fixedpointtheoryandapplications.com/content/2014/1/116
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Finally, d(gzn+,Sun) = d(A,B) ⇔ zn+ = g–SSun, which gives us

d(xn+,un+)≤ d(xn+, zn+) + d(zn+,un+)

≤ d
(
g–SSxn, g–SSun

)
+ d(zn+,un+)

≤ β
(
d(xn,un)

)
d(xn,un) + d(zn+,un+)

≤ αd(xn,un) + d(zn+,un+).

It is easy to prove d(xn+,un+) →  which implies un → x∗. This completes the proof. �

Remark . If β(t) ≡ α < , then Theorem . yields Theorem ..

Remark. In the reference [], from line  to line  on page , the following argument
is wrong, so the final conclusion of Theorem . is not correct.

The wrong argument For any ε > , choose a positive integer N such that εn ≤ ε for all
n >N . Observe that

d(xn+,un+)≤ d(xn+, zn+) + d(zn+,un+)

≤ β
(
d(xn,un)

)
d(xn,un) + εn

≤ d(xn,un) + ε.

Since ε is arbitrary, we can conclude that for all n ≥ N the sequence {d(xn,un)} is nonin-
creasing and bounded below and hence converges to some non-negative real number r.

Counter-example Let

dn =
n∑
k=


k
, n = , , , . . . ,

then

dn+ ≤ dn +


n + 
,

and, for any ε > , we can choose a positive integer N such that 
n+ ≤ ε for all n >N , and

hence

dn+ ≤ dn + ε.

But dn is not nonincreasing and dn → ∞ as n→ ∞.

Next we prove the best proximal point theorem for a weakly proximal contractive map-
ping.

Definition . LetA and B be nonempty subsets of a completemetric space. Amapping
S : A→ B is called weak proximal contraction if{

d(u,Sx) = d(A,B),
d(u,Sx) = d(A,B)

⇒ d(u,u) ≤ ᾱ(x,x)d(x,x)
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for all u,u,x,x ∈ A, where for the function ᾱ : X × X → [, ) we have, for every
 < a < b,

θ (a,b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< .

Theorem . Let A and B be nonempty closed subsets of a complete metric space such
that A and B are nonempty. Let S : A → B, T : B → A and g : A ∪ B → A ∪ B satisfy the
following conditions.
(a) S, T are weakly proximal contractions.
(b) S(A)⊂ B and T(B) ⊂ A.
(c) The pair (S,T) forms a proximal cyclic contraction.
(d) g is an isometry.
(e) A ⊂ g(A) and B ⊂ g(B).

Then there exist a unique element x∗ in A and a unique element y∗ in B satisfying the
conditions that

d
(
x∗, y∗) = d

(
gx∗,Sx∗) = d

(
gy∗,Ty∗) = d(A,B).

Further, for any fixed element x in A, the sequence {xn}, defined by

d(gxn+,Sxn) = d(A,B),

converges to the element x∗. For any fixed element y in B, the sequence {yn}, defined by

d(gyn+,Tyn) = d(A,B),

converges to the element y∗.
On the other hand, assume ᾱ(x, y) ≤ α < . Then a sequence {un} of elements in A

converges to x∗ if there is a sequence {εn} of positive numbers for which limn→∞ εn = ,
d(un+, zn+) ≤ εn, where zn+ ∈ A satisfies the condition that d(gzn+,Sun) = d(A,B).

Proof For any x ∈ A, from (b) we know Sx ∈ B. Since S is a weakly contractive mapping,
there exists a unique z ∈ A such that d(z,Sx) = d(A,B). We denote z = SSx. Then S :
S(A) → A is a mapping. Further, we define a composite mapping u = g–SSx from A

into itself. Since S is a weakly contractive mapping, then we have

d
(
g–SSx, g–SSx

)
= d(SSx,SSx) ≤ ᾱ(x,x)d(x,x)

for any x,x ∈ A. From above inequality, we also know the mapping u = g–SSx is con-
tinuous, so we can expand the definition of u = g–SSx ontoA. From the above inequality
we know that g–SS : A → A is a weak contractive mapping. By using Theorem ., we
claim that g–SS has a unique fixed point x∗ in A, that is, x∗ = g–SSx∗, which implies
gx∗ = SSx∗ and hence d(gx∗,Sx∗) = d(A,B). By using the same method, we can prove that
there exists a unique element y∗ in B such that d(gy∗,Ty∗) = d(A,B). On the other hand,
from (c) we have

d
(
x∗, y∗) = d

(
gx∗, gy∗) ≤ αd

(
x∗, y∗) + ( – α)d(A,B),

which implies d(x∗, y∗) ≤ d(A,B) and hence d(x∗, y∗) = d(A,B).
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Since g–SS is a weak contractive mapping, for any fixed element x inA, the sequence
{xn}, defined by xn+ = g–SSxn converges to the element x∗. This sequence {xn} also is
defined by d(gxn+,Sxn) = d(A,B). By the same reason, for any fixed element y in B, the
sequence {yn}, defined by yn+ = g–TTxn converges to the element y∗. This sequence {yn}
also is defined by d(gyn+,Tyn) = d(A,B).
Finally, d(gzn+,Sun) = d(A,B) ⇔ zn+ = g–SSun, which gives us

d(xn+,un+)≤ d(xn+, zn+) + d(zn+,un+)

≤ d
(
g–SSxn, g–SSun

)
+ d(zn+,un+)

≤ ᾱ(xn,un)d(xn,un) + d(zn+,un+)

≤ αd(xn,un) + d(zn+,un+).

It is easy to prove d(xn+,un+) → , which implies un → x∗, This completes the proof. �
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