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1 Introduction and preliminaries
Let E be a Banach space and let E∗ be the dual of E. Let 〈·, ·〉 denote the pairing between
E and E∗. The normalized duality mapping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E.

A Banach space E is said to strictly convex if and only if ‖x‖ = ‖y‖ = ‖( – λ)x + λy‖ for
x, y ∈ E and  < λ <  implies that x = y. Let UE = {x ∈ E : ‖x‖ = }. The norm of E is said
to be Gâteaux differentiable if the limit limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ UE . In this

case, E is said to be smooth. The norm of E is said to be uniformly Gâteaux differentiable
if for each y ∈UE , the limit is attained uniformly for all x ∈ UE . The norm of E is said to be
Fréchet differentiable if for each x ∈UE , the limit is attained uniformly for all y ∈UE . The
norm of E is said to be uniformly Fréchet differentiable if the limit is attained uniformly
for all x, y ∈ UE . It is well known that (uniform) Fréchet differentiability of the norm of E
implies (uniform) Gâteaux differentiability of the norm of E.
Let ρE : [,∞)→ [,∞) be the modulus of smoothness of E by

ρE(t) = sup

{‖x + y‖ – ‖x – y‖


–  : x ∈UE ,‖y‖ ≤ t
}
.

A Banach space E is said to be uniformly smooth if ρE(t)
t →  as t → . It is well known

that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping J is
single valued and uniformly norm to weak∗ continuous on each bounded subset of E.
Recall that a closed convex subset C of a Banach space E is said to have a normal struc-

ture if for each bounded closed convex subset K of C which contains at least two points,
there exists an element x of K which is not a diametral point of K , i.e., sup{‖x – y‖ : y ∈
K} < d(K ), where d(K ) is the diameter of K .

©2014 Wu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2014/1/118
mailto:sqlvst@yeah.net
http://creativecommons.org/licenses/by/2.0


Wu et al. Fixed Point Theory and Applications 2014, 2014:118 Page 2 of 11
http://www.fixedpointtheoryandapplications.com/content/2014/1/118

Let D be a nonempty subset of a set C. Let ProjD : C →D. Q is said to be
() sunny if for each x ∈ C and t ∈ (, ), we have ProjD(tx + ( – t)ProjDx) = ProjDx;
() a contraction if ProjD = ProjD;
() a sunny nonexpansive retraction if ProjD is sunny, nonexpansive, and a contraction.
D is said to be a nonexpansive retract of C if there exists a nonexpansive retraction from

C onto D. The following result, which was established in [–], describes a characteriza-
tion of sunny nonexpansive retractions on a smooth Banach space.
Let E be a smooth Banach space and let C be a nonempty subset of E. Let ProjC : E → C

be a retraction and Jϕ be the duality mapping on E. Then the following are equivalent:
() ProjC is sunny and nonexpansive;
() 〈x – ProjCx, Jϕ(y – ProjCx)〉 ≤ , ∀x ∈ E, y ∈ C;
() ‖ProjCx – ProjCy‖ ≤ 〈x – y, Jϕ(ProjCx – ProjCy)〉, ∀x, y ∈ E.
It is well known that if E is a Hilbert space, then a sunny nonexpansive retraction ProjC is

coincident with the metric projection from E onto C. Let C be a nonempty closed convex
subset of a smooth Banach space E, let x ∈ E, and let x ∈ C. Then we have from the above
that x = ProjCx if and only if 〈x – x, Jϕ(y – x)〉 ≤  for all y ∈ C, where ProjC is a sunny
nonexpansive retraction from E ontoC. Formore additional information on nonexpansive
retracts, see [] and the references therein.
Let C be a nonempty closed convex subset of E. Let T : C → C be a mapping. In this

paper, we use F(T) to denote the set of fixed points of T . Recall that T is said to be an
α-contractive mapping iff there exists a constant α ∈ [, ) such that ‖Tx – Ty‖ ≤ α‖x –
y‖, ∀x, y ∈ C. The Picard iterative process is an efficient method to study fixed points of
α-contractive mappings. It is well known that α-contractive mappings have a unique fixed
point. T is said to be nonexpansive iff ‖Tx –Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. It is well known that
nonexpansive mappings have fixed points if the set C is closed and convex, and the space
E is uniformly convex. The Krasnoselski-Mann iterative process is an efficient method for
studying fixed points of nonexpansivemappings. TheKrasnoselski-Mann iterative process
generates a sequence {xn} in the following manner:

x ∈ C, xn+ = αnTxn + ( – αn)xn, ∀n≥ .

It is well known that the Krasnoselski-Mann iterative process only has weak convergence
for nonexpansive mappings in infinite-dimensional Hilbert spaces; see [–] for more de-
tails and the references therein. In many disciplines, including economics, image recov-
ery, quantum physics, and control theory, problems arise in infinite-dimensional spaces.
In such problems, strong convergence (norm convergence) is often much more desirable
than weak convergence, for it translates the physically tangible property that the energy
‖xn – x‖ of the error between the iterate xn and the solution x eventually becomes arbi-
trarily small. To improve the weak convergence of a Krasnoselski-Mann iterative process,
so-called hybrid projections have been considered; see [–] for more details and the
references therein. The Halpern iterative process was initially introduced in []; see []
for more details and the references therein. The Halpern iterative process generates a se-
quence {xn} in the following manner:

x ∈ C, xn+ = αnu + ( – αn)Txn, ∀n≥ ,
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where x is an initial and u is a fixed element in C. Strong convergence of Halpern iterative
process does not depend onmetric projections. TheHalpern iterative process has recently
been extensively studied for treating accretive operators; see [–] and the references
therein.
Let I denote the identity operator on E. An operator A⊂ E×E with domainD(A) = {z ∈

E : Az = ∅} and range R(A) =
⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)

and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . An
accretive operator A is said to be m-accretive if R(I + rA) = E for all r > . In this paper,
we use A–() to denote the set of zero points of A. For an accretive operator A, we can
define a nonexpansive single valued mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)– for
each r > , which is called the resolvent of A.
Now, we are in a position to give the lemmas to prove main results.

Lemma . [] Let {an}, {bn}, {cn}, and {dn} be four nonnegative real sequences satis-
fying an+ ≤ ( – bn)an + bncn + dn, ∀n ≥ n, where n is some positive integer, {bn} is a
number sequence in (, ) such that

∑∞
n=n bn = ∞, {cn} is a number sequence such that

lim supn→∞ cn ≤ , and {dn} is a positive number sequence such that
∑∞

n=n dn < ∞. Then
limn→∞ an = .

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space E.
Let N ≥  be some positive integer and let Ti : C → C be a nonexpansive mapping for
each i ∈ {, , . . . ,N}. Let {δi} be a real number sequence in (, ) with

∑N
i= δi = . Suppose

that
⋂N

i= F(Ti) is nonempty. Then the mapping
⋂N

i=Ti is defined to be nonexpansive with
F(

⋂N
i=Ti) =

⋂N
i= F(Ti).

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E and let βn

be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm and the normal structure, and let C be a nonempty closed convex subset of E.
Let f : C → C be α-contractive mapping and let T : C → C be a nonexpansive mapping
with a fixed point. Let {xt} be a sequence generated by the following: xt = tf (xt) + ( – t)Txt ,
where t ∈ (, ). Then {xt} converges strongly as t →  to a fixed point x∗ of T , which is the
unique solution in F(T) to the following variational inequality: 〈f (x∗) – x∗, j(x∗ – p)〉 ≥ ,
∀p ∈ F(T).

2 Main results
Theorem . Let E be a real reflexive, strictly convex Banach space with the uniformly
Gâteaux differentiable norm. Let N ≥  be some positive integer. Let Am be an m-accretive
operator in E for each m ∈ {, , . . . ,N}. Assume that C :=

⋂N
m=D(Am) is convex and has

the normal structure. Let f : C → C be an α-contractive mapping. Let {αn}, {βn}, and {γn}
be real number sequences in (, ) with the restriction αn + βn + γn = . Let {δn,i} be a real
number sequence in (, ) with the restriction δn, + δn, + · · ·+ δn,N = . Let {rm} be a positive
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real numbers sequence and {en,i} a sequence in E for each i ∈ {, , . . . ,N}. Assume that⋂N
i=A–

i () is not empty. Let {xn} be a sequence generated in the following manner:

x ∈ C, xn+ = αnf (xn) + βnxn + γn

N∑
i=

δn,iJri (xn + en,i), ∀n≥ ,

where Jri = (I + riAi)–. Assume that the control sequences {αn}, {βn}, {γn}, and {δn,i} satisfy
the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en,m‖ <∞;

(d) limn→∞ δn,i = δi ∈ (, ).
Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following
variational inequality: 〈f (x̄) – x̄, J(p – x̄)〉 ≤ , ∀p ∈ ⋂N

i=A–
i ().

Proof Put yn =
∑N

i= δn,iJri (xn + en,i). Fixing p ∈ ⋂N
i=A–

i (), we have

‖yn – p‖ ≤
N∑
i=

δn,i
∥∥Jri (xn + en,i) – p

∥∥

≤
N∑
i=

δn,i
∥∥(xn + en,i) – p

∥∥

≤ ‖xn – p‖ +
N∑
i=

‖en,i‖.

Hence, we have

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αnα‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + βn‖xn – p‖ + γn‖xn – p‖ + γn

N∑
i=

‖en,i‖

≤ (
 – αn( – α)

)‖xn – p‖ + αn( – α)
‖f (p) – p‖

 – α
+

N∑
i=

‖en,i‖

≤ max
{‖xn – p‖,∥∥f (p) – p

∥∥}
+

N∑
i=

‖en,i‖

...

≤ max
{‖x – p‖,∥∥f (p) – p

∥∥}
+

∞∑
j=

N∑
i=

‖ej,i‖.

This proves that the sequence {xn} is bounded, and so is {yn}. Since

yn – yn– =
N∑
i=

δn,i
(
Jrm (xn + en,i) – Jri (xn– + en–,i)

)

+
N∑
i=

(δn,i – δn–,i)Jri (xn– + en–,i),
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we have

‖yn – yn–‖ ≤
N∑
i=

δn,i
∥∥Jri (xn + en,i) – Jri (xn– + en–,i)

∥∥

+
N∑
i=

|δn,i – δn–,i|
∥∥Jri (xn– + en–,i)

∥∥

≤ ‖xn – xn–‖ +
N∑
i=

‖en,i‖ +
N∑
i=

‖en–,i‖

+
N∑
i=

|δn,i – δn–,i|
∥∥Jri (xn– + en–,i)

∥∥

≤ ‖xn – xn–‖ +
N∑
i=

‖en,i‖ +
N∑
i=

‖en–,i‖ +M

N∑
i=

|δn,i – δn–,i|,

whereM is an appropriate constant such that

M =max
{
sup
n≥

∥∥Jr (xn + en,)
∥∥, sup

n≥

∥∥Jr (xn + en,)
∥∥, . . . , sup

n≥

∥∥JrN (xn + en,N )
∥∥}

.

Define a sequence {zn} by zn := xn+–βnxn
–βn

, that is, xn+ = βnxn + ( – βn)zn. It follows that

‖yzn – zn–‖ ≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥ + ‖yn – yn–‖

≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥ + ‖xn – xn–‖

+
N∑
i=

|δn,i – δn–,i|‖Jrixn–‖

≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥ + ‖xn – xn–‖

+M

( N∑
i=

|δn,i – δi| +
N∑
i=

|δi – δn–,i|
)
,

whereM is an appropriate constant such that

M =max
{
sup
n≥

‖Jrxn‖, sup
n≥

‖Jrxn‖, . . . , sup
n≥

‖JrN xn‖
}
.

This implies that

‖zn – zn–‖ – ‖xn – xn–‖
≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥

+M

( N∑
i=

|δn,i – δi| +
N∑
i=

|δi – δn–,i|
)
.
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From the restrictions (a), (b), (c), and (d), we find that

lim sup
n→∞

(‖zn – zn–‖ – ‖xn – xn–‖
) ≤ .

Using Lemma ., we find that limn→∞ ‖zn – xn‖ = . This further shows that
lim supn→∞ ‖xn+ – xn‖ = . Put T =

∑N
i= δiJri . It follows from Lemma . that T is nonex-

pansive with F(T) =
⋂N

i= F(Jri ) =
⋂N

i=A–
i (). Note that

‖xn – Txn‖
≤ ‖xn – xn+‖ + ‖xn+ – Txn‖
≤ ‖xn – xn+‖ + αn

∥∥f (xn) – Txn
∥∥ + βn‖xn – Txn‖ + γn‖yn – Txn‖

≤ ‖xn – xn+‖ + αn
∥∥f (xn) – Txn

∥∥ + βn‖xn – Txn‖ +M

N∑
i=

|δn,i – δi|.

This implies that

( – βn)‖xn – Txn‖ ≤ ‖xn – xn+‖ + αn
∥∥f (xn) – Txn

∥∥ +M

N∑
i=

|δn,i – δi|.

It follows from the restrictions (a), (b), and (d) that

lim
n→∞‖Txn – xn‖ = .

Now, we are in a position to prove that lim supn→∞〈f (x̄) – x̄, J(xn – x̄)〉 ≤ , where x̄ =
limt→ xt , and xt solves the fixed point equation

xt = tf (xt) + ( – t)Txt , ∀t ∈ (, ).

It follows that

‖xt – xn‖ = t
〈
f (xt) – xn, J(xt – xn)

〉
+ ( – t)

〈
Txt – xn, j(xt – xn)

〉
= t

〈
f (xt) – xt , J(xt – xn)

〉
+ t

〈
xt – xn, J(xt – xn)

〉
+ ( – t)

〈
Txt – Txn, J(xt – xn)

〉
+ ( – t)

〈
Txn – xn, J(xt – xn)

〉
≤ t

〈
f (xt) – xt , J(xt – xn)

〉
+ ‖xt – xn‖ + ‖Txn – xn‖‖xt – xn‖, ∀t ∈ (, ).

This implies that

〈
xt – f (xt), J(xt – xn)

〉 ≤ 
t
‖Txn – xn‖‖xt – xn‖, ∀t ∈ (, ).

Since limn→∞ ‖Txn – xn‖ = , we find that lim supn→∞〈xt – f (xt), J(xt – xn)〉 ≤ . Since J is
strong to weak∗ uniformly continuous on bounded subsets of E, we find that

∣∣〈f (x̄) – x̄, J(xn – x̄)
〉
–

〈
xt – f (xt), J(xt – xn)

〉∣∣
≤ ∣∣〈f (x̄) – x̄, J(xn – x̄)

〉
–

〈
f (x̄) – x̄, J(xn – xt)

〉∣∣

http://www.fixedpointtheoryandapplications.com/content/2014/1/118
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+
∣∣〈f (x̄) – x̄, J(xn – xt)

〉
–

〈
xt – f (xt), J(xt – xn)

〉∣∣
≤ ∣∣〈f (x̄) – x̄, J(xn – x̄) – J(xn – xt)

〉∣∣ + ∣∣〈f (x̄) – x̄ + xt – f (xt), J(xn – xt)
〉∣∣

≤ ∥∥f (xt) – x̄
∥∥∥∥J(xn – x̄) – J(xn – xt)

∥∥ + ( + α)‖x̄ – xt‖‖xn – xt‖.

Since xt → x̄, as t → , we have

lim
t→

∣∣〈f (x̄) – x̄, J(xn – x̄)
〉
–

〈
f (xt) – xt , J(xn – xt)

〉∣∣ = .

For ε > , there exists δ >  such that ∀t ∈ (, δ), we have

〈
f (x̄) – x̄, J(xn – x̄)

〉 ≤ 〈
f (xt) – xt , J(xn – xt)

〉
+ ε.

This implies that lim supn→∞〈f (x̄) – x̄, J(xn – x̄)〉 ≤ .
Finally, we show that xn → x̄ as n→ ∞. Since ‖ · ‖ is convex, we see that

‖yn – x̄‖ =

∥∥∥∥∥
N∑
i=

δn,iJri (xn + en,i) – x̄

∥∥∥∥∥


≤
N∑
i=

δn,i
∥∥Jri (xn + en,i) – x̄

∥∥

≤ ‖xn – x̄‖ +
N∑
i=

‖en,i‖
(‖en,i‖ + ‖xn – x̄‖).

It follows that

‖xn+ – x̄‖ = αn
〈
f (xn) – x̄, J(xn+ – x̄)

〉
+ βn

〈
xn – x̄, J(xn+ – x̄)

〉
+ γn

〈
yn – x̄, J(xn+ – x̄)

〉
≤ αnα‖xn – x̄‖‖xn+ – x̄‖ + αn

〈
f (x̄) – x̄, J(xn+ – x̄)

〉
+ βn‖xn – x̄‖‖xn+ – x̄‖ + γn‖yn – x̄‖‖xn+ – x̄‖

≤ αnα


(‖xn – x̄‖ + ‖xn+ – x̄‖) + αn

〈
f (x̄) – x̄, J(xn+ – x̄)

〉
+

βn


(‖xn – x̄‖ + ‖xn+ – x̄‖) + γn


‖xn – x̄‖

+
N∑
i=

‖en,i‖
(‖en,i‖ + ‖xn – x̄‖) + γn


‖xn+ – x̄‖.

Hence, we have

‖xn+ – x̄‖ ≤ (
 – αn( – α)

)‖xn – x̄‖ + αn
〈
f (x̄) – x̄, J(xn+ – x̄)

〉
+

N∑
i=

‖en,i‖
(‖en,i‖ + ‖xn – x̄‖).

Using Lemma ., we find xn → x̄ as n→ ∞. This completes the proof. �
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Remark . There are many spaces satisfying the restriction in Theorem ., for example
Lp, where p > .

Corollary . Let E be a Hilbert space and let N ≥  be some positive integer. Let Am be a
maximal monotone operator in E for each m ∈ {, , . . . ,N}. Assume that C :=

⋂N
m=D(Am)

is convex and has the normal structure. Let f : C → C be an α-contractive mapping. Let
{αn}, {βn}, and {γn} be real number sequences in (, ) with the restriction αn + βn + γn = .
Let {δn,i} be a real number sequence in (, )with the restriction δn, +δn, + · · ·+δn,N = . Let
{rm} be a positive real numbers sequence and {en,i} a sequence in E for each i ∈ {, , . . . ,N}.
Assume that

⋂N
i=A–

i () is not empty. Let {xn} be a sequence generated in the following
manner:

x ∈ C, xn+ = αnf (xn) + βnxn + γn

N∑
i=

δn,iJri (xn + en,i), ∀n≥ ,

where Jri = (I + riAi)–. Assume that the control sequences {αn}, {βn}, {γn}, and {δn,i} satisfy
the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en,m‖ <∞;

(d) limn→∞ δn,i = δi ∈ (, ).
Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following
variational inequality: 〈f (x̄) – x̄,p – x̄〉 ≤ , ∀p ∈ ⋂N

i=A–
i ().

3 Applications
In this section, we consider a variational inequality problem. Let A : C → E∗ be a single
valued monotone operator which is hemicontinuous; that is, continuous along each line
segment in C with respect to the weak∗ topology of E∗. Consider the following variational
inequality:

find x ∈ C such that 〈y – x,Ax〉 ≥ , ∀y ∈ C.

The solution set of the variational inequality is denoted byVI(C,A). Recall that the normal
cone NC(x) for C at a point x ∈ C is defined by

NC(x) =
{
x∗ ∈ E∗ :

〈
y – x,x∗〉 ≤ ,∀y ∈ C

}
.

Now, we are in a position to give the convergence theorem.

Theorem . Let E be a real reflexive, strictly convex Banach space with the uniformly
Gâteaux differentiable norm. Let N ≥  be some positive integer and let C be nonempty
closed and convex subset of E. Let Ai : C → E∗ a single valued,monotone and hemicontinu-
ous operator. Assume that

⋂N
i=VI(C,Ai) is not empty and C has the normal structure. Let

f : C → C be an α-contractive mapping. Let {αn}, {βn}, and {γn} be real number sequences
in (, ) with the restriction αn + βn + γn = . Let {δn,i} be a real number sequence in (, )
with the restriction δn, + δn, + · · · + δn,N = . Let {rm} be a positive real numbers sequence
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and {en,i} a sequence in E for each i ∈ {, , . . . ,N}. Let {xn} be a sequence generated in the
following manner:

x ∈ C, xn+ = αnf (xn) + βnxn + γn

N∑
i=

δn,iVI

(
C,Ai +


ri
(I – xn)

)
, ∀n≥ .

Assume that the control sequences {αn}, {βn}, {γn}, and {δn,i} satisfy the following restric-
tions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en,m‖ <∞;

(d) limn→∞ δn,i = δi ∈ (, ).
Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following
variational inequality: 〈f (x̄) – x̄, J(p – x̄)〉 ≤ , ∀p ∈ ⋂N

i=VI(C,Ai).

Proof Define a mapping Ti ⊂ E × E∗ by

Tix :=

⎧⎨
⎩Aix +NCx, x ∈ C,

∅, x /∈ C.

From Rockafellar [], we find that Ti is maximal monotone with T–
i () = VI(C,Ai). For

each ri > , and xn ∈ E, we see that there exists a unique xri ∈ D(Ti) such that xn ∈ xri +
riTi(xri ), where xri = (I + riTi)–xn. Notice that

yn,i =VI

(
C,Ai +


ri
(I – xn)

)
,

which is equivalent to

〈
y – yn,i,Aiyn,i +


ri
(yn,i – xn)

〉
≥ , ∀y ∈ C,

that is, –Aiyn,i + 
ri
(xn – yn,i) ∈ NC(yn,i). This implies that yn,i = (I + riTi)–xn. Using Theo-

rem ., we find the desired conclusion immediately. �

From Theorem ., the following result is not hard to derive.

Corollary . Let E be a real reflexive, strictly convex Banach space with the uniformly
Gâteaux differentiable norm. Let C be nonempty closed and convex subset of E. Let A : C →
E∗ a single valued,monotone and hemicontinuous operator with VI(C,A). Assume that C
has the normal structure. Let f : C → C be an α-contractive mapping. Let {αn}, {βn}, and
{γn} be real number sequences in (, ) with the restriction αn + βn + γn = . Let {xn} be a
sequence generated in the following manner:

x ∈ C, xn+ = αnf (xn) + βnxn + γnVI

(
C,A +


r
(I – xn)

)
, ∀n≥ .

Assume that the control sequences {αn}, {βn}, and {γn} satisfy the following restrictions:

http://www.fixedpointtheoryandapplications.com/content/2014/1/118
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(a) limn→∞ αn = ,
∑∞

n= αn =∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Then the sequence {xn} converges strongly to x̄, which is the unique solution to the following
variational inequality: 〈f (x̄) – x̄, J(p – x̄)〉 ≤ , ∀p ∈VI(C,Ai).
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