Open Access

Some results on zero points of *m*-accretive operators in reflexive Banach spaces

Chang Qun Wu¹, Songtao Lv^{2*} and Yunpeng Zhang³

*Correspondence: sqlvst@yeah.net ²School of Mathematics and Information Science, Shangqiu Normal University, Shangqiu, Henan, China Full list of author information is available at the end of the article

Abstract

A modified proximal point algorithm is proposed for treating common zero points of a finite family of *m*-accretive operators. A strong convergence theorem is established in a reflexive, strictly convex Banach space with the uniformly Gâteaux differentiable norm.

Keywords: accretive operator; nonexpansive mapping; resolvent; fixed point; zero point

1 Introduction and preliminaries

Let *E* be a Banach space and let E^* be the dual of *E*. Let $\langle \cdot, \cdot \rangle$ denote the pairing between *E* and E^* . The normalized duality mapping $J : E \to 2^{E^*}$ is defined by

$$J(x) = \{ f \in E^* : \langle x, f \rangle = ||x||^2 = ||f||^2 \}, \quad \forall x \in E.$$

A Banach space *E* is said to strictly convex if and only if $||x|| = ||y|| = ||(1 - \lambda)x + \lambda y||$ for $x, y \in E$ and $0 < \lambda < 1$ implies that x = y. Let $U_E = \{x \in E : ||x|| = 1\}$. The norm of *E* is said to be Gâteaux differentiable if the limit $\lim_{t\to 0} \frac{||x+ty|| - ||x||}{t}$ exists for each $x, y \in U_E$. In this case, *E* is said to be smooth. The norm of *E* is said to be uniformly Gâteaux differentiable if for each $y \in U_E$, the limit is attained uniformly for all $x \in U_E$. The norm of *E* is said to be Fréchet differentiable if for each $x \in U_E$, the limit is attained uniformly for all $y \in U_E$. The norm of *E* is said to be uniformly for all $y \in U_E$. The norm of *E* is said to be uniformly Fréchet differentiable if the limit is attained uniformly for all $y \in U_E$. The norm of *E* is said to be uniformly Fréchet differentiable if the limit is attained uniformly for all $x, y \in U_E$. It is well known that (uniform) Fréchet differentiability of the norm of *E* implies (uniform) Gâteaux differentiability of the norm of *E*.

Let $\rho_E : [0, \infty) \to [0, \infty)$ be the modulus of smoothness of *E* by

$$\rho_E(t) = \sup\left\{\frac{\|x+y\| - \|x-y\|}{2} - 1 : x \in U_E, \|y\| \le t\right\}.$$

A Banach space *E* is said to be uniformly smooth if $\frac{\rho_E(t)}{t} \to 0$ as $t \to 0$. It is well known that if the norm of *E* is uniformly Gâteaux differentiable, then the duality mapping *J* is single valued and uniformly norm to weak^{*} continuous on each bounded subset of *E*.

Recall that a closed convex subset *C* of a Banach space *E* is said to have a normal structure if for each bounded closed convex subset *K* of *C* which contains at least two points, there exists an element *x* of *K* which is not a diametral point of *K*, *i.e.*, $\sup\{||x - y|| : y \in K\} < d(K)$, where d(K) is the diameter of *K*.

©2014 Wu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let *D* be a nonempty subset of a set *C*. Let $Proj_D : C \to D$. *Q* is said to be

- (1) sunny if for each $x \in C$ and $t \in (0, 1)$, we have $Proj_D(tx + (1 t)Proj_Dx) = Proj_Dx$;
- (2) a contraction if $Proj_D^2 = Proj_D$;
- (3) a sunny nonexpansive retraction if $Proj_D$ is sunny, nonexpansive, and a contraction.

D is said to be a nonexpansive retract of *C* if there exists a nonexpansive retraction from *C* onto *D*. The following result, which was established in [1-3], describes a characterization of sunny nonexpansive retractions on a smooth Banach space.

Let *E* be a smooth Banach space and let *C* be a nonempty subset of *E*. Let $Proj_C : E \to C$ be a retraction and J_{φ} be the duality mapping on *E*. Then the following are equivalent:

- (1) *Proj_C* is sunny and nonexpansive;
- (2) $\langle x Proj_C x, J_{\varphi}(y Proj_C x) \rangle \leq 0, \forall x \in E, y \in C;$
- (3) $\|Proj_C x Proj_C y\|^2 \le \langle x y, J_{\varphi}(Proj_C x Proj_C y) \rangle, \forall x, y \in E.$

It is well known that if *E* is a Hilbert space, then a sunny nonexpansive retraction $Proj_C$ is coincident with the metric projection from *E* onto *C*. Let *C* be a nonempty closed convex subset of a smooth Banach space *E*, let $x \in E$, and let $x_0 \in C$. Then we have from the above that $x_0 = Proj_C x$ if and only if $\langle x - x_0, J_{\varphi}(y - x_0) \rangle \leq 0$ for all $y \in C$, where $Proj_C$ is a sunny nonexpansive retraction from *E* onto *C*. For more additional information on nonexpansive retracts, see [4] and the references therein.

Let *C* be a nonempty closed convex subset of *E*. Let $T : C \to C$ be a mapping. In this paper, we use F(T) to denote the set of fixed points of *T*. Recall that *T* is said to be an α -contractive mapping iff there exists a constant $\alpha \in [0,1)$ such that $||Tx - Ty|| \le \alpha ||x - y||$, $\forall x, y \in C$. The Picard iterative process is an efficient method to study fixed points of α -contractive mappings. It is well known that α -contractive mappings have a unique fixed point. *T* is said to be nonexpansive iff $||Tx - Ty|| \le ||x - y||$, $\forall x, y \in C$. It is well known that nonexpansive mappings have fixed points if the set *C* is closed and convex, and the space *E* is uniformly convex. The Krasnoselski-Mann iterative process is an efficient method for studying fixed points of nonexpansive mappings. The Krasnoselski-Mann iterative process generates a sequence $\{x_n\}$ in the following manner:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n T x_n + (1 - \alpha_n) x_n$, $\forall n \ge 1$.

It is well known that the Krasnoselski-Mann iterative process only has weak convergence for nonexpansive mappings in infinite-dimensional Hilbert spaces; see [5–7] for more details and the references therein. In many disciplines, including economics, image recovery, quantum physics, and control theory, problems arise in infinite-dimensional spaces. In such problems, strong convergence (norm convergence) is often much more desirable than weak convergence, for it translates the physically tangible property that the energy $||x_n - x||$ of the error between the iterate x_n and the solution x eventually becomes arbitrarily small. To improve the weak convergence of a Krasnoselski-Mann iterative process, so-called hybrid projections have been considered; see [8–22] for more details and the references therein. The Halpern iterative process was initially introduced in [23]; see [23] for more details and the references therein. The Halpern iterative process generates a sequence { x_n } in the following manner:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n$, $\forall n \ge 1$,

where x_1 is an initial and u is a fixed element in C. Strong convergence of Halpern iterative process does not depend on metric projections. The Halpern iterative process has recently been extensively studied for treating accretive operators; see [24–31] and the references therein.

Let *I* denote the identity operator on *E*. An operator $A \subset E \times E$ with domain $D(A) = \{z \in E : Az \neq \emptyset\}$ and range $R(A) = \bigcup \{Az : z \in D(A)\}$ is said to be accretive if for each $x_i \in D(A)$ and $y_i \in Ax_i$, i = 1, 2, there exists $j(x_1 - x_2) \in J(x_1 - x_2)$ such that $\langle y_1 - y_2, j(x_1 - x_2) \rangle \ge 0$. An accretive operator *A* is said to be *m*-accretive if R(I + rA) = E for all r > 0. In this paper, we use $A^{-1}(0)$ to denote the set of zero points of *A*. For an accretive operator *A*, we can define a nonexpansive single valued mapping $J_r : R(I + rA) \to D(A)$ by $J_r = (I + rA)^{-1}$ for each r > 0, which is called the resolvent of *A*.

Now, we are in a position to give the lemmas to prove main results.

Lemma 1.1 [32] Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, and $\{d_n\}$ be four nonnegative real sequences satisfying $a_{n+1} \leq (1 - b_n)a_n + b_nc_n + d_n$, $\forall n \geq n_0$, where n_0 is some positive integer, $\{b_n\}$ is a number sequence in (0,1) such that $\sum_{n=n_0}^{\infty} b_n = \infty$, $\{c_n\}$ is a number sequence such that $\limsup_{n\to\infty} c_n \leq 0$, and $\{d_n\}$ is a positive number sequence such that $\sum_{n=n_0}^{\infty} d_n < \infty$. Then $\lim_{n\to\infty} a_n = 0$.

Lemma 1.2 [33] Let C be a closed convex subset of a strictly convex Banach space E. Let $N \ge 1$ be some positive integer and let $T_i : C \to C$ be a nonexpansive mapping for each $i \in \{1, 2, ..., N\}$. Let $\{\delta_i\}$ be a real number sequence in (0, 1) with $\sum_{i=1}^N \delta_i = 1$. Suppose that $\bigcap_{i=1}^N F(T_i)$ is nonempty. Then the mapping $\bigcap_{i=1}^N T_i$ is defined to be nonexpansive with $F(\bigcap_{i=1}^N T_i) = \bigcap_{i=1}^N F(T_i)$.

Lemma 1.3 [34] Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a Banach space E and let β_n be a sequence in [0,1] with $0 < \liminf_{n\to\infty} \beta_n \le \limsup_{n\to\infty} \beta_n < 1$. Suppose that $x_{n+1} = (1 - \beta_n)y_n + \beta_n x_n$ for all $n \ge 0$ and

 $\limsup_{n\to\infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \le 0.$

Then $\lim_{n\to\infty} \|y_n - x_n\| = 0$.

Lemma 1.4 [35] Let *E* be a real reflexive Banach space with the uniformly Gâteaux differentiable norm and the normal structure, and let *C* be a nonempty closed convex subset of *E*. Let $f : C \to C$ be α -contractive mapping and let $T : C \to C$ be a nonexpansive mapping with a fixed point. Let $\{x_t\}$ be a sequence generated by the following: $x_t = tf(x_t) + (1-t)Tx_t$, where $t \in (0,1)$. Then $\{x_t\}$ converges strongly as $t \to 0$ to a fixed point x^* of *T*, which is the unique solution in F(T) to the following variational inequality: $\langle f(x^*) - x^*, j(x^* - p) \rangle \ge 0$, $\forall p \in F(T)$.

2 Main results

Theorem 2.1 Let *E* be a real reflexive, strictly convex Banach space with the uniformly Gâteaux differentiable norm. Let $N \ge 1$ be some positive integer. Let A_m be an *m*-accretive operator in *E* for each $m \in \{1, 2, ..., N\}$. Assume that $C := \bigcap_{m=1}^{N} \overline{D(A_m)}$ is convex and has the normal structure. Let $f : C \to C$ be an α -contractive mapping. Let $\{\alpha_n\}, \{\beta_n\}, and \{\gamma_n\}$ be real number sequences in (0, 1) with the restriction $\alpha_n + \beta_n + \gamma_n = 1$. Let $\{\delta_{n,i}\}$ be a positive

real numbers sequence and $\{e_{n,i}\}$ a sequence in E for each $i \in \{1, 2, ..., N\}$. Assume that $\bigcap_{i=1}^{N} A_i^{-1}(0)$ is not empty. Let $\{x_n\}$ be a sequence generated in the following manner:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n \sum_{i=1}^N \delta_{n,i} J_{r_i}(x_n + e_{n,i})$, $\forall n \ge 1$,

where $J_{r_i} = (I + r_i A_i)^{-1}$. Assume that the control sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, and \{\delta_{n,i}\}$ satisfy the following restrictions:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (b) $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1;$
- (c) $\sum_{n=1}^{\infty} \|e_{n,m}\| < \infty;$
- (d) $\lim_{n\to\infty} \delta_{n,i} = \delta_i \in (0,1).$

Then the sequence $\{x_n\}$ converges strongly to \bar{x} , which is the unique solution to the following variational inequality: $\langle f(\bar{x}) - \bar{x}, J(p - \bar{x}) \rangle \leq 0, \forall p \in \bigcap_{i=1}^N A_i^{-1}(0).$

Proof Put $y_n = \sum_{i=1}^N \delta_{n,i} J_{r_i}(x_n + e_{n,i})$. Fixing $p \in \bigcap_{i=1}^N A_i^{-1}(0)$, we have

$$\|y_n - p\| \le \sum_{i=1}^N \delta_{n,i} \|J_{r_i}(x_n + e_{n,i}) - p\|$$

$$\le \sum_{i=1}^N \delta_{n,i} \|(x_n + e_{n,i}) - p\|$$

$$\le \|x_n - p\| + \sum_{i=1}^N \|e_{n,i}\|.$$

Hence, we have

$$\begin{aligned} \|x_{n+1} - p\| &\leq \alpha_n \|f(x_n) - p\| + \beta_n \|x_n - p\| + \gamma_n \|y_n - p\| \\ &\leq \alpha_n \alpha \|x_n - p\| + \alpha_n \|f(p) - p\| + \beta_n \|x_n - p\| + \gamma_n \|x_n - p\| + \gamma_n \sum_{i=1}^N \|e_{n,i}\| \\ &\leq \left(1 - \alpha_n (1 - \alpha)\right) \|x_n - p\| + \alpha_n (1 - \alpha) \frac{\|f(p) - p\|}{1 - \alpha} + \sum_{i=1}^N \|e_{n,i}\| \\ &\leq \max\{\|x_n - p\|, \|f(p) - p\|\} + \sum_{i=1}^N \|e_{n,i}\| \\ &\vdots \\ &\leq \max\{\|x_1 - p\|, \|f(p) - p\|\} + \sum_{j=1}^\infty \sum_{i=1}^N \|e_{j,i}\|. \end{aligned}$$

This proves that the sequence $\{x_n\}$ is bounded, and so is $\{y_n\}$. Since

$$y_n - y_{n-1} = \sum_{i=1}^N \delta_{n,i} (J_{r_m}(x_n + e_{n,i}) - J_{r_i}(x_{n-1} + e_{n-1,i})) + \sum_{i=1}^N (\delta_{n,i} - \delta_{n-1,i}) J_{r_i}(x_{n-1} + e_{n-1,i}),$$

we have

$$\begin{split} \|y_n - y_{n-1}\| &\leq \sum_{i=1}^N \delta_{n,i} \left\| J_{r_i}(x_n + e_{n,i}) - J_{r_i}(x_{n-1} + e_{n-1,i}) \right\| \\ &+ \sum_{i=1}^N |\delta_{n,i} - \delta_{n-1,i}| \left\| J_{r_i}(x_{n-1} + e_{n-1,i}) \right\| \\ &\leq \|x_n - x_{n-1}\| + \sum_{i=1}^N \|e_{n,i}\| + \sum_{i=1}^N \|e_{n-1,i}\| \\ &+ \sum_{i=1}^N |\delta_{n,i} - \delta_{n-1,i}| \left\| J_{r_i}(x_{n-1} + e_{n-1,i}) \right\| \\ &\leq \|x_n - x_{n-1}\| + \sum_{i=1}^N \|e_{n,i}\| + \sum_{i=1}^N \|e_{n-1,i}\| + M_1 \sum_{i=1}^N |\delta_{n,i} - \delta_{n-1,i}|, \end{split}$$

where M_1 is an appropriate constant such that

$$M_{1} = \max\left\{\sup_{n\geq 1} \|J_{r_{1}}(x_{n}+e_{n,1})\|, \sup_{n\geq 1} \|J_{r_{2}}(x_{n}+e_{n,2})\|, \dots, \sup_{n\geq 1} \|J_{r_{N}}(x_{n}+e_{n,N})\|\right\}.$$

Define a sequence $\{z_n\}$ by $z_n := \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n}$, that is, $x_{n+1} = \beta_n x_n + (1 - \beta_n) z_n$. It follows that

$$\begin{aligned} \|yz_n - z_{n-1}\| &\leq \frac{\alpha_n}{1 - \beta_n} \|f(x_n) - y_n\| + \frac{\alpha_{n-1}}{1 - \beta_{n-1}} \|f(x_{n-1}) - y_{n-1}\| + \|y_n - y_{n-1}\| \\ &\leq \frac{\alpha_n}{1 - \beta_n} \|f(x_n) - y_n\| + \frac{\alpha_{n-1}}{1 - \beta_{n-1}} \|f(x_{n-1}) - y_{n-1}\| + \|x_n - x_{n-1}\| \\ &+ \sum_{i=1}^N |\delta_{n,i} - \delta_{n-1,i}| \|J_{r_i} x_{n-1}\| \\ &\leq \frac{\alpha_n}{1 - \beta_n} \|f(x_n) - y_n\| + \frac{\alpha_{n-1}}{1 - \beta_{n-1}} \|f(x_{n-1}) - y_{n-1}\| + \|x_n - x_{n-1}\| \\ &+ M_2 \left(\sum_{i=1}^N |\delta_{n,i} - \delta_i| + \sum_{i=1}^N |\delta_i - \delta_{n-1,i}|\right), \end{aligned}$$

.

where ${\cal M}_2$ is an appropriate constant such that

$$M_{2} = \max\left\{\sup_{n\geq 1} \|J_{r_{1}}x_{n}\|, \sup_{n\geq 1} \|J_{r_{2}}x_{n}\|, \dots, \sup_{n\geq 1} \|J_{r_{N}}x_{n}\|\right\}.$$

This implies that

$$\begin{split} \|z_n - z_{n-1}\| - \|x_n - x_{n-1}\| \\ &\leq \frac{\alpha_n}{1 - \beta_n} \left\| f(x_n) - y_n \right\| + \frac{\alpha_{n-1}}{1 - \beta_{n-1}} \left\| f(x_{n-1}) - y_{n-1} \right\| \\ &+ M_2 \left(\sum_{i=1}^N |\delta_{n,i} - \delta_i| + \sum_{i=1}^N |\delta_i - \delta_{n-1,i}| \right). \end{split}$$

From the restrictions (a), (b), (c), and (d), we find that

$$\limsup_{n\to\infty} (\|z_n - z_{n-1}\| - \|x_n - x_{n-1}\|) \le 0.$$

Using Lemma 1.4, we find that $\lim_{n\to\infty} ||z_n - x_n|| = 0$. This further shows that $\limsup_{n\to\infty} ||x_{n+1} - x_n|| = 0$. Put $T = \sum_{i=1}^N \delta_i J_{r_i}$. It follows from Lemma 1.3 that *T* is nonexpansive with $F(T) = \bigcap_{i=1}^N F(J_{r_i}) = \bigcap_{i=1}^N A_i^{-1}(0)$. Note that

$$\begin{aligned} \|x_n - Tx_n\| \\ &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - Tx_n\| \\ &\leq \|x_n - x_{n+1}\| + \alpha_n \|f(x_n) - Tx_n\| + \beta_n \|x_n - Tx_n\| + \gamma_n \|y_n - Tx_n\| \\ &\leq \|x_n - x_{n+1}\| + \alpha_n \|f(x_n) - Tx_n\| + \beta_n \|x_n - Tx_n\| + M_2 \sum_{i=1}^N |\delta_{n,i} - \delta_i| \end{aligned}$$

This implies that

$$(1-\beta_n)\|x_n - Tx_n\| \le \|x_n - x_{n+1}\| + \alpha_n \|f(x_n) - Tx_n\| + M_2 \sum_{i=1}^N |\delta_{n,i} - \delta_i|$$

It follows from the restrictions (a), (b), and (d) that

$$\lim_{n\to\infty}\|Tx_n-x_n\|=0.$$

Now, we are in a position to prove that $\limsup_{n\to\infty} \langle f(\bar{x}) - \bar{x}, J(x_n - \bar{x}) \rangle \le 0$, where $\bar{x} = \lim_{t\to 0} x_t$, and x_t solves the fixed point equation

$$x_t = tf(x_t) + (1-t)Tx_t, \quad \forall t \in (0,1).$$

It follows that

$$\begin{aligned} \|x_t - x_n\|^2 &= t \langle f(x_t) - x_n, J(x_t - x_n) \rangle + (1 - t) \langle Tx_t - x_n, j(x_t - x_n) \rangle \\ &= t \langle f(x_t) - x_t, J(x_t - x_n) \rangle + t \langle x_t - x_n, J(x_t - x_n) \rangle \\ &+ (1 - t) \langle Tx_t - Tx_n, J(x_t - x_n) \rangle + (1 - t) \langle Tx_n - x_n, J(x_t - x_n) \rangle \\ &\leq t \langle f(x_t) - x_t, J(x_t - x_n) \rangle + \|x_t - x_n\|^2 + \|Tx_n - x_n\| \|x_t - x_n\|, \quad \forall t \in (0, 1). \end{aligned}$$

This implies that

$$\langle x_t - f(x_t), J(x_t - x_n) \rangle \le \frac{1}{t} || Tx_n - x_n || || x_t - x_n ||, \quad \forall t \in (0, 1).$$

Since $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$, we find that $\limsup_{n\to\infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle \le 0$. Since *J* is strong to weak* uniformly continuous on bounded subsets of *E*, we find that

$$\begin{split} \left| \left\langle f(\bar{x}) - \bar{x}, J(x_n - \bar{x}) \right\rangle - \left\langle x_t - f(x_t), J(x_t - x_n) \right\rangle \right| \\ &\leq \left| \left\langle f(\bar{x}) - \bar{x}, J(x_n - \bar{x}) \right\rangle - \left\langle f(\bar{x}) - \bar{x}, J(x_n - x_t) \right\rangle \right| \end{split}$$

Since $x_t \rightarrow \bar{x}$, as $t \rightarrow 0$, we have

$$\lim_{t\to 0} \left| \left\langle f(\bar{x}) - \bar{x}, J(x_n - \bar{x}) \right\rangle - \left\langle f(x_t) - x_t, J(x_n - x_t) \right\rangle \right| = 0.$$

For $\epsilon > 0$, there exists $\delta > 0$ such that $\forall t \in (0, \delta)$, we have

$$\langle f(\bar{x}) - \bar{x}, J(x_n - \bar{x}) \rangle \leq \langle f(x_t) - x_t, J(x_n - x_t) \rangle + \epsilon.$$

This implies that $\limsup_{n\to\infty} \langle f(\bar{x}) - \bar{x}, J(x_n - \bar{x}) \rangle \le 0$.

Finally, we show that $x_n \to \bar{x}$ as $n \to \infty$. Since $\|\cdot\|^2$ is convex, we see that

$$\|y_n - \bar{x}\|^2 = \left\| \sum_{i=1}^N \delta_{n,i} J_{r_i}(x_n + e_{n,i}) - \bar{x} \right\|^2$$

$$\leq \sum_{i=1}^N \delta_{n,i} \|J_{r_i}(x_n + e_{n,i}) - \bar{x}\|^2$$

$$\leq \|x_n - \bar{x}\|^2 + \sum_{i=1}^N \|e_{n,i}\| (\|e_{n,i}\| + 2\|x_n - \bar{x}\|)$$

It follows that

$$\begin{aligned} \|x_{n+1} - \bar{x}\|^2 &= \alpha_n \langle f(x_n) - \bar{x}, J(x_{n+1} - \bar{x}) \rangle + \beta_n \langle x_n - \bar{x}, J(x_{n+1} - \bar{x}) \rangle \\ &+ \gamma_n \langle y_n - \bar{x}, J(x_{n+1} - \bar{x}) \rangle \\ &\leq \alpha_n \alpha \|x_n - \bar{x}\| \|x_{n+1} - \bar{x}\| + \alpha_n \langle f(\bar{x}) - \bar{x}, J(x_{n+1} - \bar{x}) \rangle \\ &+ \beta_n \|x_n - \bar{x}\| \|x_{n+1} - \bar{x}\| + \gamma_n \|y_n - \bar{x}\| \|x_{n+1} - \bar{x}\| \\ &\leq \frac{\alpha_n \alpha}{2} \left(\|x_n - \bar{x}\|^2 + \|x_{n+1} - \bar{x}\|^2 \right) + \alpha_n \langle f(\bar{x}) - \bar{x}, J(x_{n+1} - \bar{x}) \rangle \\ &+ \frac{\beta_n}{2} \left(\|x_n - \bar{x}\|^2 + \|x_{n+1} - \bar{x}\|^2 \right) + \frac{\gamma_n}{2} \|x_n - \bar{x}\|^2 \\ &+ \sum_{i=1}^N \|e_{n,i}\| \left(\|e_{n,i}\| + 2\|x_n - \bar{x}\| \right) + \frac{\gamma_n}{2} \|x_{n+1} - \bar{x}\|^2. \end{aligned}$$

Hence, we have

$$\begin{aligned} \|x_{n+1} - \bar{x}\|^2 &\leq \left(1 - \alpha_n (1 - \alpha)\right) \|x_n - \bar{x}\|^2 + 2\alpha_n \langle f(\bar{x}) - \bar{x}, J(x_{n+1} - \bar{x}) \rangle \\ &+ \sum_{i=1}^N \|e_{n,i}\| \left(\|e_{n,i}\| + 2\|x_n - \bar{x}\| \right). \end{aligned}$$

Using Lemma 1.1, we find $x_n \to \bar{x}$ as $n \to \infty$. This completes the proof.

Remark 2.2 There are many spaces satisfying the restriction in Theorem 2.1, for example L^p , where p > 1.

Corollary 2.3 Let *E* be a Hilbert space and let $N \ge 1$ be some positive integer. Let A_m be a maximal monotone operator in *E* for each $m \in \{1, 2, ..., N\}$. Assume that $C := \bigcap_{m=1}^{N} \overline{D(A_m)}$ is convex and has the normal structure. Let $f : C \to C$ be an α -contractive mapping. Let $\{\alpha_n\}, \{\beta_n\}, and \{\gamma_n\}$ be real number sequences in (0,1) with the restriction $\alpha_n + \beta_n + \gamma_n = 1$. Let $\{\delta_{n,i}\}$ be a real number sequence in (0,1) with the restriction $\delta_{n,1} + \delta_{n,2} + \cdots + \delta_{n,N} = 1$. Let $\{r_m\}$ be a positive real number sequence and $\{e_{n,i}\}$ a sequence in *E* for each $i \in \{1, 2, ..., N\}$. Assume that $\bigcap_{i=1}^{N} A_i^{-1}(0)$ is not empty. Let $\{x_n\}$ be a sequence generated in the following manner:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n \sum_{i=1}^N \delta_{n,i} J_{r_i}(x_n + e_{n,i})$, $\forall n \ge 1$,

where $J_{r_i} = (I + r_i A_i)^{-1}$. Assume that the control sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, and \{\delta_{n,i}\}$ satisfy the following restrictions:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (b) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1;$
- (c) $\sum_{n=1}^{\infty} \|e_{n,m}\| < \infty;$
- (d) $\lim_{n\to\infty} \delta_{n,i} = \delta_i \in (0,1).$

Then the sequence $\{x_n\}$ converges strongly to \bar{x} , which is the unique solution to the following variational inequality: $\langle f(\bar{x}) - \bar{x}, p - \bar{x} \rangle \leq 0$, $\forall p \in \bigcap_{i=1}^N A_i^{-1}(0)$.

3 Applications

In this section, we consider a variational inequality problem. Let $A : C \rightarrow E^*$ be a single valued monotone operator which is hemicontinuous; that is, continuous along each line segment in *C* with respect to the weak^{*} topology of E^* . Consider the following variational inequality:

find $x \in C$ such that $\langle y - x, Ax \rangle \ge 0$, $\forall y \in C$.

The solution set of the variational inequality is denoted by VI(C, A). Recall that the normal cone $N_C(x)$ for *C* at a point $x \in C$ is defined by

$$N_C(x) = \left\{ x^* \in E^* : \left\langle y - x, x^* \right\rangle \le 0, \forall y \in C \right\}.$$

Now, we are in a position to give the convergence theorem.

Theorem 3.1 Let *E* be a real reflexive, strictly convex Banach space with the uniformly Gâteaux differentiable norm. Let $N \ge 1$ be some positive integer and let *C* be nonempty closed and convex subset of *E*. Let $A_i : C \to E^*$ a single valued, monotone and hemicontinuous operator. Assume that $\bigcap_{i=1}^{N} VI(C, A_i)$ is not empty and *C* has the normal structure. Let $f : C \to C$ be an α -contractive mapping. Let $\{\alpha_n\}, \{\beta_n\}, and \{\gamma_n\}$ be real number sequences in (0, 1) with the restriction $\alpha_n + \beta_n + \gamma_n = 1$. Let $\{\delta_{n,i}\}$ be a real number sequence in (0, 1) with the restriction $\delta_{n,1} + \delta_{n,2} + \cdots + \delta_{n,N} = 1$. Let $\{r_m\}$ be a positive real number sequence

and $\{e_{n,i}\}$ a sequence in *E* for each $i \in \{1, 2, ..., N\}$. Let $\{x_n\}$ be a sequence generated in the following manner:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n \sum_{i=1}^N \delta_{n,i} \operatorname{VI}\left(C, A_i + \frac{1}{r_i}(I - x_n)\right)$, $\forall n \ge 1$.

Assume that the control sequences $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, and $\{\delta_{n,i}\}$ satisfy the following restrictions:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (b) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1;$
- (c) $\sum_{n=1}^{\infty} \|e_{n,m}\| < \infty;$
- (d) $\lim_{n\to\infty} \delta_{n,i} = \delta_i \in (0,1).$

Then the sequence $\{x_n\}$ converges strongly to \bar{x} , which is the unique solution to the following variational inequality: $\langle f(\bar{x}) - \bar{x}, J(p - \bar{x}) \rangle \leq 0, \forall p \in \bigcap_{i=1}^N \text{VI}(C, A_i).$

Proof Define a mapping $T_i \subset E \times E^*$ by

$$T_i x := \begin{cases} A_i x + N_C x, & x \in C, \\ \emptyset, & x \notin C. \end{cases}$$

From Rockafellar [36], we find that T_i is maximal monotone with $T_i^{-1}(0) = VI(C, A_i)$. For each $r_i > 0$, and $x_n \in E$, we see that there exists a unique $x_{r_i} \in D(T_i)$ such that $x_n \in x_{r_i} + r_i T_i(x_{r_i})$, where $x_{r_i} = (I + r_i T_i)^{-1} x_n$. Notice that

$$y_{n,i} = \operatorname{VI}\left(C, A_i + \frac{1}{r_i}(I - x_n)\right),$$

which is equivalent to

$$\left\langle y - y_{n,i}, A_i y_{n,i} + \frac{1}{r_i} (y_{n,i} - x_n) \right\rangle \ge 0, \quad \forall y \in C,$$

that is, $-A_i y_{n,i} + \frac{1}{r_i}(x_n - y_{n,i}) \in N_C(y_{n,i})$. This implies that $y_{n,i} = (I + r_i T_i)^{-1} x_n$. Using Theorem 2.1, we find the desired conclusion immediately.

From Theorem 3.1, the following result is not hard to derive.

Corollary 3.2 Let *E* be a real reflexive, strictly convex Banach space with the uniformly Gâteaux differentiable norm. Let *C* be nonempty closed and convex subset of *E*. Let $A : C \rightarrow E^*$ a single valued, monotone and hemicontinuous operator with VI(*C*, *A*). Assume that *C* has the normal structure. Let $f : C \rightarrow C$ be an α -contractive mapping. Let $\{\alpha_n\}, \{\beta_n\}$, and $\{\gamma_n\}$ be real number sequences in (0,1) with the restriction $\alpha_n + \beta_n + \gamma_n = 1$. Let $\{x_n\}$ be a sequence generated in the following manner:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n \operatorname{VI}\left(C, A + \frac{1}{r}(I - x_n)\right)$, $\forall n \ge 1$.

Assume that the control sequences $\{\alpha_n\}$, $\{\beta_n\}$, and $\{\gamma_n\}$ satisfy the following restrictions:

(a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$;

(b)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Then the sequence $\{x_n\}$ converges strongly to \bar{x} , which is the unique solution to the following variational inequality: $\langle f(\bar{x}) - \bar{x}, J(p - \bar{x}) \rangle \leq 0, \forall p \in VI(C, A_i).$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this manuscript. All authors read and approved the final manuscript.

Author details

¹School of Business and Administration, Henan University, Kaifeng, Henan, China. ²School of Mathematics and Information Science, Shangqiu Normal University, Shangqiu, Henan, China. ³Vietnam National University, Hanoi, Vietnam.

Acknowledgements

The authors are grateful to the editor and the reviewers for useful suggestions which improved the contents of the article.

Received: 16 January 2014 Accepted: 30 April 2014 Published: 14 May 2014

References

- 1. Bruck, RE: Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47, 341-355 (1973)
- 2. Reich, S: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44, 57-70 (1973)
- 3. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
- 4. Kopecká, EE, Reich, S: Nonexpansive retracts in Banach spaces. Banach Cent. Publ. 77, 161-174 (2007)
- Bauschke, HH, Matousková, E, Reich, S: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715-738 (2004)
- Reich, S: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274-276 (1979)
- 7. Genel, A, Lindenstruss, J: An example concerning fixed points. Isr. J. Math. 22, 81-86 (1975)
- Cho, SY, Li, W, Kang, SM: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013, Article ID 199 (2013)
- 9. Cho, SY, Qin, X: On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems. Appl. Math. Comput. 235, 430-438 (2014)
- 10. Yang, S, Zhang, MY: Strong convergence theorems for fixed points of generalized asymptotically quasi-*φ*-nonexpansive mappings. Adv. Fixed Point Theory **4**, 69-90 (2014)
- 11. Cho, SY, Qin, X, Kang, SM: Hybrid projection algorithms for treating common fixed points of a family of demicontinuous pseudocontractions. Appl. Math. Lett. **25**, 854-857 (2012)
- 12. Zhou, H: Convergence theorems of common fixed points for a family of Lipschitz quasi-pseudocontractions. Nonlinear Anal. **71**, 685-690 (2009)
- Qin, X, Agarwal, RP: Shrinking projection methods for a pair of asymptotically quasi-*φ*-nonexpansive mappings. Numer. Funct. Anal. Optim. **31**, 1072-1089 (2010)
- 14. Chen, JH: Iterations for equilibrium and fixed point problems. J. Nonlinear Funct. Anal. 2013, Article ID 4 (2013)
- Hao, Y: Some results on a modified Mann iterative scheme in a reflexive Banach space. Fixed Point Theory Appl. 2013, Article ID 227 (2013)
- 17. Qin, X, Cho, SY, Kang, SM: Strong convergence of shrinking projection methods for quasi-*φ*-nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. **234**, 750-760 (2010)
- Wu, C, Sun, L: A monotone projection algorithm for fixed points of nonlinear operators. Fixed Point Theory Appl. 2013, Article ID 318 (2013)
- Wu, C, Lv, S: Bregman projection methods for zeros of monotone operators. J. Fixed Point Theory 2013, Article ID 7 (2013)
- Qin, X, Su, Y: Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 1958-1965 (2007)
- 21. Ye, J, Huang, J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 1, 1-18 (2011)
- 22. Qin, X, Cho, YJ, Kang, SM: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. **225**, 20-30 (2009)
- 23. Halpern, B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)
- 24. Qin, X, Cho, SY, Wang, L: A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. **2014**, Article ID 75 (2014)
- 25. Takahashi, W: Viscosity approximation methods for resolvents of accretive operators in Banach spaces. J. Fixed Point Theory Appl. 1, 135-147 (2007)
- 26. Song, J, Chen, M: A modified Mann iteration for zero points of accretive operators. Fixed Point Theory Appl. 2013, Article ID 347 (2013)
- 27. Qin, X, Su, Y: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. **329**, 415-424 (2007)

- 28. Yang, S: Zero theorems of accretive operators in reflexive Banach spaces. J. Nonlinear Funct. Anal. 2013, Article ID 2 (2013)
- 29. Qing, Y, Cho, SY: A regularization algorithm for zero points of accretive operators. Fixed Point Theory Appl. 2013, Article ID 341 (2013)
- Qing, Y, Cho, SY: Proximal point algorithms for zero points of nonlinear operators. Fixed Point Theory Appl. 2014, Article ID 42 (2014)
- 31. Reich, S: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287-292 (1980)
- 32. Liu, LS: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. **194**, 114-125 (1995)
- Bruck, RE: Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 179, 251-262 (1973)
- 34. Chang, SS: Some problems and results in the study of nonlinear analysis. Nonlinear Anal. **30**, 4197-4208 (1997)
- 35. Qin, X, Cho, SY, Wang, L: Iterative algorithms with errors for zero points of m-accretive operators. Fixed Point Theory
- Appl. **2013**, Article ID 148 (2013)
- 36. Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)

10.1186/1687-1812-2014-118

Cite this article as: Wu et al.: Some results on zero points of *m*-accretive operators in reflexive Banach spaces. Fixed Point Theory and Applications 2014, 2014:118

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com