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Abstract
Let E be a real Banach space, E∗ be the dual space of E, E∗∗ be the dual space of E∗. Let
T : D(T ) ⊆ E∗∗ → 2E

∗
be a monotone type mapping. In this paper, first, we introduce

the special case when T is the weak* sub-differential ∂∗φ of a convex function φ and
obtain a surjective result for the mapping ∂∗(φ + ε‖ · ‖2), where ε > 0. Second, we
show the existence of solutions of the variational inequality problems for strictly
quasi-monotone operators and semi-monotone operators. Finally, we construct a
degree theory for mappings of the class (S+) and then construct a generalized degree
for the weak* sub-differential of a convex function.

1 Introduction
Monotone operators in reflexive Banach spaces hasmany applications in nonlinear partial
differential equations, nonlinear semi-group theory, variational inequality and so on (see
[–]). The theory for monotone operators in reflexive Banach spaces has been well de-
veloped. In recent years, many authors have generalized the monotone operator theory to
nonreflexive Banach spaces. For example, maximal monotone operators in nonreflexive
Banach spaces has been studied in [–] and variational inequality problems related to
monotone type mappings in nonreflexive Banach spaces have been studied in [–]. For
more references on variational inequality problems, see [–] and []. Also, degree
theory for monotone type mappings in nonreflexive separable Banach spaces has been
studied in [, ]. Also, see [, –] for more references on degree theory of mono-
tone type operators.
In this paper, we study variational inequality problems and degree theory for monotone

type mappings in nonreflexive spaces. This paper is organized as follows:
Let E be a real Banach space, E∗ be the dual space of E and E∗∗ be the dual space of E∗.

In Section , we introduce the weak* sub-differential ∂∗φ of a convex function φ : E∗∗ →
R∪{+∞}, which is a subset of the classical sub-differential, and we obtain ∂∗(φ + ε‖ · ‖) =
E∗ for the sum of a lower semi-continuous convex function φ : E∗∗ → R ∪ {+∞} in the
weak* topology and ε‖x‖, where ε > . In Section , we show the existence of solutions
of variational inequality problems related to strictly quasi-monotone operators and semi-
monotone operators. In Section , we construct a degree theory for mappings of class (S+)
and then construct a generalized degree for theweak* sub-differential of a convex function
and obtain some degree results.
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Through this paper, we use ⇀∗ to represent the convergence in the weak* topology, ⇀
to represent the convergence in the weak topology and → represent the convergence in
norm topology.

2 The weak* sub-differential of convex functions
In this section, let E be a real Banach space, E∗ be the dual space of E and E∗∗ be the dual
space of E∗.
Now, we introduce the weak* sub-differential of a convex function and study the solv-

ability problems related this mapping.
First, we recall that the classical sub-differential of a convex function φ : E → R∪ {+∞}

at y is defined by

∂φ(y) =
{
f ∈ E∗ : φ(x) – φ(y) ≥ (f ,x – y),∀x ∈D(φ)

}
.

It is well known (Rockfellar []) that ∂φ is a maximal monotone mapping.

Definition . Let φ : E∗∗ → R∪ {+∞} be a convex function. Then

∂∗φ(y) =
{
f ∈ E∗ : φ(x) – φ(y) ≥ (f ,x – y),∀x ∈ D(φ)

}

is called the weak* sub-differential of φ at y.

It is obvious that ∂∗φ(y) ⊆ ∂φ(y), but ∂∗φ(y) = ∂φ(y) when E is reflexive.
The following result is obvious.

Proposition. Letφ : E∗∗ → R∪{+∞} be a convex function.Thenwe have the following:
() ∂∗φ(y) is a weak closed convex subset of E∗;
()  ∈ ∂∗φ(y) if and only if φ(y) = infy∈D(φ) φ(y);
() ∂∗φ : E∗∗ → E∗ is monotone.

Definition . (see []) Let X be a topological space. A function f : X → R is said to be
sequentially lower semi-continuous from above at x if, for any sequence {xn}with xn → x,
f (xn+) ≤ f (xn) implies that f (x) ≤ limn→∞ f (xn).
Similarly, f is said to be sequentially upper semi-continuous from below at x if, for any

sequence {xn} with xn → x, f (xn+) ≥ f (xn) implies that f (x) ≤ limn→∞ f (x).

Remark  It is well known that a lower semi-continuous function is a lower semi-
continuous from above function, but the converse is not true and a lower semi-continuous
from above and convex function with the coercive condition in a reflexive Banach space
attains its minimum (see []). Also, it is well known that, for a convex function in a re-
flexive Banach space, lower semi-continuity in the strong topology is equivalent to lower
semi-continuity in the weak topology, but this is not true for lower semi-continuity from
above (see []). For more on lower semi-continuous from above functions with its gener-
alizations and applications in nonconvex equilibrium problems, variational problems and
fixed point problems, see [–] and [].
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Proposition . Let φ : E∗∗ → R∪ {+∞} be a convex function which is sequentially lower
semi-continuous from above in the weak* topology and lim‖x‖→+∞ φ(x) = +∞, then there
exists x ∈ E∗∗ such that φ(x) = infy∈D(φ) φ(y).

Proof We take a sequence {xn} in E∗∗ such that

φ(x) ≥ φ(x) ≥ · · · ≥ φ(xn) ≥ · · · , φ(xn) → inf
x∈D(φ)

φ(x).

Since lim‖x‖→+∞ φ(x) = +∞ and {xn} is a bounded sequence in E∗∗, it follows that {xn} has a
subsequence {xnk } of {xn}with xnk ⇀∗ x in E∗∗. By the assumption, since φ is sequentially
lower semi-continuous from above, we have φ(x) ≤ limn→∞ φ(xn) and so it follows that

φ(x) = inf
y∈D(φ)

φ(y).

This completes the proof. �

Proposition . The function φ : E∗∗ → R defined by φ(x) = ‖x‖ is sequentially lower
semi-continuous in the weak* topology.

Proof Suppose xn ⇀∗ x. Then x(f ) = limn→∞ xn(f ) for all f ∈ E∗ and so

∣∣x(f )
∣∣ ≤ lim inf

n→∞ ‖xn‖‖f ‖

for all f ∈ E∗. Thus we have

‖x‖ = sup
‖f ‖=

∣∣x(f )
∣∣ ≤ lim inf

n→∞ ‖xn‖

and so ‖x‖ ≤ lim infn→∞ ‖xn‖. This completes the proof. �

Theorem . Let φ : E∗∗ → R ∪ {+∞} be a convex function which is sequentially lower
semi-continuous in the weak* topology. Then we have

∂∗(φ + ε‖ · ‖)(E∗∗) = E∗

for all ε > .

Proof For any f ∈ E∗, we set ψ(x) = φ(x) + ε‖x‖ – x(f ) for all x ∈D(φ). It is obvious that ψ

is sequentially lower semi-continuous in the weak* topology. Thus ψ is sequentially lower
semi-continuous from above in the weak* topology and

lim‖x‖→+∞ψ(x) = +∞.

By Proposition ., there exists x ∈ E∗∗ such that φ(x) = infx∈D(ψ) ψ(x). By () of Propo-
sition .,  ∈ ∂∗(φ + ε‖ · ‖) – x(f ))(x), which is equivalent to f ∈ ∂∗(φ + ε‖ · ‖)(x). This
completes the proof. �
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3 Existence of variational inequality problems
In this section, we study variational inequality problems related to monotone type opera-
tors in nonreflexive Banach spaces.
First, we recall the following.

Definition . ([]) A mapping A(u, v) : E∗∗ × E∗∗ → E∗ is said to be semi-monotone if it
satisfies the following conditions:
() for each u ∈ E∗∗, A(u, ·) is monotone, i.e., (A(u, v) –A(u,w), v –w) ≥  for all

v,w ∈ E∗∗;
() for each fixed v ∈ E∗∗, A(·, v) is completely continuous, i.e., if uj ⇀ u in weak*

topology of E∗∗, then A(uj, v) has a subsequence A(ujk , v) with A(ujk , v)→ A(u, v) in
norm topology of E∗.

Definition . ([]) Let E be a real Banach space and T : D ⊆ E∗∗ → E∗ be a mapping.
T is said to be strictly quasi-monotone if (g,u – v) >  for all u, v ∈ D and for some g ∈ Tv
implies that (f ,u – v) >  for all f ∈ Tu.

Remark  For quasi-monotone mappings, see [].

Lemma . Let E be a real Banach space and C be a nonempty bounded closed convex
subset of E∗∗. If A : C → E∗ is a finite dimensional weak* upper semi-continuous (i.e.
for each finite dimensional subspace F of E∗∗ with F ∩ C 
= ∅, A : C ∩ F → E∗ is upper
semi-continuous in the weak topology) and strictly quasi-monotonemapping with bounded
closed convex values, then (fv,u – v) ≤  for all v ∈ C and for some fv ∈ Tu if and only if
(g,u – v) ≤  for all v ∈ C and g ∈ Tv.

Proof The proof is similar to Lemma . in [], we omit the details. �

Remark  For the results of Lemma . in monotone case, we refer to [].

Theorem . Let E be a real Banach space and C be a nonempty weak* closed convex
bounded subset of E∗∗. If A : C → E∗ is a finite dimensional weakly upper semi-continuous
and strictly quasi-monotone mapping with bounded closed convex values, then there exists
u ∈ C such that

(fv,u – v)≤ 

for all v ∈ C and for some fv ∈ Tu.

Proof For any finite dimensional subspace F of E with F ∩ C 
= ∅, let jF : F → E be the
natural inclusion and j∗F be the conjugatemapping of jF . Consider the following variational
inequality problem:
Find u ∈ F ∩C such that

(
j∗F fv,u – v

) ≤ 

for all v ∈ C ∩ F and for some fv ∈ Tu.

http://www.fixedpointtheoryandapplications.com/content/2014/1/119
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Since T is finite dimensional weakly upper semi-continuous and j∗FT is upper semi-
continuous on F ∩C, there exists uF ∈ F ∩C such that

(
j∗F fv,uF – v

) ≤ 

for all v ∈ C ∩ F and for some fv ∈ TuF , i.e., (fv,uF – v) ≤  for all v ∈ C ∩ F and for some
fv ∈ TuF . By Lemma ., we get

(g,uF – v)≤ 

for all v ∈ C ∩ F and g ∈ Tv. Now, we put

WF =
{
u ∈ C : (g,u – v)≤ ,∀v ∈ F ∩C, g ∈ Tv

}
.

It is obvious thatWF is weak* closed convex. One can easily check that

W⋃n
i= Fi ⊆WFi , dim(Fi) < +∞, Fi ∩C 
= ∅

for i = , , . . . ,n. Hence
⋂

F∈F WF 
= ∅, where

F =
{
F ⊂ E : F ∩C 
= ∅,dim(F) < +∞}

.

Take u ∈ ⋂
F∈F WF . We claim that u satisfies the conclusion of Theorem .. In fact,

(g,u – v) ≤  for all v ∈ C and g ∈ Tv. By Lemma ., it follows that

(fv,u – v)≤ 

for all v ∈ C and for some fv ∈ Tu. This completes the proof.
From Theorem ., we have the following. �

Corollary . Let E be a real Banach space and C be a nonempty weak* closed convex un-
bounded subset of E∗∗. If A : C → E∗ is a finite dimensional weakly upper semi-continuous
and strictly quasi-monotone mapping with bounded closed convex values and there exist
v ∈ C and r >  such that

(f ,u – v) > 

for all f ∈ Tu and u ∈ C with ‖u‖ > r, then there exists u ∈ C such that

(fv,u – v)≤ 

for all v ∈ C and for some fv ∈ Tu.

Proof If Cn = C ∩ B(,n), then, by Theorem ., there exists un ∈ Cn such that

(f ,un – v)≤ 

http://www.fixedpointtheoryandapplications.com/content/2014/1/119
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for all v ∈ Cn and for some fv ∈ Tun. By Lemma ., we know that

(g,un – v) ≤ 

for all v ∈ Cn and for some g ∈ Tv. By the assumption, we know that ‖un‖ ≤ r for each
n = , , . . . and thus we may assume that un ⇀∗ u as n → ∞. Otherwise, we take a sub-
sequence. Consequently, it follows that

(g,u – v) ≤ 

for all v ∈ C and g ∈ Tv. Again, if we use Lemma ., we get the conclusion. This completes
the proof. �

Corollary . Let E be a real Banach space, B(,R) = {‖x‖ < R : x ∈ X∗∗} ⊂ E∗∗ is the
open ball centered at  with radius R. If A : B(,R) → E∗ is a finite dimensional weakly
continuous and strictly quasi-monotone mapping and

(Au,u) > –‖Au‖‖u‖

for all u ∈ ∂B(,R), then there exists u ∈ B(, r) such that Au = .

Proof It is obvious that B(,R) is weak* closed and convex. By Theorem ., there exists
u ∈ B(,R) such that

(Au,u – v)≤ 

for all v ∈ B(,R). Now, we claim that Au = . First, we prove that ‖u‖ < R. In fact, if
‖u‖ = R, then, by the assumption, ‖Au‖ 
=  and thus there exists v ∈ ∂B(,R) such that
(Au, v) = –‖Au‖‖v‖. But we have

–‖Au‖‖u‖ < (Au,u) ≤ (Au, v) = –‖Au‖‖v‖,

which is a contradiction. Therefore, we have ‖u‖ < R. Since there exists r >  such that
u + v ∈ B(,R) for all v ∈ E∗∗ with ‖v‖ ≤ r, we have

(Au, v)≥ 

for all v ∈ B(, r) and so Au = . This completes the proof. �

Theorem . Let K ⊂ E∗∗ be a bounded weak* closed convex subset. Suppose that φ :
E∗∗ → R ∪ {+∞} is a lower semi-continuous convex function in the weak* topology K ⊆
D(φ), A : K × K → E∗ is semi-monotone, and A(u, ·) is finite dimensional continuous for
each u ∈ K . Then there exists w ∈ K such that

(
A(w,w),u –w

)
+ φ(u) – φ(w) ≥ 

for all u ∈ K .

http://www.fixedpointtheoryandapplications.com/content/2014/1/119
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Proof For each finite dimensional subspace F of E∗∗ with F ∩ K 
= ∅, set KF = K ∩ F and
φF (x) = φ(x) for x ∈ F ∩D(φ). By Theorem . in [], there exists uF ∈ KF such that

(
A(uF ,uF ),u – uF

)
+ φF (u) – φF (uF )≥  (.)

for all u ∈ KF . Let

F =
{
F ⊂ E∗∗ : F is finite dimensional subspace with F ∩K 
= ∅}

and

WF =
{
w ∈ K :

(
A(w,u),u –w

)
+ φ(u) – φ(w) ≥ 

}
.

By (.) and the monotonicity of A(uF , ·), WF is a nonempty bounded subset. Denote by
WF

∗ the weak* closure of WF . For any Fi ∈ F for each i = , , . . . ,n, it is easy to see that
W⋃

i Fi ⊂WFi for each i = , , . . . ,n. So, we have

⋂

F∈F
WF

∗ 
= ∅.

Let w ∈ ⋂
F∈F WF

∗. Now, we prove that

(
A(w,w),u –w

)
+ φ(u) – φ(w) ≥ 

for all u ∈ K . For each u ∈ K , take F ∈ F such that w ∈ KF and u ∈ KF . There exists
wj ∈WF such that wj ⇀

∗ w and

(
A(wj,u),u –wj

)
+ φ(u) – φ(wj) ≥ 

for each j = , , . . . . By letting j → ∞, the complete continuity of A(·,u) and weak* lower
semi-continuity of φ imply that

(
A(w,u),u –w

)
+ φ(u) – φ(w) ≥ .

Set u = tw + ( – t)v for all t ∈ (, ) and v ∈ K , by using the convexity of φ and letting
t → , we get

(
A(w,w), v –w

)
+ φ(v) – φ(w)≥ .

This completes the proof. �

4 Degree theory for monotone typemapping
In this section, assume that E is always a real Banach space, E∗ is the dual space of E and
E∗∗ is the dual space of E∗.

Definition . A set-valued operator T : D(T) ⊆ E∗∗ → E∗ is said to be strong to weak
upper semi-continuous at x ∈D(T) if, for each weak open neighborhood V of  in E∗ (i.e.,
open in the weak topology of E∗), there exists an open neighborhood W of  in E∗∗ such
that Ty∩ (Tx +V ) 
= ∅ for all y ∈ x +W .

http://www.fixedpointtheoryandapplications.com/content/2014/1/119
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Definition . A set-valued operator T : D(T) ⊆ E∗∗ → E∗ is said to be a mapping of
class (S+) if the following conditions are satisfied:
() for each x ∈D(T), Tx is a bounded closed convex subset;
() T is strong to weak upper semi-continuous;
() if xn ∈D(T), fn ∈ Txn for each n≥  and xj ⇀∗ x such that

lim
n→∞(fn,xn – x) ≤ ,

then xn → x ∈D(T) and {fn} has a subsequence {fnk } with fnk ⇀ f ∈ Tx.

Definition . A family of set-valued operators Tt :D⊆ E∗∗ → E∗ for all t ∈ [, ] is said
to be a homotopy of mappings of class (S+) if the following conditions are satisfied:
() for each t ∈ [, ], x ∈ D, Ttx is a bounded closed convex subset;
() Ttx : [, ]×D → E∗ is strong to weak upper semi-continuous;
() if xn ∈D(T), tn ∈ [, ], fn ∈ Ttnxn for each n≥ , tn → t and xj ⇀∗ x such that

lim
n→∞(fn,xn – x) ≤ ,

then xn → x ∈D and {fn} has a subsequence {fnk } with fnk ⇀ f ∈ Ttx.

Definition . Let T : D(T) ⊆ E∗∗ → E∗ be a mapping satisfying the conditions () and
() in Definition .. Let {xj} ⊂ D(T) with xj ⇀∗ x ∈ D(T) and fj ∈ Txj with fj ⇀ f. If
lim supj→∞(fj,xj – x) ≤  implies that

f ∈ Tx, (f,x) = lim
j→∞(fj,xj),

then T is called a generalized pseudo-monotone mapping.

Proposition . Let T :D(T)⊆ E∗∗ → E∗ be a mapping of class (S+) and S : E∗∗ → E∗ be
a mapping with closed convex values. Then the following conclusions hold:
() if S is an upper semi-continuous and compact mapping, then T + S is a mapping of

class (S+);
() if S is a generalized pseudo-monotone mapping and weak compact, i.e., S maps

bounded subsets in E∗∗ to weak compact subsets in E∗, then T + S is a mapping of
class (S+).

For any subspace F of E∗∗, let JF : F → E∗∗ be the natural inclusion and J∗F : E∗∗∗ → F∗ be
the conjugate mapping of jF . Note that, under the canonical injection mapping J : E∗ →
E∗∗∗, i.e., Jx(f ) = f (x) for all f ∈ E∗∗ and x ∈ E∗, E∗ can be injected as a subspace of E∗∗∗ and
so, in the following, we always regard E∗ as a subspace of E∗∗∗.
First, we need the following result from [] (also, see []).

Lemma . Let F be a finite dimensional subspace, � ⊂ F be an open bounded subset and
let  ∈ �. Let T : � → F∗ be an upper semi-continuous mapping with compact convex
values, F be a proper subspace of F , �F = � ∩ F 
= ∅ and TF = j∗FT : �F → F∗

 be the
Galerkin approximation of T ,where j∗F is the adjoint mapping of the natural inclusion jF :
F → F . If d(T ,�, ) 
= d(TF ,�F , ), then there exist x ∈ ∂� and f ∈ Tx such that (f ,x) ≤ 

http://www.fixedpointtheoryandapplications.com/content/2014/1/119
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and (f , v) =  for all v ∈ F,where d(·, ·, ·) is the topological degree for upper semi-continuous
mappings with compact convex values in finite dimensional spaces (see Ma []).

Remark See [, ] for more references on degree theory of multivalued mappings.

Lemma . Let T :� → E∗ be a bounded mapping of (S+) and let  /∈ T(∂�). Then there
exists a finite dimensional subspace F of E∗∗ such that

 /∈ TF (∂� ∩ F)

for all finite dimensional subspace F of E∗∗ with F ⊆ F , where TF = j∗FT .

Under the condition of Lemma ., we know that deg(TF ,� ∩ F , ) is well defined for
the whole finite dimensional subspace F of E∗∗ with F ⊆ F , where F is the same as in
Lemma ..

Lemma . Under the condition of Lemma ., there exists a finite dimensional subspace
F of E∗∗ such that deg(TF ,� ∩ F , ) does not depend on F .

Now, let � ⊂ E∗∗ be a nonempty open bounded subset and T : � → E∗ be a mapping
of class (S+). Suppose that  /∈ T(∂�). In view of Lemmas . and ., we may define the
topological degree as follows:

deg
(
T ,� ∩D(T), 

)
= deg(TF ,� ∩ F , ), (.)

where F is a finite dimensional subspace of E∗∗ such that F ⊂ F and F is the same as in
Lemma ..

Theorem . If deg(T ,�, ) 
= , then  ∈ Tx has a solution in �.

Proof The proof can be seen from the following proof of Theorem .. �

Theorem . Let {Tt}t∈[,] be a homotopy of mappings of class (S+). If  /∈ Tt(∂�) for all
t ∈ [, ], then deg(Tt ,�, ) does not depends on t ∈ [, ].

Proof First, we claim that there exist finite dimensional subspaces F of E∗∗ such that  /∈
j∗FTt(∂� ∩ F) for all finite dimensional subspaces F with F ⊂ F . Suppose that this is not
true. For any finite dimensional subspaces F , we define a setWF as follows:

WF =
{
(t,x) ∈ [, ]× ∂� : there exists f ∈ Ttx

such that (f ,x) ≤  and (f , v) = ,∀v ∈ F
}
.

ThenWF is nonempty. LetWF be the closure ofWF in [, ]×E∗∗ with E∗∗ endowed with
weak* topology. Consider the following family of sets:

F =
{
WF : F ⊂ F ,dim(F)≤ ∞}

.

http://www.fixedpointtheoryandapplications.com/content/2014/1/119


Chen and Cho Fixed Point Theory and Applications 2014, 2014:119 Page 10 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/119

It is easy to show that
⋂

F∈F WF 
= ∅. Let (t,x) ∈ ⋂
F∈F WF . If, for each v ∈ E∗∗, we take

a finite dimensional subspace F such that v ∈ F and x ∈ F , then there exist (tvj ,xvj ) ∈ WF

and f vj ∈ Ttvj x
v
j such that

tvj → t, xvj ⇀ x,
(
f vj ,x

v
j
) ≤ ,

(
f vj , v

)
= 

for each j ≥ . Hence we have

lim sup
j→∞

(
f vj ,x

v
j – x

) ≤ .

But, since {Tt : t ∈ [, ]} is a homotopy of mappings of class (S+), it follows that xvj →
x ∈ ∂� and {f vj } has a subsequence {f vjk } that converges weakly to f v ∈ Ttx. Therefore,
we have (f v , v) = . By Mazur’s separation theorem (see []), we get  ∈ Ttx, which is
a contradiction. The claim is completed. So, it follows that deg(Tt,F ,�F , ) is well defined
for the whole finite dimensional subspace F with F ⊂ F .
Next, we prove that there exist a finite dimensional subspace F and F ⊂ F such that

deg(Tt,F ,�F , ) does not depend on t ∈ [, ] for all finite dimensional subspace F of E∗∗

with F ⊂ F .
Suppose that this is not true. For any finite dimensional subspace F with F ⊂ F , we

define

WF =
{
(t,x) ∈ [, ]× ∂� : there exists f ∈ Ttx

such that (f ,x) ≤  and (f , v) = ,∀v ∈ F
}
.

ThenWF is nonempty by Lemma .. LetWF be the closure ofWF in [, ]×E∗∗ with E∗∗

endowed with the weak∗∗ topology. Consider again the following family of sets:

F =
{
WF : F ⊂ F with dim(F) ≤ ∞}

.

It is easy to show that
⋂

F∈F WF 
= ∅. Let (t,x) ∈ ⋂
F∈F WF . Then, for each v ∈ E∗∗, we

take a finite dimensional subspace F such that F ⊂ F , v ∈ F and x ∈ F . Then there exist
(tvj ,xvj ) ∈ WF and f vj ∈ Ttvj x

v
j such that

tvj → t, xvj ⇀ x,
(
f vj ,x

v
j
) ≤ ,

(
f vj , v

)
= 

for j ≥ . Hence we have

lim
j→∞

(
f vj ,x

v
j – x

) ≤ .

But, since {Tt : t ∈ [, ]} is a homotopy of mappings of class (S+), we have xvj → x ∈ ∂�

and f vj has a subsequence {f vjk } which converges weakly to f v ∈ Ttx. Therefore, we have
(f v , v) = . Again, byMazur’s separation theorem,  ∈ Ttx, which is a contradiction. This
completes the proof. �
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Theorem . Let T : � → E∗ be a mapping of class (S+), where � ⊂ E∗∗ is an open
bounded subset. If  ∈ � and (f ,x) >  for all x ∈ ∂� ∩D(T) and f ∈ Tx, then

deg(T ,�, ) = .

Proof Assume that F is a finite dimensional subspaces of E∗∗. It is straightforward to check
that

(
j∗F f ,x

)
> 

for all x ∈ ∂� ∩ F and f ∈ Tx. Therefore, we have deg(TF ,�F , ) =  and so, by (.),

deg(T ,�, ) = . �

Theorem . Let T : E∗∗ → E∗ be a bounded mapping of class (S+). If

lim‖x‖→∞ inf
f∈Tx

(f ,x)
‖x‖ = +∞,

then TE∗∗ = E∗.

Proof For each p ∈ E∗, we set Tx = Tx – p for all x ∈ E∗∗. Then it is easy to see that T is
a mapping of class (S+). One can easily see that (f ,x) >  for all x ∈ ∂B(,R), f ∈ Tx and
sufficiently large R. Thus, by Theorem ., deg(T,B(,R), ) =  and so, by Theorem .,
 ∈ Tx has a solution in B(,R), i.e., p ∈ Tx has a solution in B(,R). This completes the
proof. �

In the following, we assume that E∗∗ is separable and so we take any sequence {Fn} of
finite dimensional subspaces of E∗∗ such that

F ⊂ F ⊂ · · · ⊂ Fn ⊂ · · · ,
∞⋃

n=

Fn = E∗∗. (.)

Lemma . Let φ :D(φ)⊆ E∗∗ → R∪ {+∞} be a lower semi-continuous convex function
in the weak* topology, � ⊂ E∗∗ be open bounded and let x ∈ D(φ). Suppose that φ(x) <
φ(x) for all x ∈ ∂� ∩D(φ). Then there exists a positive integer N such that

 /∈ ∂φn
(
∂� ∩ F ′

n ∩D(∂φn)
)
,

where φn : F ′
n → R ∪ {+∞} is a mapping defined by φn(x) = φ(x) for all x ∈ F ′

n and F ′
n =

span(Fn ∪ {x}) for all n >N .

Proof Suppose that the conclusion is not true. There exists xn ∈ D(φ) such that  ∈ ∂φn(xn)
and so we have φ(x) –φ(xn)≥  for all x ∈ F ′

n ∩D(φ), which contradicts φ(x) < φ(x) for all
x ∈ ∂� ∩D(φ).
Under the assumption of Lemma ., we know that there exists a positive integer N

such that

 /∈ ∂φn
(
∂� ∩ F ′

n ∩D(∂φn)
)
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for all n >N and so, by [], deg(∂φn,�∩F ′
n, ) is well defined.Now,we define a generalized

degree as follows:

Deg
(
∂∗φ,� ∩D

(
∂∗φ

)
, 

)

=
{
k : there exists Fn,n≥ , satisfying (.)

such that deg
(
∂φnj ,� ∩ F ′

nj , 
) → k

}
. �

Remark For generalized degree theory, see [].

Theorem . Let φ : D(φ) ⊆ E∗∗ → R ∪ {+∞} be a lower semi-continuous convex func-
tion in the weak* topology. If lim‖x‖→+∞ φ(x) = +∞, then

Deg
(
∂∗φ,B(, r)∩D

(
∂∗φ

)
, 

)
= {}

for sufficiently large r.

Proof By the assumption lim‖x‖→+∞ φ(x) = +∞, it follows from Proposition . that there
exists x ∈D(φ) such that φ(x) = infx∈D(φ) φ(x) if we take a large enough r such that φ(x) <
φ(x) for all x ∈D(φ)∩ ∂B(, r).
For any Fn (n≥ ) satisfying (.), we put F ′

n = span(Fn ∪ {x}). We may easily see that

φn(x) = inf
x∈Fn∩D(φ)

φ(xn)

and so we have

(f ,x)≥ 

for all x ∈ ∂B(, r)∩ F ′
n ∩D(∂φn). Thus we have

deg
(
∂φn,B(, r)∩ F ′

n ∩D(φn), 
)
= 

and, consequently, we have

Deg
(
∂∗φ,B(, r)∩D

(
∂∗φ

)
, 

)
= {}.

This completes the proof. �
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