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Abstract
In this paper, we introduce a new concept of fuzzy α-ψ -contractive type set-valued
mappings and establish fixed-point theorems for such mappings in complete fuzzy
metric spaces. Starting from the fuzzy version of the Banach contraction principle, the
presented theorems extend, generalize and improve many existing results in the
literature. Moreover, the results are supported by examples.
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1 Introduction
In metric fixed-point theory, the contractive conditions on underlying functions play an
important role for ensuring the existence of fixed points. TheBanach contraction principle
is a remarkable result in metric fixed-point theory. Recently Gregori and Sapena [] have
extended the Banach contraction principle to fuzzy contractive mappings on complete
fuzzy metric spaces in some sense. Over the years, it has been generalized in different
directions by several mathematicians (see [–]). In particular, Mihet [] introduced the
concepts of fuzzy ψ-contractive mappings which enlarge the class of fuzzy contractions
in [], that is, the following implication takes place for the single-valued mapping T :

M(x, y, t) >  ⇒ M(Tx,Ty, t) ≥ ψ
(
M(x, y, t)

)
for any x, y ∈ X and t > , where ψ is a function whose definition is given in Section .
Moreover, some authors established fixed-point theorems for such mappings in complete
fuzzy metric spaces. Afterwards, Hong and Peng [] modified the notion of the fuzzy
ψ-contraction via a so-called fw-distance P instead of the fuzzy metric M and provided
the sufficient conditions for the existence of fixed points for such contraction set-valued
mappings.
Motivated by the works mentioned above, in this paper we will further modify the type

of the ψ-contraction and establish fixed-point theorems for such set-valued mappings
on certain complete fuzzy metric spaces. Specifically, the main purpose is to extend the
inequality M(x, y, t) >  to a general functional inequality and introduce therefrom a new
called fuzzy α-ψ-contraction which extends and improves the fuzzyψ-contraction of set-
valued mappings; moreover, to formulate the conditions guaranteeing the convergence of
fuzzy α-ψ-contractive sequences and the existence of fixed points of such a set-valued
mapping. The present fixed-point theorem and a comprehensive set of its corollaries turn
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out to be generalizations of those of [, , ]. Some examples are given here to illustrate
the usability of the results obtained.
Finally, the idea of present paper has originated from the study of an analogous problem

examined by Salimi et al. [] and Samet et al. [] for single-valued contractive mappings
andHussain et al. [] for set-valued contractivemappings on complete determinacymet-
ric spaces.

2 Preliminaries
Let us recall [] that a continuous t-norm is a binary operation ∗ : [, ] × [, ] → [, ]
such that ([, ],≤,∗) is an ordered Abelian topological monoid with unit . In the sequel,
we always assume a ∗ b ≥ ab for all a,b ∈ (, ].
For examples of a t-norm satisfying the above conditions, we enumerate a ∗ b = ab,

a ∗ b =min{a,b} and a ∗ b = ab/max{a,b,λ} for  < λ < , respectively.

Definition . [] A fuzzy metric space is an ordered triple (X,M,∗) such that X is a
(nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set on X × X × (, +∞) that
satisfies the following conditions, for all x, y, z ∈ X:
(F) M(x, y, t) > , for all t > ,
(F) M(x,x, t) = , for all t > , andM(x, y, t) =  for some t >  implies x = y,
(F) M(x, y, t) =M(y,x, t), for all t > ,
(F) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s) for all s, t >  and
(F) M(x, y, ·) : (, +∞)→ [, ] is continuous.

Following the definition of Kramosil and Michálek [], M is a fuzzy set on X × X ×
[,∞) that satisfies (F) and (F), while (F), (F), (F) are replaced by (K), (K), (K),
respectively, as follows:
(K) M(x, y, ) = ;
(K) M(x, y, t) =  for all t >  if and only if x = y;
(K) M(x, y, ·) : [,∞)→ [, ] is left continuous.
We refer to these spaces as KM-spaces and refer to the spaces given as in Definition .

as GV-spaces. In addition, when X is called a fuzzy metric space, it means it may be a
GV-space or KM-space.
In these senses, M is called a fuzzy metric on X. Some simple but useful facts are that
(I) M(·, ·, t) is a continuous function on X ×X for t ∈ (,∞) and
(II) M(x, y, ·) is nondecreasing for all x, y ∈ X .

Indeed, let {xn} and {yn} be two sequences of X with limn→∞ xn = x and limn→∞ yn = y.
Then, for any ε >  and t > , we have

M(x, y, t) ≥M(x,xn, ε) ∗M(xn, yn, t – ε) ∗M(yn, y, ε).

In view of Lemma ., for any δ > , we have M(x,xn, ε) >  – δ and M(yn, y, ε) >  – δ for
large enough n and any ε > . Hence,

M(x, y, t) ≥ ( – δ) ∗M(xn, yn, t – ε) ∗ ( – δ).

Let δ → ; combining the arbitrariness of ε and the left continuity of M(x, y, ·), it follows
that

M(x, y, t) ≥  ∗M(xn, yn, t) ∗  =M(xn, yn, t).

http://www.fixedpointtheoryandapplications.com/content/2014/1/12
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By taking the limit when n → ∞, we obtain limn→∞ M(xn, yn, t) ≤ M(x, y, t). By an anal-
ogous inference, we have M(x, y, t) ≥ limn→∞ M(xn, yn, t). Consequently, limn→∞ M(xn,
yn, t) =M(x, y, t), i.e., the first fact is valid. To prove the second fact, by (F) we notice that
M(x, y, t) ≥M(x, y, s) ∗M(y, y, t – s) =M(x, y, s) ∗  =M(x, y, s) for s, t ∈ [,∞) with t > s.
Let (X,M,∗) be a fuzzy metric space. For t >  and r ∈ (, ), the open ball B(x, t, r) with

center x ∈ X is defined by

B(x, t, r) =
{
y ∈ X :M(x, y, t) >  – r

}
.

A subset A ⊂ X is called open if for each x ∈ A, there exist t >  and  < r <  such that
B(x, t, r) ⊂ A. Let T denote the family of all open subsets of X. Then T is a topology on
X induced by the fuzzy metric M. This topology is metrizable []. Therefore, a closed
subset B of X is equivalent to x ∈ B if and only if there exists a sequence {xn} ⊂ B such that
{xn} topologically converges to x. In fact, the topologically convergence of sequences can
be indicated by the fuzzy metric as follows.

Lemma . A sequence {xn} in X is said to be convergent to a point x ∈ X, denoted by
limn→∞ xn = x, if limn→∞ M(xn,x, t) =  for any t > .

Definition . [] Let (X,M,∗) be a fuzzy metric space.
(i) A sequence {xn} in X is called Cauchy sequence if for each ε >  and t > , there

exists n ∈N such thatM(xn,xm, t) >  – ε for any m,n≥ n.
(ii) A fuzzy metric space (X,M,∗) in which every Cauchy sequence is convergent is said

to be complete.

There exist two fuzzy versions of Cauchy sequences and completeness, i.e., besides the
so-called M-Cauchy sequence and M-completeness in the sense of Definition ., the
G-Cauchy sequence defined by limn→∞ M(xn+p,xn, t) =  for all t,p >  and the corre-
sponding G-completeness introduced by []. In [] the authors have pointed out that a
G-Cauchy sequence is not aM-Cauchy in general. It is clear that aM-Cauchy sequence is
G-Cauchy and hence a fuzzymetric space isM-complete if it isG-complete. Fromnow on,
by a Cauchy sequence and completeness we mean an M-Cauchy sequence and M-com-
pleteness.
By CB(X) we denote the collection consisting of all nonempty closed subsets of X (obvi-

ously, every closed subset of X is bounded in the sense of fuzzy metric spaces). Motivated
by [], we define a function on CB(X)×CB(X) as follows:

HM(A,B, t) =min
{
inf
a∈A

M(a,B, t), inf
b∈B

M(A,b, t)
}

for any A,B ∈ CB(X) and t > , whereM(c,D, t) =M(D, c, t) = supd∈DM(c,d, t).
On the collection consisting of compact sunsets of X, in [] the authors have shown

thatHM satisfies the conditions (F)-(F) given as inDefinition .. Clearly,HM({x}, {y}, t) =
M(x, y, t) for all x, y ∈ X and t > .

Lemma . If A⊂ CB(X), then x ∈ A if and only if M(x,A, t) =  for t > .

We end this section by the following notion which plays an important role in our main
results.

http://www.fixedpointtheoryandapplications.com/content/2014/1/12
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Definition . Let (X,M,∗) be a fuzzy metric space. A subset D ⊂ X is said to be approx-
imative if the set-valued mapping

PD(x) =
{
y ∈D :M(x, y, t) =M(x,D, t),∀t > 

}
, ∀x ∈ X

has nonempty values. The set-valued mapping F : X → X is said to have approximative
values if F(x) is approximative for each x ∈ X.

It is clear that F has approximative values if it has compact values.

3 Fixed-point theorems
Let (X,M,∗) be a fuzzy metric space and T : X → CB(X) be a set-valued mapping. An
element x ∈ X is called a fixed point of T if x ∈ Tx.

Definition. LetT : X → X be a set-valued function, and let α,η : X×X×(,∞)→R+

be two functions, where α is bounded. We say that T is an α∗-η∗-admissible mapping if

α(x, y, t)≤ η(x, y, t) implies that α∗(Tx,Ty, t) ≤ η∗(Tx,Ty, t), x, y ∈ X, t > ,

where α∗(A,B, t) = supx∈A,y∈B α(x, y, t) and η∗(A,B, t) = infx∈A,y∈B η(x, y, t).

The following collection � of functions is described in [], that is, ψ ∈ � implies that
ψ from [, ] into itself is continuous, nondecreasing, and ψ(s) > s for each s ∈ [, ).

Lemma . Let ψ ∈ � . For every s > , ψ(s) > s if and only if limn→∞ ψn(s) =  uniformly
for s ∈ [, ), where ψn is the nth iterate of ψ .

Proof Necessity. Since ψ is nondecreasing, the sequence {ψn(s)} is also nondecreasing
and hence its limit exists. Let limn→∞ ψn(s) = c. Thus c ≥ s > . If c < , then from the
continuity of ψ it follows that

c = lim
n→∞ψn+(s) =ψ

(
lim
n→∞ψn(s)

)
=ψ(c) > c,

a contradiction. Therefore, c = .
On the other hand, if the limit is not uniform, then there exists  < ε <  such that, for

every n ∈N, we can find tn ∈ (, ) and kn ≥ n with kn+ ≥ kn satisfying

 > ψkn (tn) + ε.

We can assume that tn+ ≤ tn for n ∈N. In fact, if t < t, then, bymeans of our assumptions,
we have  > ε + ψk (t) ≥ ε + ψk (t) ≥ ε + ψk (t). Without loss of generality, we put
t = t. Inductively, let tj+ ≤ tj for j > . If tj+ > ti for some i = , , . . . , j+, then we have  >
ε +ψkj+ (tj+) ≥ ε +ψkj+ (tj+) ≥ · · · ≥ ε +ψki (ti). In this case, we put ti = ti+ = · · · = tj+ =
tj+. Consequently, the sequence {tn} is nonincreasing and hence is convergent. Denoting
limn→∞ tn = t, we easily see that  > tn ≥ t ≥ . This shows that ψkn (tn) ≥ ψkn (t). From

http://www.fixedpointtheoryandapplications.com/content/2014/1/12
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limn→∞ ψkn (t) =  it follows that limn→∞ ψkn (tn) = . Hence, there exists k ∈ N such that
ψkn (tn) >  – ε/, for all n ≥ k, that is,

 – ε > ψkn (tn) >  – ε/,

a contradiction. Therefore, limn→∞ ψn(s) =  uniformly for s ∈ [, ).
Sufficiency. Assume that there exists t ∈ (, ) such thatψ(t) ≤ t. Thenψn(t) ≤ t for

all n ∈N since ψ is nondecreasing. Thus  = limn→∞ ψn(t) ≤ t < , a contradiction. �

Definition . Let ψ ∈ � . The set-valued mapping T is called a fuzzy α-ψ-contractive
mapping if the following implication takes place:

x, y ∈ X, t > , α(x, y, t)≤ η(x, y, t) ⇒ HM(Tx,Ty, t)≥ ψ
(
N(x, y, t)

)
, ()

where ψ ∈ � and

N(x, y, t) =min
{
M(x, y, t),

√
M(x,Tx, t)M(y,Ty, t)

}
.

Theorem. Let (X,M,∗) be a complete fuzzymetric space and T : X → CB(X) be a fuzzy
α-ψ-contractive and α∗-η∗-admissible set-valued mapping. Suppose that the following as-
sertions hold:

(i) there exist x ∈ X and x ∈ PTx (x) such that α(x,x, t) ≤ η(x,x, t) for each t > ;
(ii) for any sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+, t) ≤ η(xn,xn+, t), for all

n ∈N and t > , we have α(xn,x, t)≤ η(xn,x, t) for all n ∈N.
Then T has a fixed point.

Proof Our assumptions guarantee that there exist x ∈ X and x ∈ PTx (x) such that
α(x,x, t) ≤ η(x,x, t) and M(x,x, t) = M(x,Tx, t) for each t > . By the contractive
condition () we have

HM(Tx,Tx, t) ≥ ψ
(
N(x,x, t)

)
()

for all t > . Noting that T is an α∗-η∗-admissible mapping, we have

α∗(Tx,Tx, t) ≤ η∗(Tx,Tx, t).

For x ∈ Tx, there exists x ∈ PTx (x) such that α(x,x, t) ≤ η(x,x, t). Applying again
the contractive condition () we have

HM(Tx,Tx, t) ≥ ψ
(
N(x,x, t)

)
.

Continuing this process, we can define a sequence {xn} inX by xn ∈ PTxn– (xn–) satisfying,
for all n ∈N and t > ,

HM(Txn,Txn+, t)≥ ψ
(
N(xn,xn+, t)

)
, ()

α(xn,xn+, t) ≤ η(xn,xn+, t), ()

M(xn,xn+, t) =M(xn,Txn, t). ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/12


Hong Fixed Point Theory and Applications 2014, 2014:12 Page 6 of 11
http://www.fixedpointtheoryandapplications.com/content/2014/1/12

If xn+ = xn for some n ∈N, then x = xn is a fixed point of T and the result is proved. Hence,
we suppose that xn+ �= xn, i.e., xn /∈ Txn for all n ∈N. From equation () and the definition
of HM it follows that

M(xn,xn+, t) ≥HM(Txn–,Txn, t)

for all n ∈N and t > . By means of equation () we have

M(xn,xn+, t) ≥ ψ
(
N(xn–,xn, t)

)
for all n ∈N and t > . ()

On the other hand, by equation () we get

N(xn–,xn, t) = min
{
M(xn–,xn, t),

√
M(xn–,Txn–, t)M(xn,Txn, t)

}
= min

{
M(xn–,xn, t),

√
M(xn–,xn, t)M(xn,xn+, t)

}
.

By equation (), this implies that

M(xn,xn+, t) ≥ ψ
(
min

{
M(xn–,xn, t),

√
M(xn–,xn, t)M(xn,xn+, t)

})
for all n ∈N and t > . We claim that

M(xn–,xn, t) ≤M(xn,xn+, t) for all n ∈ N and t > . ()

Suppose the contrary; then

min
{
M(xn–,xn, t),

√
M(xn–,xn, t)M(xn,xn+, t)

}
=

√
M(xn–,xn, t)M(xn,xn+, t).

By virtue of the properties of ψ , for all n ∈ N and t > , we get

M(xn,xn+, t) ≥ ψ
(√

M(xn–,xn, t)M(xn,xn+, t)
)

>
√
M(xn–,xn, t)M(xn,xn+, t) >M(xn,xn+, t),

a contradiction. Hence equation () is valid. Moreover, in view of the monotonicity of ψ

one has

M(xn,xn+, t) ≥ ψ
(
M(xn–,xn, t)

)
>M(xn–,xn, t)

for all n ∈N and t > . Repeating this procedure, we have

M(xn,xn+, t) ≥ ψ
(
M(xn–,xn, t)

) ≥ · · · ≥ ψn(M(x,x, t)
)

for all n ∈N and t > . Now, for allm > n,m,n ∈N and t > , we can write

M(xn,xm, t) ≥ M(xn,xn+, tn+) ∗M(xn+,xn+, tn+) ∗ · · · ∗M(xm–,xm, tm)

≥
m–∏
i=n

M(xi,xi+, ti+) ≥
m–∏
i=n

ψ i(M(x,x, ti+)
)
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/12
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where ti >  (i = n + ,n + , . . . ,m) and
∑m

i=n+ ti = t. In the light of Lemma ., we
can assume that ψ i(M(x,x, ti)) >  – /i when i is large enough. Note that the series∑∞

i= /i is convergent, and the infinite product
∏∞

i=( – (/i)) is convergent, too. Hence,
limn→∞

∏∞
i=n( – (/i)) = . This implies that {xn} is anM-Cauchy sequence.

In view of the completeness of (X,M,∗), there exists y ∈ X such that xn → y as n → ∞.
By means of (ii), we have α(xn, y, t) ≤ η(xn, y, t) for all n ∈ N and t > . From the contractive
condition it follows that

HM(Txn,Ty, t) ≥ ψ
(
N(xn, y, t)

)
.

We observe that xn /∈ Txn, soM(xn,Txn, t) <  by Lemma .. IfM(y,Ty, t) < , then

N(xn, y, t) =min
{
M(xn, y, t),

√
M(xn,Txn, t)M(y,Ty, t)

}
< .

Therefore, HM(Txn,Ty, t) ≥ ψ(N(xn, y, t)) > N(xn, y, t) for n ∈ N and t > . Moreover, by
equation () we obtain

M(xn+,Ty, t) ≥HM(Txn,Ty, t) >N(xn, y, t).

Noting that M(xn, y, t) → , M(xn,Txn, t) = M(xn,xn+, t) → , we have N(xn, y, t) →√
M(y,Ty, t) as n→ ∞. By taking the limit as n → ∞ in the above inequality, we obtain

M(y,Ty, t) ≥ √
M(y,Ty, t).

This is a contradiction. Therefore, M(y,Ty, t) = . From Lemma . it follows that y ∈ Ty,
i.e. y is a fixed point of T . �

We present the following interesting corollaries.

Corollary . Let (X,M,∗) be a complete fuzzy metric space and let T be an α∗-η∗-
admissible set-valued mapping with η = . Assume that the following assertions hold:

(i) for ψ ∈ � , x, y ∈ X and t > ,

α(x, y, t)≤  ⇒ HM(Tx,Ty, t)≥ ψ
(
N(x, y, t)

)
;

(ii) there exist x ∈ X and x ∈ PTx (x) such that α(x,x, t) ≤  for each t > ;
(iii) for any sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+, t) ≤ , for all n ∈N

and t > , we have α(xn,x, t)≤  for all n ∈N and t > .
Then T has a fixed point.

Remark . Let α(x, y, t) = M(x, y, t). Then the assumptions (i) and (ii) of Corollary .
hold and α(x, y, t) ≤  for all x, y ∈ X and t > . Thus HM(Tx,Ty, t) ≥ ψ(N(x, y, t)) for all
x, y ∈ X and t >  with ψ ∈ � (here T is called a fuzzy ψ-contractive set-valued mapping).
Therefore, T has a fixed point inX. This result includes Theorem . in [] and Theorem 
in [], and also the corresponding results of [, ] in complete GV-spaces.

http://www.fixedpointtheoryandapplications.com/content/2014/1/12
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Corollary . Let all hypotheses of Corollary . hold except (i) changed into one of the
following conditions:

(I) for ψ ∈ � , x, y ∈ X and t > ,

α(x, y, t)HM(Tx,Ty, t) ≥ ψ
(
N(x, y, t)

)
;

(II) for ψ ∈ � , x, y ∈ X and t > ,

(
α(x, y, t) + λ

)HM(Tx,Ty,t) ≥ ( + λ)ψ(N(x,y,t)), λ > ;

(III) for ψ ∈ � , x, y ∈ X and t > ,

(
HM(Tx,Ty, t) + λ

)α(x,y,t) ≥ ψ
(
N(x, y, t)

)
+ λ, λ > .

Then T has a fixed point.

Corollary . Let (X,M,∗) be a complete fuzzy metric space and let T be an α∗-η∗-
admissible set-valued mapping with α = . Assume that the following assertions hold:

(i) for ψ ∈ � , x, y ∈ X and t > ,

η(x, y, t)≥  ⇒ HM(Tx,Ty, t) ≥ ψ
(
N(x, y, t)

)
;

(ii) there exist x ∈ X and x ∈ PTx (x) such that η(x,x, t) ≥  for each t > ;
(iii) for any sequence {xn} ⊂ X converging to x ∈ X and η(xn,xn+, t) ≥ , for all n ∈N

and t > , we have η(xn,x, t)≥  for all n ∈N.
Then T has a fixed point.

4 Examples
In this section, we conclude the paper with several examples to illustrate the usability of
the obtained results.

Example . Let X = [,∞), a ∗ b = ab for any a,b ∈ [, ] and M(x, y, t) = min{x,y}
max{x,y} for

x, y ∈ X and t > . Then, for given λ > , the set-valued mapping T : X → X, where

Tx =

{
{x + λ}, x + λ < ,
[
√
x,

√
x + λ], x + λ ≥ ,

has a fixed point in X.

Proof Using similar arguments to the ones in [, Theorem ], one shows that (X,M,∗)
is a complete GV-space. Let ψ(t) =

√
t for t ∈ [, ]. Then ψ ∈ � . Let

α(x, y, t) =

{
, x or y ∈ [, ),

 , otherwise,

x, y ∈ X, t > .

Then α(x, y, t) ≤  implies that x, y ∈ [,∞). For any x, y ∈ X and t > , we consider the
following cases.

http://www.fixedpointtheoryandapplications.com/content/2014/1/12
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Case .
√
x + λ < √y. In this case, we have, for any a ∈ Tx, M(a,Ty, t) = a√y and

infa∈TxM(a,Ty, t) =
√
x√y . Similarly, infb∈TyM(Tx,b, t) =

√
x+λ√
y+λ

. Consequently, we obtain

HM(Tx,Ty, t) =min

{√
x√y
,
√
x + λ√
y + λ

}
=

√
x√y
=ψ

(
M(x, y, t)

)
.

Case .
√
x < √y≤ √

x + λ. We get infa∈TxM(a,Ty, t) =
√
x√y and infb∈TyM(Tx,b, t) =

√
x+λ√
y+λ

.
Consequently,

HM(Tx,Ty, t) =min

{√
x√y
,
√
x + λ√
y + λ

}
=

√
x√y
=ψ

(
M(x, y, t)

)
.

Case . √y ≤ √
x <

√
y + λ or

√
y + λ ≤ √

x. We get infb∈TyM(Tx,b, t) =
√y√
x and

infa∈TxM(a,Ty, t) =
√
y+λ√
x+λ

. Consequently,

HM(Tx,Ty, t) =min

{√y√
x
,
√
y + λ√
x + λ

}
=

√y√
x
=ψ

(
M(x, y, t)

)
.

This shows that α and T satisfy Corollary .(i). Notice that
√
 + λ ∈ T

√
 and α(

√
,√

 + λ, t) = 
 < ; that is, Corollary .(ii) is satisfied.

Now, if {xn} is a sequence in X such that α(xn,xn+, t) ≤ , for all t >  and n ∈ N, and
xn → x as n → ∞, then {xn} ⊂ [,∞), which implies that x ≥ . This guarantees that
α(xn,x, t) ≤  for all n ∈ N and t >  and hence Corollary .(iii) holds. Thus all condi-
tions of Corollary . are satisfied. The conclusion is that T has a fixed point. �

Remark . We observe that T in Example . is not fuzzy ψ-contractive. Hence there
exists a mapping which is fuzzy α-ψ-contractive but not fuzzy ψ-contractive, although
every fuzzy ψ-contractive mapping is obviously fuzzy α-ψ-contractive.

In fact, set λ = . and take x = ., y = . in Example .; we have Tx = x + λ = .,
Ty = y + λ = .. Note that

M(Tx,Ty, t) =M(., ., t) =
.
.

=


,

M(x, y, t) =M(., ., t) =
.
.

=


,

and we have M(Tx,Ty, t) < ψ(M(x, y, t)) =
√


 . This shows that T is not fuzzy ψ-contrac-

tive.

Example . Let X = [,∞) be endowed with the fuzzy metricM(x, y, t) = exp(–|x– y|/t)
for all x, y ∈ X and t > . Let the single-valued mappings T : X → X be defined by

Tx =

{

x

, x ∈ [, ],
x + , x ∈ (,∞).

Define α,η : X ×X × [,∞) → X and ψ ∈ � by α ≡ ,

η(x, y, t) =

{
, x or y ∈ [, ],

 , x, y ∈ (,∞),

t > 
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and ψ(s) =
√
s for s ∈ [, ], respectively. We prove that Corollary . can be applied to T .

But the fuzzy ψ-contraction cannot be applied to T .

Proof Clearly, (X,M,∗) is a complete GV-space. We show that T is an α-η-admissible
mapping. Let x, y ∈ X and t > ; if η(x, y, t)≥ , then x, y ∈ [, ]. On the other hand, for all
x ∈ [, ], we have Tx ≤ . It follows that η(Tx,Ty, t)≥ . Also, η(,T, t)≥ .
Now, if {xn} is a sequence in X such that η(xn,xn+, t) ≥ , for all n ∈ N and xn → x as

n→ ∞, then {xn} ⊂ [, ] and hence x ∈ [, ]. This implies that η(xn,x, t)≥  for all n ∈N

and t > . Let η(x, y, t)≥ . Then x, y ∈ [, ]. We get

M(Tx,Ty, t) = exp

(
–

|x – y|
t

)
≥ exp

(
–

|x – y|
t

)
=ψ

(
M(x, y, t)

)
.

That is,

η(x, y, t)≥  ⇒ M(Tx,Ty, t) ≥ ψ
(
M(x, y, t)

)
.

Then all conditions of Corollary . hold. Hence, T has a fixed point.
Let x = , y =  and t > . Then Tx = , Ty =  and

M(Tx,Ty, t) = exp

(
–

t

)
< exp

(
–

t

)
<ψ

(
M(x, y, t)

)
.

This shows that the ψ-contraction introduced in [] cannot be applied to T . �
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