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Abstract
Recently, some (common) coupled fixed theorems in various abstract spaces have
appeared as a generalization of existing (usual) fixed point results. Unexpectedly, we
noticed that most of such (common) coupled fixed theorems are either weaker or
equivalent to existing fixed point results in the literature. In particular, we prove that
the very recent paper of Turkoglu and Sangurlu ‘Coupled fixed point theorems for
mixed g-monotone mappings in partially ordered metric spaces [Fixed Point Theory
and Applications 2013, 2013:348]’ can be considered as a consequence of the existing
fixed point theorems on the topic in the literature. Furthermore, we give an example
to illustrate that the main results of Turkoglu and Sangurlu (Fixed Point Theory Appl.
2013:348, 2013) has limited applicability compared to the mentioned existing fixed
point result.
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1 Introduction and preliminaries
Inmany recent publications in fixed point theory auxiliary functions are used to generalize
the contractive conditions on the maps defined on various spaces. On the other hand, as
appears in some studies, not all of these generalizations are meaningful. Moreover, some
of the results are equivalent to, or even weaker than the existing theorems.
In this paper we discuss the insufficiency of one of these recent generalizations given

by Turkoglu and Sangurlu in []. Our discussion can also be applied to revise some other
existing results.
We first recall the definition of the following auxiliary functions and some of their basic

properties.
Let � denote all functions ϕ : [,∞)→ [,∞) which satisfy
() ϕ is continuous and nondecreasing,
() ϕ(t) =  if and only if t = ,
() ϕ(t + s) ≤ ϕ(t) + ϕ(s), ∀t, s ∈ [,∞),
Let � denote all functions ψ : [,∞)→ [,∞) which satisfy limt→r ψ(t) >  for all r > 

and limt→+ ψ(t) = .
For consistency, we use the following definitions of coupled fixed point, coupled com-

mon fixed point and coupled coincidence point.
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Definition . Let F : X ×X → X and g : X → X be given mappings.
() A point (x, y) ∈ X ×X is called a coupled fixed point of F if x = F(x, y) and y = F(y,x).
() A point (x, y) ∈ X ×X is called a coupled coincidence point of F and g if gx = F(x, y)

and gy = F(y,x).
() A point (x, y) ∈ X ×X is called a coupled common fixed point of F if x = gx = F(x, y)

and y = gy = F(y,x).

Definition . Let (X,≤) be a partially ordered set and F : X × X → X be a given map-
ping. The mapping F is said to have mixed monotone property on X if it is monotone
nondecreasing in x and monotone nonincreasing in y, that is,

x,x ∈ X, x ≤ x ⇒ F(x, y) ≤ F(x, y),

y, y ∈ X, y ≤ y ⇒ F(x, y) ≥ F(x, y).
()

We next recollect the main results of Turkoglu and Sangurlu [] by removing the typos
and emphasizing the definitions of auxiliary functions which are missing in the original
paper. Notice also that in the original paper of Turkoglu and Sangurlu [], Theorem  is
superfluous, since it is a consequence of Theorem .

Theorem. [] Let (X,≤) be a partially ordered set and suppose there exists ametric d on
X such that (X,d) is a complete metric space. Let F : X ×X −→ X be a mapping having the
mixed monotone property on X and there exist two elements x, y ∈ X with x ≤ F(x, y)
and y ≥ F(y,x). Suppose that there exist ϕ ∈ �, ψ ∈ � and F , g satisfy

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ϕ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)
()

for all x, y,u, v ∈ X with gx ≤ gu and gy ≥ gv, F(X × X) ⊆ g(X), g(X) is complete and g is
continuous.
Suppose that either
() F is continuous or
() X has the following property:

(a) if a nondecreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a nonincreasing sequence {yn} → y, then y≤ yn for all n ∈N.

Then there exist x, y ∈ X such that x = gx = F(x, y) and y = gy = F(y,x), that is, F and g have
a coupled common fixed point in X ×X.

2 Main results
In the following example, we shall emphasize the insufficiency of the main results of
Turkoglu and Sangurlu [].

Example . Let X = [,∞) be endowed with the standard metric d(x, y) = |x – y| for all
x, y ∈ X. Define the maps F : X × X → X and g : X → X by F(x, y) = 

x –

y and g(x) = x

for all x, y ∈ X. Then for all x, y,u, v ∈ X with y = v, we have

d
(
F(x, y),F(u, v)

)
=


|x – u| and d(gx, gy) + d(gy, gv) = |x – u|. ()
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Thus,

d
(
F(x, y),F(u, v)

)
>


[
d(gx, gy) + d(gy, gv)

]
.

Regarding the nondecreasing character of the functions in �, we deduce that

ϕ
(
d
(
F(x, y),F(u, v)

))
>


ϕ
(
d(gx, gy) + d(gy, gv)

)
.

Since the functions in the class � are nonnegative, it is impossible to satisfy the inequality
() for any function ψ ∈ � . Hence, Theorem . cannot provide the existence of a coupled
common fixed point of F and g . On the other hand, it is easy to see that (, ) is a coupled
common fixed point of F and g .

The weakness of Theorem . can also be observed with the following theorem.

Theorem . Let (X,≤) be a partially ordered set and suppose there exists a metric d on
X such that (X,d) is a complete metric space. Let F : X ×X −→ X be a mapping having the
mixed monotone property on X and there exist two elements x, y ∈ X with x ≤ F(x, y)
and y ≥ F(y,x). Suppose that there exist ϕ ∈ �, ψ ∈ � for which F and g satisfy

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)
≤ ϕ

(
d(gx, gu) + d(gy, gv)



)

–ψ

(
d(gx, gu) + d(gy, gv)



)
()

for all x, y,u, v ∈ X with gx ≤ gu and gy≥ gv, where F(X ×X) ⊆ g(X), g(X) is complete and
g is continuous.
Suppose that either
() F is continuous or
() X has the following property:

(a) if a nondecreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a nonincreasing sequence {yn} → y, then y≤ yn for all n ∈N.

Then there exist x, y ∈ X such that x = gx = F(x, y) and y = gy = F(y,x), that is, F and g have
a coupled common fixed point in X ×X.

Proof The proof of this theorem is standard. Indeed, the desired result is obtained by
mimicking the lines in the proof of Turkoglu and Sangurlu []. Since there is no difficulty
in this process, we omit the details. �

Notice that if take g(x) = x in Theorem ., then we derive the following result, which
was proved in [].

Theorem . Let (X,≤) be a partially ordered set and suppose there exists a metric d on
X such that (X,d) is a complete metric space. Let F : X ×X −→ X be a mapping having the
mixed monotone property on X and there exist two elements x, y ∈ X with x ≤ F(x, y)
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and y ≥ F(y,x). Suppose that there exist ϕ ∈ �, ψ ∈ � and that F satisfies

ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

≤ ϕ

(
d(x,u) + d(y, v)



)
–ψ

(
d(x,u) + d(y, v)



)
()

for all x, y,u, v ∈ X with x≤ u and y ≥ v. Suppose that either
() F is continuous or
() X has the following property:

(a) if a nondecreasing sequence {xn} → x, then xn ≤ x for all n ∈N,
(b) if a nonincreasing sequence {yn} → y, then y≤ yn for all n ∈N.

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y,x), that is, F has a coupled fixed
point in X ×X.

Lemma . [] Let X be a nonempty set and T : X → X be a function. Then there exists a
subset E ⊆ X such that T(E) = T(X) and T : E → X is one-to-one.

Theorem . Theorem . is a consequence of Theorem ..

Proof By Lemma ., there exists E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one.
Define a map G : g(E)× g(E)→ g(E) by G(gx, gy) = F(x, y) and G(gy, gx) = F(y,x). Since g is
one-to-one on g(E), G is well defined. Note that

ϕ

(
d(G(gx, gy),G(gu, gv)) + d(G(gy, gx),G(gv, vu))



)

= ϕ

(
d(F(x, y),F(u, v)) + d(F(y,x),F(v,u))



)

≤ ϕ

(
d(x,u) + d(y, v)



)
–ψ

(
d(x,u) + d(y, v)



)
()

for all gx, gy ∈ g(E). Since g(E) = g(X) is complete, by using Theorem ., there exist
x, y ∈ X such that G(gx, gy) = gx and G(gy, gx) = gy. Hence, F and g have a cou-
pled coincidence point. �

The complicated contractive conditions of the aforementioned theorems can be simpli-
fied considerably by means of the following notations. Let (X,
) be a partially ordered set
endowed with ametric d and F : X×X → X be a givenmapping.We define a partial order

 on the product set X ×X as

(x, y), (u, v) ∈ X ×X, (x, y) 
 (u, v) ⇔ x
 u, y � v. ()

Let Y = X ×X. It is easy to show that the mapping η : Y × Y → [,∞) defined by

η
(
(x, y), (u, v)

)
= d(x,u) + d(y, v) ()

for all (x, y), (u, v) ∈ Y is a metric on Y .
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Now, define the mapping TF : Y → Y by

TF (x, y) =
(
F(x, y),F(y,x)

)
for all (x, y) ∈ Y . ()

The following properties can easily be seen.

Lemma . (see e.g. []) If X and Y are the metric spaces defined above, then the following
properties hold.
() (X,d) is complete if and only if (Y ,η) is complete;
() F has the mixed monotone property if and only if TF is monotone nondecreasing with

respect to 
;
() (x, y) ∈ X ×X is a coupled fixed point of F if and only if (x, y) is a fixed point of TF .

Theorem . Let (X,≤) be a partially ordered set and suppose there exists a metric d on
X such that (X,d) is a complete metric space. Let T : X → X be a nondecreasing mapping.
Suppose that there exists x ∈ X with x ≤ T(x). Suppose also that there exist ϕ ∈ �,ψ ∈ �

satisfying

ϕ
(
d(Tx,Ty)

) ≤ ϕ
(
d(x, y)

)
–ψ

(
d(x, y)

)
()

for all x, y ∈ X. Suppose that either
() T is continuous or
() X has the following property: If a nondecreasing sequence {xn} → x, then xn ≤ x for

all n ∈ N.
Then there exists x ∈ X such that x = Tx.

We skip the proof of Theorem . since it is standard and can be found easily in the
literature; see e.g. []. More precisely, it is the analog of the proof given in [].

Theorem . Theorem . follows from Theorem ..

Proof Notice that () is equivalent to

ϕ

(
η(TF ((x, y), (u, v)))



)
≤ ϕ

(
η((x, y), (u, v))



)
–ψ

(
η((x, y), (u, v))



)
. ()

By Lemma ., all conditions of Theorem . are satisfied. To finalize the proof, we let

d
(
(x, y), (u, v)

)
=

η((x, y), (u, v))


=
d(x,u) + d(y, v)


.

Hence, () turns into

ϕ
(
d

(
TF (x, y),TF (u, v)

)) ≤ ϕ
(
d

(
(x, y), (u, v)

))
–ψ

(
d

(
(x, y), (u, v)

))
. ()

�

Theorem . Theorem . is a consequence of Theorem ..

Proof Since Theorem . is a consequence of Theorem ., which follows from Theo-
rem ., then Theorem . is a consequence of Theorem .. �
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3 Conclusion
We have presented evidence, that is, Example . and Theorem ., that the results of
Theorem . in [] have more limited area of application than some existing results in the
literature. Moreover, the generalizations and equivalences given in this paper can be used
to show that other published theorems in the literature are in fact consequences of these
generalizations. In particular, Theorem . in [] is a consequence of Theorem .. As a
matter of fact, this note can be seen as a continuation of the discussion given in [].
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