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Abstract
The main aim of this paper is to present the concept of general Mann and general
Ishikawa type double-sequences iterations with errors to approximate fixed points.
We prove that the general Mann type double-sequence iteration process with errors
converges strongly to a coincidence point of two continuous pseudo-contractive
mappings, each of which maps a bounded closed convex nonempty subset of a real
Hilbert space into itself. Moreover, we discuss equivalence from the S, T -stabilities
point of view under certain restrictions between the general Mann type
double-sequence iteration process with errors and the general Ishikawa iterations
with errors. An application is also given to support our idea using compatible-type
mappings.
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1 Introduction
In the last few decades investigations of fixed points by some iterative schemes have at-
tracted many mathematicians. With the recent rapid developments in fixed point theory,
there has been a renewed interest in iterative schemes. The properties of iterations be-
tween the type of sequences and kind of operators have not been completely studied and
are now under discussion. The theory of operators has occupied a central place inmodern
research using iterative schemes because of its promise of enormous utility in fixed point
theory and its applications. There are a number of papers that have studied fixed points by
some iterative schemes (see []). It is rather interesting to note that the type of operators
play a crucial role in investigations of fixed points.
TheMann iterative schemewas invented in  (see [–]), and it is used to obtain con-

vergence to a fixed point for many classes of mappings (see [–] and others). The idea
of considering fixed point iteration procedures with errors comes from practical numeri-
cal computations. This topic of research plays an important role in the stability problem
of fixed point iterations. In , Liu [] initiated a study of fixed point iterations with
errors. Several authors have proved some fixed point theorems for Mann-type iterations
with errors using several classes of mappings (see [–] and others).
Suppose thatH is a real Hilbert space and A is a nonlinear mapping ofH into itself. The

map A is said to be accretive if ∀x, y ∈D(A), we have that

〈Ax –Ay,x – y〉 ≥ , ()
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and it is said to be strongly accretive if A– kI is accretive, where k ∈ (, ) is a constant and
I denotes the identity operator on H .
The map A is said to be φ-strongly accretive if ∀x, y ∈ E, exists a strictly increasing func-

tion φ : [,∞)→ [,∞) with φ() =  such that

〈Ax –Ay,x – y〉 ≥ φ
(‖x – y‖)‖x – y‖,

and it is called uniformly accretive if there exists a strictly increasing functionψ : [,∞) →
[,∞) with ψ() =  such that 〈Ax –Ay,x – y〉 ≥ ψ(‖x – y‖).
Let N(A) = {x∗ ∈ H : Ax∗ = } denote the null space (set of zero) of A. If N(A) �= φ and

() holds for all x ∈ D(A) and y ∈ N(A), then A is said to be quasi-accretive. The no-
tions of strongly, φ-strongly, uniformly quasi-accretive are similarly defined. A is said to
be m-accretive if ∀r >  the operator (I + rA) is surjective. Closely related to the class of
accretive maps is the class of pseudo-contractive maps.
A map T :H →H is said to be pseudo-contractive if ∀x, y ∈D(T) we have that

〈
(I – T)x – (I – T)y,x – y

〉 ≥ , ()

observe that T is pseudo-contractive if and only if A = (I – T) is accretive.
Amapping T :H →H is called Lipschitzian (or L-Lipschitzian) if there exists L >  such

that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H .

In the sequel we use L > .

Definition . (see e.g. []) Let N denote the set of all natural numbers, and let E be a
normed linear space. By a double sequence in E wemean a function f :N×N → E defined
by f (n,m) = xn,m ∈ E.

The double sequence {xn,m} is said to converge strongly to x∗ if for a given ε > , there
exist integers N ,M >  such that ∀n≥N ,m ≥M, we have that

∥∥xn,m – x∗∥∥ < ε.

If ∀n, r ≥N ,m, t ≥M, we have that

‖xn,r – xm,t‖ < ε,

then the double sequence is said to be Cauchy. Furthermore, if for each fixed n, xn,m → x∗
n

asm → ∞ and then x∗
n → x∗ as n→ ∞, so xn,m → x∗ as n,m → ∞.

In , Moore [] introduced the following theorem.

Theorem A Let C be a bounded closed convex nonempty subset of a (real) Hilbert space
H , and let T : C → C be a continuous pseudo-contractive map. Let {αn}n≥, {ak}k≥ ⊂ (, )
be real sequences satisfying the following conditions:

(i) limk→∞ ak =  (monotonically);

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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(ii) limk,r→∞ ak–ar
–ak

= , ∀ < r ≤ k;
(iii) limn→∞ αn = ;
(iv)

∑
n≥ αn =∞.

For an arbitrary but fixed w ∈ C, and for each k ≥ , define Tk : C → C by

Tkx := ( – ak)w + akTx, ∀x ∈ C.

Then the double sequence {xk,n}k≥,n≥ generated from an arbitrary x, ∈ C by

xk,n+ = ( – αn)xk,n + αnTkxk,n, k,n≥ , ()

converges strongly to a fixed point x∗∞ of T in C.

The two most popular iteration procedures for obtaining fixed points of T , when the
Banach principle fails, are doubly Mann iterations with errors [] defined by

uk,n+ = ( – αn)uk,n + αnTuk,n + αnun,

and doubly Ishikawa iterations with errors defined by

xk,n+ = ( – αn)xk,n + αnTzk,n + αnvn,

zk,n = ( – βn)xk,n + βnTxk,n + βnwn.

The sequences {αn} ⊂ (, ), {βn} ⊂ [, ) satisfy

lim
n→∞αn = lim

n→∞βn = ,
∞∑
n=

αn =∞.

A reasonable conjecture is that the doubly Ishikawa iteration with error and the corre-
sponding doubly Mann iteration with error are equivalent for all maps for which either
method provides convergence to a fixed point.
In the present paper, we define the following iteration which will be called the general

Mann iteration process with errors:

Suk,n+ = ( – αn)Suk,n + αnTuk,n + αnun. ()

Using this general Mann iteration process, we give a strong convergence theorem in the
double-sequence setting.
It should be remarked that in (), if we put S = I , where I denotes the identity mapping,

then we obtain the Mann iteration process with errors (see []).
The general doubly Ishikawa iteration with error is defined by

Sxk,n+ = ( – αn)Sxk,n + αnTzk,n + αnvn, ()

Szk,n = ( – βn)Sxk,n + βnTxk,n + βnwn. ()

The sequences {αn} ⊂ (, ), {βn} ⊂ [, ) satisfy

lim
n→∞αn = lim

n→∞βn = ,
∞∑
n=

αn =∞. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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It should be remarked that in () and (), if we put S = I , where I denotes the identity
mapping, then we obtain the Ishikawa iteration process with errors (see [, ]).

2 A strong convergence theorem
In this section, it is proved that a general Mann-type double-sequence iteration process
with error converges strongly to a coincidence point of the continuous pseudo-contractive
mappings S and T both of them map C into C (where C is a bounded closed convex
nonempty subset of a (real) Hilbert space). Now, we give the following theorem.

Theorem . Let C be a bounded closed convex nonempty subset of a (real) Hilbert space
H , and let S,T : C → C be continuous pseudo-contractive maps. Let {αn}n≥, {ak}k≥ ⊂
(, ) be real sequences satisfying the following conditions:

(i) limk→∞ ak =  (monotonically);
(ii) limk,r→∞ ak–ar

–ak
= , ∀ < r ≤ k;

(iii) limn→∞ αn = ;
(iv)

∑
n≥ αn =∞.

For an arbitrary but fixed w ∈ C, and for each k ≥ , define Tk : C → C by

Tkx = ( – ak)w + akTx + ( – ak)uk , ∀x ∈ C.

Then the double sequence {xk,n}k≥,n≥ generated from an arbitrary x, ∈ C by

Sxk,n+ = ( – αn)Sxk,n + αnTkxk,n + ( – αn)uk,n, k,n≥ , ()

converges strongly to a coincidence point x∗∞ of S and T ∈ C.

Proof Clearly, CF(T) �= ∅ and CF(S) �= ∅ (see e.g. []), where the set of coincidence points
of T is denoted by CF(T) and the set of coincidence points of S is denoted by CF(S).
Now, we have

〈Tkx – Tky,Sx – Sy〉 = ak〈Tx – Ty,Sx – Sy〉 ≤ ak‖Sx – Sy‖

so that for all k ≥ , Tk is continuous and strongly pseudo-contractive. Also, C is invariant
under Tk for all k by convexity. Hence, Tk has a unique fixed point x∗

k ∈ C, ∀k ≥ . It thus
suffices to prove the following:
() for each fixed k ≥ , Sxk,n → Sx∗

k ∈ C as n→ ∞;
() Sx∗

k → Sx∗∞ ∈ C as k → ∞;
() x∗∞ ∈ CF(S)∩CF(T).

The first is known, but for completeness we give the details.
Now, let d = diamC and bk =  – ak ∈ (, ), ∀k. Then

∥∥Sxk,n+ – Sx∗
k
∥∥

=
∥∥( – αn)Sxk,n + αnTkxk,n + ( – αn)uk,n – Sx∗

n
∥∥

=
∥∥Sxk,n – Sx∗

k – αn(Sxk,n – Tkxk,n) + ( – αn)uk,n
∥∥

=
∥∥Sxk,n – Sx∗

k
∥∥ – αn

〈
Sxk,n – Tkxk,n,Sxk,n – Sx∗

k
〉
– ( – αn)

〈
uk,n,Sxk,n – Sx∗

k
〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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+ α
n‖Sxk,n – Tkxk,n‖ + αn( – αn)〈xk,n – Tkxk,n,un〉 + ( – αn)‖uk,n‖

≤ ∥∥Sxk,n – Sx∗
k
∥∥ – αnak

∥∥Sxk,n – Sx∗
k
∥∥ – ( – αn)‖uk,n‖

∥∥Sxk,n – Sx∗
k
∥∥α

nd


+ αn( – αn)‖Sxk,n – Tkxk,n‖‖uk,n‖ + ( – αn)‖uk,n‖. ()

If we set

θk,n =
∥∥Sxk,n – Sx∗

k
∥∥, δk,n = akαn,

then from () we obtain

θ
k,n+ ≤ ( – δk,n)θ

k,n + dα
n +

(
αn( – αn)d – ( – αn)θk,n

)‖uk,n‖
+ ( – αn)‖uk,n‖

= ( – δk,n)θ
k,n + dα

n +
{
( – αn)

(
αnd + ( – αn)‖uk,n‖ – θk,n

)}‖uk,n‖.
Observing that

dα
n =O(δk,n), lim

n→∞ δk,n =  and
∑
n≥

dα
n =∞,

we obtain θk,n →  as n→ ∞. So the first part is proved. Now, we have

∥∥Sx∗
k – Tx∗

k
∥∥ =

∥∥Sx∗
k – a–k Sx∗

k – a–k ( – ak)w – a–k ( – ak)uk
∥∥

=
∥∥∥∥
(
 –


ak

)
Sx∗

k –
(
 – ak
ak

)
(w + uk)

∥∥∥∥
=

∥∥∥∥–
(
 – ak
ak

)
Sx∗

k –
(
 – ak
ak

)
(w + uk)

∥∥∥∥
=

(
 – ak
ak

)∥∥–(
Sx∗

k +w + uk
)∥∥

≤
(
 – ak
ak

)(∥∥Sx∗
k
∥∥ + ‖w‖ + ‖uk‖

)

≤
(
 – ak
ak

)(
d + ‖uk‖

)
,

which implies that

lim
k→∞

∥∥Sx∗
k – Tx∗

k
∥∥ ≤ .

Then

lim
k→∞

∥∥Sx∗
k – Tx∗

k
∥∥ = ,

hence {x∗
k} is a coincidence point sequence for S and T . Also, assuming that x∗∞ is a coin-

cidence point of S and T , then

∥∥Sx∗
∞ – Tx∗

∞
∥∥ ≤ lim

k→∞
(
d + ‖uk‖

)( – ak
ak

)
= .
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Now, for all  < r ≤ k, we have

∥∥Sx∗
k – Sx∗

r
∥∥

=
〈
Sx∗

k – Sx∗
r ,Sx

∗
k – Sx∗

r
〉
=

〈
Tkx∗

k – Trx∗
r ,Sx

∗
k – Sx∗

r
〉

=
〈
w + akTxk – arTxr + ( – ak)uk – ( – ar)ur ,Sx∗

k – Sx∗
r
〉

= (ar – ak)
〈
w,Sx∗

k – Sx∗
r
〉
+

〈
akTx∗

k – arTx∗
r ,Sx

∗
k – Sx∗

r
〉

+ ( – ak)
〈
uk ,Sx∗

k – Sx∗
r
〉
– ( – ar)

〈
ur ,Sx∗

k – Sx∗
r
〉

= (ar – ak)
〈
w,Sx∗

k – Sx∗
r
〉
+ (ak – ar)

〈
Tx∗

r ,Sx
∗
k – Sx∗

r
〉
+ ak

〈
Tx∗

k – Tx∗
r ,Sx

∗
k – Sx∗

r
〉

+ ( – ak)
〈
uk ,Sx∗

k – Sx∗
r
〉
– ( – ar)

〈
ur ,Sx∗

k – Sx∗
r
〉∥∥Sx∗

k – Sx∗
r
∥∥

≤ (ak – ar)‖w‖∥∥Sx∗
k – Sx∗

r
∥∥ + (ak – ar)

∥∥Tx∗
r
∥∥∥∥Sx∗

k – Sx∗
r
∥∥ + ak

∥∥Sx∗
k – Sx∗

r
∥∥

+ ( – ak)‖uk‖
∥∥Sx∗

k – Sx∗
r
∥∥ – ( – ar)‖ur‖

∥∥Sx∗
k – Sx∗

r
∥∥

≤ (ak – ar)
∥∥Sx∗

k – Sx∗
r
∥∥(‖w‖ + ∥∥Tx∗

r
∥∥)

+ ak
∥∥Sx∗

k – Sx∗
r
∥∥

+
(
( – ak)‖uk‖ – ( – ar)‖ur‖

)∥∥Sx∗
k – Sx∗

r
∥∥.

Then we obtain

( – ak)
∥∥Sx∗

k – Sx∗
r
∥∥ ≤ (ak – ar)

(‖w‖ + ∥∥Tx∗
r
∥∥)∥∥Sx∗

k – Sx∗
r
∥∥

+
(
( – ak)‖uk‖ – ( – ar)‖ur‖

)∥∥Sx∗
k – Sx∗

r
∥∥.

Then

∥∥Sx∗
k – Sx∗

r
∥∥ ≤ ak – ar

 – ak

(‖w‖ + ∥∥Tx∗
r
∥∥)∥∥Sx∗

k – Sx∗
r
∥∥

+
(
 – ak
 – ak

‖uk‖ –  – ar
 – ak

‖ur‖
)∥∥Sx∗

k – Sx∗
r
∥∥

≤ ak – ar
 – ak

(d)
∥∥Sx∗

k – Sx∗
r
∥∥ +

(
‖uk‖ –  – ar

 – ak
‖ur‖

)∥∥Sx∗
k – Sx∗

r
∥∥,

which implies that

∥∥Sx∗
k – Sx∗

r
∥∥ ≤ ak – ar

 – ak
(d) + ‖uk‖ –  – ar

 – ak
‖ur‖.

Hence,

lim
k,r→∞

∥∥Sx∗
k – Sx∗

r
∥∥ ≤ d lim

k,r→∞

(
ak – ar
 – ak

)
+ lim

k→∞
‖uk‖ – lim

k,r→∞

(
 – ar
 – ak

· ‖ur‖
)
= .

Thus {Sx∗
k} is a Cauchy sequence, and hence there exists {Sx∗∞} ∈ C such that Sx∗

k → Sx∗∞
as k → ∞. Therefore, the second part is proved. By continuity, Tx∗

k → Tx∗∞ as k → ∞. But
Sx∗

k – Tx∗
k →  as k → ∞. Hence, x∗∞ ∈ CF(S)∩CF(T). This completes the proof. �

Corollary . Let C be a bounded closed convex nonempty subset of a Hilbert space H
with  ∈ C. Let S, T , {ak}, {αn}, {xk,n} be as in Theorem . and ∀k ≥  define Tk = akT +

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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( – ak)Suk . Then Tk maps C into itself and {xk,n} converges strongly to a coincidence point
of S and T .

Proof The proof follows from Theorem . by setting w =  ∈ C. �

Corollary . In Theorem ., let S, T be two nonexpansive self-mappings. Then the same
conclusion is obtained.

Proof The proof of this corollary can be followed directly by observing that every nonex-
pansive mapping is a continuous pseudo-contraction. �

Remark . If we put uk =  in Theorem ., we obtain the result of Moore in [].

3 The equivalence between S,T-stabilities
In this section, we give the concept of S,T-stabilities, then we show that S,T-stabilities of
general doubly Mann and general doubly Ishikawa iterations are equivalent.
Let {Sxk,n} be the doubly general Ishikawa iterationwith errors and {Suk,n} be the general

doubly Mann iteration with errors. Let {qk,n}, {pk,n} ⊂ E be such that q, = p,, and let
(αn)n ⊂ (, ), (βn)n ⊂ [, ); n ∈N satisfy () and

Syk,n = ( – βn)Sqk,n + βnTqk,n. ()

We consider the following nonnegative sequences for all n ∈N:

εk,n :=
∥∥Sqk,n+ – ( – αn)Sqk,n – αnTyk,n + αnvn

∥∥ ()

and

δk,n :=
∥∥Spk,n+ – ( – αn)Spk,n – αnTpk,n + αnvn

∥∥. ()

Let E be a normed space and T be a self-map of E. Let x, be a point of E, and assume that
xk,n+ = f (T ,xk,n) is an iteration procedure, involving T , which yields a sequence {xk,n} of
points from E. Suppose that xk,n converges to a fixed point x∗ of T . Let ξk,n be an arbitrary
sequence in E, and set

εn =
∥∥ξk,n+ – f (T , ξk,n)

∥∥, ∀n ∈N.

Definition . If limn→∞ ε =  ⇒ limn→∞ ξk,n = p, then the iteration procedure xk,n+ =
f (T ,xk,n) is said to be T-stable with respect to T .

Remark . In practice, such a sequence {ξk,n} could arise in the following way. Let x, be
a point in E. Set xk,n+ = f (T ,xk,n). Let ξ, = x,. Now x, = f (T ,x,). Because of round-
ing in the function T , a new value ξ, approximately equal to x, might be computed to
yield ξ,, an approximation of f (T , ξ,). This computation is continued to obtain {ξk,n} an
approximate sequence of {xk,n}.

Definition . Let E be a normed space and S,T : E → E.

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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(i) If limk,n→∞ εk,n =  implies that limk,n→∞ Sqk,n = Sx∗, then the general Ishikawa
iteration as defined in () and () is said to be S,T-stable.

(ii) If limk,n→∞ δk,n =  implies that limk,n→∞ Spk,n = Sx∗, then the general Mann
iteration process as defined in () is said to be S,T-stable.

Remark . Let E be a normed space and S,T : E → E. The following are equivalent:
(a) for all {αn} ⊂ (, ), {βn} ⊂ [, ) satisfying (), the Ishikawa iteration is S,T-stable,
(b) for all {αn} ⊂ (, ), {βn} ⊂ [, ) satisfying (), ∀{qk,n} ⊂ E,

lim
k,n→∞

εk,n = lim
k,n→∞

∥∥Sqk,n+ – ( – αn)Sqk,n – αnTyk,n + αnvn
∥∥ = 

⇒ lim
k,n→∞

Sqk,n = Sx∗. ()

Remark. LetE be a normed space and S,T : E → E. Then the following are equivalent:

(a) for all {αn} ⊂ (, ) satisfying (), the general Mann iteration is S,T-stable,
(a) for all {αn} ⊂ (, ) satisfying (), ∀{pk,n} ⊂ E,

lim
k,n→∞

δk,n = lim
k,n→∞

∥∥Spk,n+ – ( – αn)Spk,n – αnTpk,n + αnvn
∥∥ = 

⇒ lim
k,n→∞

Spk,n = Sx∗. ()

The next result states that these two methods of iterations with errors are equivalent
from the S,T-stability point of view under certain restrictions.

Theorem . Let E be a normed space and S,T : E → E. Then the following are equiva-
lent:

(I) For all {αn} ⊂ (, ), {βn} ⊂ [, ) satisfying (), the general Ishikawa iteration process
as defined by () and () is S,T-stable.

(II) For all {αn} ⊂ (, ), satisfying (), the general Mann iteration process as defined in
() is S,T-stable.

Proof Let

M :=max
{
sup
k,n∈N

{∥∥T(yk,n)∥∥}
, sup
k,n∈N

{∥∥T(qk,n)∥∥}
, sup
k,n∈N

{∥∥T(pk,n)∥∥}
, sup
n∈N

{‖un‖}
}
.

Since the generalMann and general Ishikawa iterations converge andM <∞, Remarks .
and . assure that (I) ⇔ (II) is equivalent to (b) ⇔ (a). We shall prove that (b) ⇒ (a).
In (b) and () set Sqk,n := Spk,n, we obtain

∥∥Spk,n+ – ( – αn)Spk,n – αnTpk,n + αnun
∥∥

≤ ∥∥Spk,n+ – ( – αn)Spk,n – αnTyk,n
∥∥ + ‖αnTyk,n – αnTpn + αnun‖

≤ ∥∥Spk,n+ – ( – αn)Spk,n – αnTyk,n
∥∥ + αn

(‖Tyk,n‖ + ‖Tpk,n‖ + ‖un‖
)

≤ ∥∥Spk,n+ – ( – αn)Spk,n – αnTyk,n
∥∥ + αnM →  as n→ ∞. ()

Condition (b) assures that

lim
k,n→∞

∥∥Spk,n+ – ( – αn)Spk,n – αnTyk,n + αnun
∥∥ =  ⇒ lim

k,n→∞
Spk,n = Sx∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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Thus, for {Spk,n} satisfying

lim
k,n→∞

∥∥Spk,n+ – ( – αn)Spk,n – αnTyk,n + αnun
∥∥ = ,

we have shown that

lim
k,n→∞

Spk,n = Sx∗.

Conversely, we prove (a) ⇒ (b). In (a) and () set Spk,n = Sqk,n to obtain

∥∥Sqk,n+ – ( – αn)Sqk,n – αnTyk,n + αnun
∥∥

≤ ∥∥Sqk,n+ – ( – αn)Sqk,n – αnTsk,n
∥∥ + ‖αnTyk,n – αnTsn + αnun‖

≤ ∥∥Sqk,n+ – ( – αn)Sqk,n – αnTSqk,n
∥∥ + αnM →  as n→ ∞. ()

Condition (a) assures that

lim
k,n→∞

∥∥Sqk,n+ – ( – αn)Sqk,n – αnTSqk,n + αnun
∥∥ =  ⇒ lim

k,n→∞
Sqk,n = Sx∗.

Thus, for {Sqk,n} satisfying

lim
k,n→∞

∥∥Sqk,n+ – ( – αn)Sqk,n – αnTyk,n + αnun
∥∥ = ,

we have shown that

lim
k,n→∞

Sqk,n = Sx∗.

This completes the proof of the theorem. �

Corollary . Let E be a normed space and S,T : E → E. Then the following are equiva-
lent:

(i) For all {αn} ⊂ (, ), {βn} ⊂ [, ) satisfying (), the Ishikawa iteration process defined
by

xk,n+ = ( – αn)xk,n + αnTzk,n + αnvn,

zk,n = ( – βn)xk,n + βnTxk,n + βnwn

is T-stable.
(ii) For all {αn} ⊂ (, ), satisfying (), the Mann iteration process defined by

uk,n+ = ( – αn)uk,n + αnTuk,n + αnun ()

is T-stable.

Proof The proof of this result can be obtained directly by setting S = I in Theorem .,
where I denotes the identity mapping. �
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4 Application
In this section, we investigate the solvability of certain nonlinear functional equations in
a Banach space X by the help of compatible mappings of type (B) in the double-sequence
setting.
The concept of compatible mappings of type (B) was introduced by Pathak and Khan

(see []).

Definition . (see [] and []) Let S and T be mappings from a normed space E into
itself. The mappings S and T are said to be compatible mappings of type (B) if

lim
n→∞‖STxn – TTxn‖ ≤ 



[
lim
n→∞‖STxn – St‖ + lim

n→∞‖St – SSxn‖
]

and

lim
n→∞‖TSxn – SSxn‖ ≤ 



[
lim
n→∞‖TSxn – Tt‖ + lim

n→∞‖Tt – TTxn‖
]

whenever {xn} is a sequence in E such that limn→∞ Sxn = limn→∞ Txn = t for some t ∈ E.

Now, we extend the above definition to double-sequence setting as follows.

Definition . Let S and T bemappings from a normed space E into itself. Themappings
S and T are said to be compatible mappings of type (B) if

lim
n,m→∞‖STxn,m – TTxn,m‖ ≤ 



[
lim

n,m→∞‖STxn,m – St‖ + lim
n,m→∞‖St – SSxn,m‖

]

and

lim
n,m→∞‖TSxn,m – SSxn,m‖ ≤ 



[
lim

n,m→∞‖TSxn,m – Tt‖ + lim
n,m→∞‖Tt – TTxn,m‖

]

whenever {xn,m} is a sequence in E such that limn,m→∞ Sxn,m = limn,m→∞ Txn,m = t for some
t ∈ E.

Now, we state and prove the following result.

Theorem . Let {fn,m}, {gn,m}, {tn,m} and {rn,m} be sequences of elements in a Banach
space X. Let {νn,m} be the unique solution of the system of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fν –ABν = fn,m,
Fν – BBν = gn,m,
Fν – STν = tn,m,
Fν – TTν = rn,m,

where F ,A,B,S,T : X → X satisfy the following conditions:

(d) The pairs {A,S} and {B,T} are compatible of type (B),
(d) A = B = S = T = I , where I denotes the identity mapping, and

http://www.fixedpointtheoryandapplications.com/content/2014/1/121
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(d)

‖Ax – By‖ ≤ qmax

{
‖Sx – Ty‖,‖Sx –Ax‖,‖Sx –Ax‖ × ‖Ty – By‖,

‖Ty –Ax‖ × ‖Sx – By‖, 

[‖Ty –Ax‖ + ‖Sx – By‖]

}

for all x, y ∈ X , where q ∈ (, ). If Fν = ν and

lim
n,m→∞‖fn,m‖ = lim

n,m→∞‖gn,m‖ = lim
n,m→∞‖tn,m‖ = lim

n,m→∞‖rn,m‖ = ,

then the sequence {νn,m} converges to the solution of the equation

ν = Fν = Aν = Bν = Sν = Tν.

Proof We will show that {νn,m} is a Cauchy sequence. Since

‖νn,m – νn,m‖

=
[‖νn,m – STνn,m‖ + ‖STνn,m – TTνn,m‖ + ‖TTνn,m –ABνn,m‖
+ ‖ABνn,m – BBνn,m‖ + ‖BBνn,m – νn,m‖

]
≤ [‖νn,m – STνn,m‖ + ‖STνn,m – TTνn,m‖ + ‖TTνn,m –ABνn,m‖

+ ‖BBνn,m – νn,m‖
] + 

[‖νn,m – STνn,m‖ + ‖STνn,m – TTνn,m‖
+ ‖TTνn,m –ABνn,m‖ + ‖BBνn,m – νn,m‖

][‖ABνn,m – νn,m‖
+ ‖νn,m – νn,m‖ + ‖νn,m – BBνn,m‖

]
+ ‖ABνn,m – BBνn,m‖

≤ [‖νn,m – STνn,m‖ + ‖STνn,m – TTνn,m‖ + ‖TTνn,m –ABνn,m‖
+ ‖BBνn,m – νn,m‖

] + 
[‖νn,m – STνn,m‖ + ‖STνn,m – TTνn,m‖

+ ‖TTνn,m –ABνn,m‖ + ‖BBνn,m – νn,m‖
][‖ABνn,m – νn,m‖

+ ‖νn,m – νn,m‖ + ‖νn,m – BBνn,m‖
]
+ qmax

{
‖SBνn,m – TBνn,m‖,

‖SBνn,m –ABνn,m‖,‖SBνn,m –ABνn,m‖ × ‖TBνn,m – BBνn,m‖,

‖TBνn,m –ABνn,m‖ × ‖SBνn,m – BBνn,m‖,


[‖TBνn,m –ABνn,m‖

+ ‖SBνn,m – BBνn,m‖
]}

.

Letting n,n → ∞ with m > n andm > n, we deduce

lim
n,n→∞‖νn,m – νn,m‖ ≤ q lim

n,n→∞‖νn,m – νn,m‖,

which implies that

lim
n,n→∞‖νn,m – νn,m‖ = .
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Thus {νn,m} is a Cauchy sequence and converges to a point ν in X. Further,

‖ν –ABν‖ ≤ ‖ν – νn,m‖ + ‖νn – BBνn,m‖ + ‖BBνn,m –ABν‖

≤ ‖ν – νn,m‖ + ‖νn,m – BBνn,m‖ + qmax

{
‖SBνn,m – TBν‖,

‖SBν –ABν‖,‖SBν –ABν‖ × ‖TBνn,m – BBνn,m‖,‖TBνn,m –ABν‖

× ‖SBν – BBνn,m‖, 

‖TBνn –ABν‖ + ‖SBν – BBνn‖

} 


≤ ‖ν – νn,m‖ + ‖νn,m – BBνn,m‖ + qmax

{[‖SBνn,m – νn,m‖ + ‖νn,m – ν‖]

× [‖SBν – ν‖ + ‖ν –ABν‖],‖SBν –ABν‖ × ‖TBνn – BBνn,m‖,
[‖TBνn,m – νn,m‖ + ‖νn,m –ABν‖] × [‖SBν – ν‖ + ‖ν – BBνn,m‖],


[‖TBνn,m –ABν‖ + ‖SBν – BBνn,m‖]

} 

.

Letting n→ ∞, we get ν = ABν , which from (d) implies that Aν = Tν . Similarly, Tν = Sν .
From (d), we now have

ABν = BAν = ν = SBν = BSν = TBν = BTν.

Using (i) and (d), we have

‖v – Bv‖ =
∥∥Av – Bv

∥∥

≤ qmax

{
‖SAv – Tv‖,∥∥SAv –Av

∥∥,
∥∥SAv –Av

∥∥ × ‖Tv – Bv‖,
∥∥Tv –Av

∥∥ × ‖SAv – Bv‖, 

[∥∥Tv –Av

∥∥ + ‖SAv – Bv‖]
}

≤ qmax

{
‖v – Tv‖, , ,‖Tv – v‖ × ‖v – Bv‖, 


‖Tv – v‖ + ‖v – Bv‖

}

≤ qmax
{‖v – Tv‖, , ,‖v – Tv‖,‖Tv – v‖},

which implies that ν = Tν . It follows that

Tν = TSν = STν = ν = ABν = BAν = BTν = TBν,

completing the proof of the theorem. �

As a consequence of Theorem ., we have the following corollary.

Corollary . Let {fn,m}, {gn,m}, {tn,m} and {rn,m} be sequences of elements in a Banach
space X. Let {νn,m} be the unique solution of the system of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν –ABν = fn,m,
ν – BBν = gn,m,
ν – STν = tn,m,
ν – TTν = rn,m,
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where A,B,S,T : X → X satisfy the following conditions:

(d) The pairs {A,S} and {B,T} are compatible of type (B),
(d) A = B = S = T = I , where I denotes the identity mapping, and
(d)

‖Ax – By‖ ≤ qmax

{
‖Sx – Ty‖,‖Sx –Ax‖,‖Sx –Ax‖ × ‖Ty – By‖,

‖Ty –Ax‖ × ‖Sx – By‖, 

[‖Ty –Ax‖ + ‖Sx – By‖]

}

for all x, y ∈ X , where q ∈ (, ). If

lim
n,m→∞‖fn,m‖ = lim

n,m→∞‖gn,m‖ = lim
n,m→∞‖tn,m‖ = lim

n,m→∞‖rn,m‖ = ,

then the sequence {νn,m} converges to the solution of the equation

ν = Aν = Bν = Sν = Tν.

Proof The proof can be obtained by putting F = I in Theorem ., where I denotes the
identity mapping. �

Open problem It is still an open problem to extend some defined iterative schemes in the
sense of double-sequence setting. For some recent studies on various iterative schemes,
we refer to [, –] and others.
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