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Abstract
In this work, we show the existence of a coupled coincidence point and a coupled
common fixed point for a φ-contractive mapping in G-metric spaces without the
mixed g-monotone property, using the concept of a (F∗,g)-invariant set. We also
show the uniqueness of a coupled coincidence point and give some examples, which
are not applied to the existence of a coupled coincidence point by using the mixed
g-monotone property. Further, we apply our results to the existence and uniqueness
of a coupled coincidence point of the given mapping in partially ordered G-metric
spaces.
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1 Introduction
In , the existence and uniqueness of a fixed point for contraction type of mappings
in partially ordered complete metric spaces has been first considered by Ran and Reur-
ings []. Following this initial work, Nieto and Lopez [, ] extended the results in [] for
a non-decreasing mapping. Later, Agarwal et al. [] presented some new results for con-
tractions in partially ordered metric spaces.
One of the interesting concepts, a coupled fixed point theorem, was introduced by Guo

and Lakshmikantham []. Afterwards, Bhaskar and Lakshmikantham [] introduced the
concept of the mixed monotone property and also proved some coupled fixed point the-
orems for mappings satisfying the mixed monotone property in partially ordered metric
spaces. Lakshimikantham and Ćirić [] extended the results in [] by defining the mixed
g-monotone property and proved the existence and uniqueness of a coupled coincidence
point for such mapping satisfying the mixed g-monotone property in partially ordered
metric spaces. As a continuation of this work, several results of a coupled fixed point and
a coupled coincidence point have been discussed in the recent literature (see, e.g., [–]).
Recently, Sintunavarat et al. [] proved the existence and uniqueness of a coupled fixed

point for nonlinear contractions in partially ordered metric spaces without mixed mono-
tone property and extended some coupled fixed point theorems of Bhaskar and Laksh-
mikantham []. Later, Charoensawan andKlanarong [] proved the existence andunique-
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ness of a coupled coincidence point in partially ordered metric space without the mixed
g-monotone property which extended some coupled fixed point theorems of Sintunavarat
et al. [].
The concept of a new class of generalized metric spaces, called G-metric space, was

introduced by Mustafa and Sims []. Choudhury and Maily [] proved the existence of
a coupled fixed point of nonlinear contraction mappings with mixed monotone property
in partially ordered G-metric spaces. Later, Abbas et al. [] extended the results of a
coupled fixed point for a mixed monotone mapping obtained in [].
In the case of the coupled coincidence point theory in partially orderedG-metric space,

Aydi et al. [] established some coupled coincidence and coupled common fixed point
theory for a mixed g-monotone mapping satisfying nonlinear contractions in partially or-
dered G-metric spaces. They extended the results obtained in []. Later, Karapınar et al.
[] extended the results of coupled coincidence and coupled common fixed point the-
orems for a mixed g-monotone mapping obtained in []. Some examples dealing with
G-metric spaces are discussed in [, –].
In this work, we generalize the results of Aydi et al. [] by extending the coupled coin-

cidence point theorem of nonlinear contraction mappings in partially ordered G-metric
spaces without the mixed g-monotone property using the concept of a (F∗, g)-invariant
set in partially ordered G-metric spaces.

2 Preliminaries
In this section, we give some definitions, propositions, examples, and remarks which are
used in our main results. Throughout this paper, (X,�) denotes a partially ordered set
with the partial order �. By x � y, we mean y � x. A mapping f : X → X is said to be
non-decreasing (resp., non-increasing) if for all x, y ∈ X, x � y implies f (x) � f (y) (resp.
f (y) � f (x)).

Definition . [] Let X be a nonempty set and G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z.
(G)  <G(x,x, y) for all x, y ∈ X with x �= y.
(G) G(x,x, y)≤G(x, y, z) for all x, y, z ∈ X with y �= z.
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables).
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the functionG is called a generalizedmetric, or,more specifically, aG-metric onX,
and the pair (X,G) is called a G-metric space.

Example . Let (X,d) be ametric space. The functionG : X×X×X → [, +∞), defined
by G(x, y, z) = d(x, y) + d(y, z) + d(z,x), for all x, y, z ∈ X, is a G-metric on X.

Definition . [] Let (X,G) be a G-metric space, and let (xn) be a sequence of point
of X. We say that (xn) is G-convergent to x ∈ X if limn,m→∞ G(x,xn,xm) = , that is, for any
ε > , there exists N ∈ N such that G(x,xn,xm) < ε, for all n,m ≥ N . We call x the limit of
the sequence (xn) and write xn → x or limn→∞ xn = x.

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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Proposition . [] Let (X,G) be a G-metric space, the following are equivalent:
() (xn) is G-convergent to x.
() G(xn,xn,x)→  as n → +∞.
() G(xn,x,x)→  as n→ +∞.
() G(xn,xm,x)→  as n,m → +∞.

Definition . [] Let (X,G) be a G-metric space. A sequence (xn) is called a G-Cauchy
sequence if, for any ε > , there exists N ∈ N such that G(xn,xm,xl) < ε, for all n,m, l ≥ N .
That is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . [] Let (X,G) be a G-metric space, the following are equivalent:
() the sequence (xn) is G-Cauchy;
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε, for all n,m ≥N .

Proposition . [] Let (X,G) be a G-metric space. A mapping f : X → X is G-
continuous at x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever
(xn) is G-convergent to x, (f (xn)) is G-convergent to f (x).

Definition . [] A G-metric space (X,G) is called G-complete if every G-Cauchy se-
quence is G-convergent in (X,G).

Definition . [] Let (X,G) be a G-metric space. A mapping F : X × X → X is said to
be continuous if for any two G-convergent sequences (xn) and (yn) converging to x and y,
respectively, (F(xn, yn)) is G-convergent to F(x, y).

Bhaskar and Lakshmikantham in [] introduced the following condition.

Definition . [] Let (X,�) be a partially ordered set and F : X ×X → X. We say F has
the mixed monotone property if for any x, y ∈ X

x,x ∈ X, x � x implies F(x, y) � F(x, y)

and

y, y ∈ X, y � y implies F(x, y)� F(x, y).

Definition . [] An element (x, y) ∈ X×X is called a coupled fixed point of a mapping
F : X ×X → X if F(x, y) = x and F(y,x) = y.

Lakshmikantham andĆirić [] introduced the concept of amixed g-monotonemapping
and a coupled coincidence point as follows.

Definition . [] Let (X,�) be a partially ordered set and F : X×X → X and g : X → X.
We say F has the mixed g-monotone property if for any x, y ∈ X

x,x ∈ X, g(x) � g(x) implies F(x, y) � F(x, y)

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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and

y, y ∈ X, g(y) � g(y) implies F(x, y) � F(x, y).

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of a
mapping F : X ×X → X and g : X → X if F(x, y) = g(x) and F(y,x) = g(y).

Definition . [] Let X be a nonempty set and F : X ×X → X and g : X → X. We say F
and g are commutative if g(F(x, y)) = F(g(x), g(y)) for all x, y ∈ X.

The following class of functions was considered by Lakshmikantham and Ćirić in [].
Let � denote the set of functions φ : [,∞) → [,∞) satisfying
. φ–({}) = {},
. φ(t) < t for all t > ,
. limr→t+ φ(r) < t for all t > .

Lemma . [] Let φ ∈ �. For all t > , we have limn→∞ φn(t) = .

Aydi et al. [] proved the following theorem.

Theorem . [] Let (X,�) be a partially ordered set and G be a G-metric on X such
that (X,G) is a complete G-metric space. Suppose that there exist φ ∈ �, F : X × X → X,
and g : X → X such that

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)

for all x, y, z,u, v,w ∈ X for which g(x)� g(y) � g(z) and g(u) � g(v) � g(w).
Suppose also that F is continuous and has the mixed g-monotone property, F(X × X) ⊆

G(X), and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)� F(x, y) and g(y)� F(y,x),

then there exists (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).

Definition . [] Let (X,�) be a partially ordered set and G be a G-metric on X. We
say that (X,G,�) is regular if the following conditions hold:
. if a non-decreasing sequence (xn) → x, then xn � x for all n,
. if a non-increasing sequence (yn) → y, then y � yn for all n.

Theorem . [] Let (X,�) be a partially ordered set and G be a G-metric on X such
that (X,G,�) is regular. Suppose that there exist φ ∈ �, F : X × X → X, and g : X → X
such that

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)

for all x, y, z,u, v,w ∈ X for which g(x)� g(y) � g(z) and g(u) � g(v) � g(w).

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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Suppose also that (g(X),G) is complete, F has the mixed g-monotone property, F(X ×
X) ⊆G(X), and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)� F(x, y) and g(y)� F(y,x),

then there exists (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).

Batra and Vashistha [] introduced an (F , g)-invariant set which is a generalization of
the F-invariant set introduced by Samet and Vetro [].

Definition . [] Let (X,d) be a metric space and F : X × X → X, g : X → X be given
mappings. Let M be a nonempty subset of X. We say thatM is an (F , g)-invariant subset
of X if and only if, for all x, y, z,w ∈ X,

(i) (x, y, z,w) ∈M ⇔ (w, z, y,x) ∈M;
(ii) (g(x), g(y), g(z), g(w)) ∈M ⇒ (F(x, y),F(y,x),F(z,w),F(w, z)) ∈M.

Now,we give the notion of an F∗-invariant set and an (F∗, g)-invariant set, which is useful
for our main results.

Definition . Let (X,G) be aG-metric space and F : X×X → X be givenmapping. Let
M be a nonempty subset of X. We say thatM is an F∗-invariant subset of X if and only
if, for all x, y, z,u, v,w ∈ X,
. (x,u, y, v, z,w) ∈M ⇔ (w, z, v, y,u,x) ∈ M;
. (x,u, y, v, z,w) ∈M ⇒ (F(x,u),F(u,x),F(y, v),F(v, y),F(z,w),F(w, z)) ∈M.

Definition . Let (X,G) be a G-metric space and F : X × X → X and g : X → X are
given mapping. Let M be a nonempty subset of X. We say that M is an (F∗, g)-invariant
subset of X if and only if, for all x, y, z,u, v,w ∈ X,
. (x,u, y, v, z,w) ∈M ⇔ (w, z, v, y,u,x) ∈ M;
. (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M ⇒

(F(x,u),F(u,x),F(y, v),F(v, y),F(z,w),F(w, z)) ∈M.

Definition . Let (X,G) be a G-metric space and M be a subset of X. We say that
satisfies the transitive property if and only if, for all x, y,w, z,a,b, c,d, e, f ∈ X,

(x, y,w, z,a,b) ∈M and (a,b, c,d, e, f ) ∈M → (x, y,w, z, e, f ) ∈M.

Remarks
. The setM = X is trivially (F∗, g)-invariant, which satisfies the transitive property.
. Every F∗-invariant set is (F∗, IX)-invariant when IX denote identity map on X .

Example . Let (X,�) be a partially ordered set and suppose there is a G-metric d on
X such that (X,G) is a complete G-metric space. Let F : X × X → X and g : X → X be
a mapping satisfying the mixed g-monotone property. Define a subset M ⊆ X by M =
{(a,b, c,d, e, f ) ∈ X,a � c � e,b � d � f }. Then M is an (F∗, g)-invariant subset of X,
which satisfies the transitive property.

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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Example . Let X = R and F : X × X → X be defined by F(x, y) =  – x. Let g : X → X
be given by g(x) = x – . Then it is easy to show that M = {(x, , , , ,w) ∈ X : x = w} is
(F∗, g)-invariant subset of X but not F∗-invariant subset of X as (, , , , , ) ∈ M but
(F(, ),F(, ),F(, ),F(, ),F(, ),F(, )) = (, , , , , ) /∈M.

3 Main results
Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space and M be a nonempty subset of X. Assume that there
exists φ ∈ � and also suppose that F : X ×X → X and g : X → X such that

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)
()

for all (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M.
Suppose also that F is continuous, F(X ×X)⊆G(X), and g is continuous and commutes

with F . If there exist x, y ∈ X ×X such that

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

) ∈M

and M is an (F∗, g)-invariant set which satisfies the transitive property, then there exist
x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x), that is, F has a coupled coincident point.

Proof Let (x, y) ∈ X ×X. Since F(X ×X)⊆ g(X), we can choose x, y ∈ X such that

g(x) = F(x, y) and g(y) = F(y,x).

Similarly, we can choose x, y ∈ X such that

g(x) = F(x, y) and g(y) = F(y,x).

Continuing this process we can construct sequences {g(xn)} and {g(yn)} in X such that

g(xn) = F(xn–, yn–) and g(yn) = F(yn–,xn–) for all n≥ . ()

If there exists k ∈ N such that (g(xk+), g(yk+)) = (g(xk), g(yk)) then g(xk) = g(xk+) =
F(xk , yk) and g(yk) = g(yk+) = F(yk ,xk). Thus, (xk , yk) is a coupled coincidence point of F .
The proof is completed.
Now we assume that (g(xk+), g(yk+)) �= (g(xk), g(yk)) for all n ≥ . Thus, we have either

g(xn+) = F(xn, yn) �= g(xn) or g(yn+) = F(yn,xn) �= g(y) for all n≥ . Since

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

)
=

(
g(x), g(y), g(x), g(y), g(x), g(y)

) ∈M

andM is an (F∗, g)-invariant set, we have

(
F(x, y),F(y,x),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
g(x), g(y), g(x), g(y), g(x), g(y)

) ∈M.

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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By repeating this argument, we get

(
F(x, y),F(y,x),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
g(x), g(y), g(x), g(y), g(x), g(y)

) ∈M

and

(
F(xn–, yn–),F(yn–,xn–),F(xn–, yn–),F(yn–,xn–),F(xn–, yn–),F(yn–,xn–)

)
=

(
g(xn), g(yn), g(xn), g(yn), g(xn–), g(yn–)

) ∈M. ()

From (), () and (), we have

G
(
g(xn+), g(xn+), g(xn)

)
=G

(
F(xn, yn),F(xn, yn),F(xn–, yn–)

)

≤ φ

(
G(g(xn), g(xn), g(xn–)) +G(g(yn), g(yn), g(yn–))



)
. ()

From () and using the fact thatM is an (F∗, g)-invariant set and (), we have

(
g(yn–), g(xn–), g(yn), g(xn), g(yn), g(xn)

) ∈M,

and

G
(
g(yn+), g(yn+), g(yn)

)
=G

(
F(yn,xn),F(yn,xn),F(yn–,xn–)

)
=G

(
F(yn–,xx–),F(yn,xn),F(yn,xn)

)

≤ φ

(
G(g(yn–), g(yn), g(yn)) +G(g(xn–), g(xn), g(xn))



)
. ()

Let

tn =G
(
g(xn+), g(xn+), g(xn)

)
+G

(
g(yn+), g(yn+), g(yn)

)
. ()

Adding () with () which implies that

tn ≤ φ
(
tn–


)
. ()

Since φ(t) < t for all t > , it follows that {tn} is decreasing sequence. Therefore, there is
some δ ≥  such that limn→∞ tn = δ.
We shall prove that δ = . Assume, to the contrary, that δ > . Then by letting n→ ∞ in

() and using the properties of the map φ, we get

δ = lim
n→∞ tn ≤ lim

n→∞φ
(
tn–


)
=  lim

tn–→δ+
φ(tn–) < δ.

A contradiction, thus δ =  and hence

lim
n→∞ tn = lim

n→∞
[
G

(
g(xn+), g(xn+), g(xn)

)
+G

(
g(yn+), g(yn+), g(yn)

)]
= . ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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Next, we prove that {g(xn)} and {g(yn)} are Cauchy sequence in the G-metric space (X,G).
Suppose, to the contrary, that is the least of {g(xn)} and {g(yn)} is not a Cauchy sequence
in (X,G). Then there exists an ε >  for which we can find subsequences {g(xm(k))} and
{g(xn(k))} of {g(xn)}, {g(ym(k))} and {g(yn(k))} of {g(yn)} withm(k) > n(k) ≥ K such that

G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

) ≥ ε. ()

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest
integer with m(k) > n(k) ≥ K and satisfying (). Then

G
(
g(xm(k)–), g(xm(k)–), g(xn(k))

)
+G

(
g(ym(k)–), g(ym(k)–), g(yn(k))

)
< ε. ()

Using the rectangle inequality, we get

ε ≤ rk :=G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

)
≤G

(
g(xm(k)), g(xm(k)), g(xm(k)–)

)
+G

(
g(xm(k)–), g(xm(k)–), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(ym(k)–)

)
+G

(
g(ym(k)–), g(ym(k)–), g(yn(k))

)
< tm(k)– + ε. ()

Letting k → +∞ in the above inequality and using (), we get

lim
k→∞

rk = lim
k→+∞

G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

)
= ε. ()

Again, by the rectangle inequality, we have

rk :=G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

)
≤G

(
g(xn(k)+), g(xn(k)+), g(xn(k))

)
+G

(
g(yn(k)+), g(yn(k)+), g(yn(k))

)
+G

(
g(xm(k)), g(xm(k)), g(xm(k)+)

)
+G

(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)), g(ym(k)), g(ym(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
= tn(k)

+G
(
g(xm(k)), g(xm(k)), g(xm(k)+)

)
+G

(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)), g(ym(k)), g(ym(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
.

Using the fact that G(x,x, y)≤ G(x, y, y) for any x, y ∈ X, we obtain

rk ≤ tn(k) + tm(k) +G
(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
. ()

Sincem(k) > n(k), using (), we have

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xm(k)–), g(ym(k)–)

) ∈M

http://www.fixedpointtheoryandapplications.com/content/2014/1/128
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and

(
g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–)

) ∈M.

From the fact that M is an (F∗, g)-invariant set which satisfies the transitive property, we
have

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xm(k)–), g(ym(k)–)

) ∈M.

Again from

(
g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–)

) ∈M

we get

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xm(k)–), g(ym(k)–)

) ∈M.

By this process, we can get

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xn(k)), g(yn(k))

) ∈M.

Now, using (), we have

G
(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
=G

(
F(xm(k), ym(k)),F(xm(k), ym(k)),F(xn(k), yn(k))

)

≤ φ

(
G(g(xm(k)), g(xm(k)), g(xn(k))) +G(g(ym(k)), g(ym(k)), g(yn(k)))



)
. ()

Since (g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xn(k)), g(yn(k))) ∈ M and M is an (F∗, g)-inva-
riant set, we have

(
g(yn(k)), g(xn(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xm(k))

) ∈M

and

G
(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
=G

(
F(ym(k),xm(k)),F(ym(k),xm(k)),F(yn(k),xn(k))

)
=G

(
F(yn(k),xn(k)),F(ym(k),xm(k)),F(ym(k),xm(k))

)

≤ φ

(
G(g(yn(k)), g(ym(k)), g(ym(k))) +G(g(xn(k)), g(xm(k)), g(xm(k)))



)
. ()

Adding () to (), we get

G
(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
=G

(
F(xm(k), ym(k)),F(xm(k), ym(k)),F(xn(k), yn(k))

)
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+G
(
F(ym(k),xm(k)),F(ym(k),xm(k)),F(yn(k),xn(k))

)

≤ φ
(
G(g(xm(k)), g(xm(k)), g(xn(k))) +G(g(ym(k)), g(ym(k)), g(yn(k)))



)

≤ φ
(
rk


)
. ()

From () and (), it follows that

rk ≤ tn(k) + tm(k) + φ
(
rk


)
. ()

Letting k → +∞ in () and using (), () and limr→t+ φ(r) < t for all t > , we have

ε = lim
k→∞

rk ≤  lim
n→∞φ

(
rk


)
=  lim

rk→ε+
φ

(
rk


)
< ε.

This is a contradiction. This shows that {g(xn)} and {g(yn)} are Cauchy sequence in the
G-metric space (X,G). Since (X,G) is complete, {g(xn)} and {g(yn)} are G-convergent,
there exist x, y ∈ X such that limn→∞ g(xn) = x and limn→∞ g(yn) = y. That is, from Propo-
sition ., we have

lim
n→∞G

(
g(xn), g(xn),x

)
= lim

n→∞G
(
g(xn),x,x

)
= , ()

lim
n→∞G

(
g(yn), g(yn), y

)
= lim

n→∞G
(
g(yn), y, y

)
= . ()

From (), (), continuity of g , and Proposition (.), we get

lim
n→∞G

(
g
(
g(xn)

)
, g

(
g(xn), g(x)

))
= lim

n→∞G
(
g
(
g(xn)

)
, g(x), g(x)

)
= , ()

lim
n→∞G

(
g
(
g(yn)

)
, g

(
g(yn)

)
, g(y)

)
= lim

n→∞G
(
g
(
g(yn)

)
, g(y), g(y)

)
= . ()

From () and commutativity of F and g , we have

g
(
g(xn+)

)
= g

(
F(xn, yn)

)
= F

(
g(xn), g(yn)

)
, ()

g
(
g(yn+)

)
= g

(
F(yn,xn)

)
= F

(
g(yn), g(xn)

)
. ()

We now show that F(x, y) = g(x) and F(y,x) = g(y).
Taking the limit as n → +∞ in () and (), by (), (), and continuity of F , we get

g(x) = g
(
lim
n→∞ g(xn+)

)
= lim

n→∞ g
(
g(xn+)

)
= lim

n→∞ g
(
F(xn, yn)

)

= lim
n→∞F

(
g(xn), g(yn)

)
= F(x, y)

and

g(y) = g
(
lim
n→∞ g(xy+)

)
= lim

n→∞ g
(
g(yn+)

)
= lim

n→∞ g
(
F(yn,xn)

)

= lim
n→∞F

(
g(yn), g(xn)

)
= F(y,x).

Thus we prove that F(x, y) = g(x) and F(y,x) = g(y). �
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In the next theorem, we omit the continuity hypothesis of F .

Theorem . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space and M be a nonempty subset of X. Assume that there
exists φ ∈ � and also suppose that F : X ×X → X and g : X → X such that

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)

for all (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M.
Suppose also that (g(X),G) is complete F(X × X) ⊆ G(X) and g is continuous and com-

mutes with F ; if we have any two sequences {xn}, {yn} with

(xn+, yn+,xn+, yn+,xn, yn) ∈M,

{xn} → x and {yn} → y for all n ≥ , then (x, y,xn, yn,xn, yn) ∈M for all n≥ . If there exists
(x, y) ∈ X ×X such that

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

) ∈M

and M is an (F∗, g)-invariant set which satisfies the transitive property, then there exist
x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x).

Proof Proceeding exactly as in Theorem ., we find that {g(xn)} and {g(yn)} are Cauchy
sequences in the complete G-metric space (g(X),G). Then there exist x, y ∈ X such that
{g(xn)} → g(x) and {g(yn)} → g(y) and

(
g(xn+), g(yn+), g(xn+), g(yn+), g(xn), g(yn)

) ∈ M;

by the assumption, we have

(
g(x), g(y), g(xn), g(yn), g(xn), g(yn)

) ∈ M

for all n ≥ .
Since we have the (F∗, g)-invariant set property,

(
g(yn), g(xn), g(yn), g(xn), g(y), g(x)

) ∈ M

for all n ≥ . By the rectangle inequality, (), and φ(t) < t for all t > , we get

G
(
F(x, y), g(x), g(x)

)
+G

(
F(y,x), g(y), g(y)

)
≤G

(
F(x, y), g(xn+), g(xn+)

)
+G

(
g(xn+), g(x), g(x)

)
+G

(
F(y,x), g(yn+), g(yn+)

)
+G

(
g(yn+), g(y), g(y)

)
=G

(
F(x, y),F(xn, yn),F(xn, yn)

)
+G

(
g(xn+), g(x), g(x)

)
+G

(
F(y,x),F(yn,xn),F(yn,xn)

)
+G

(
g(yn+), g(y), g(y)

)
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=G
(
F(x, y),F(xn, yn),F(xn, yn)

)
+G

(
g(xn+), g(x), g(x)

)
+G

(
F(yn,xn),F(yn,xn),F(y,x)

)
+G

(
g(yn+), g(y), g(y)

)

≤ φ

(
G(g(x), g(xn), g(xn)) +G(g(y), g(yn), g(yn))



)

+ φ

(
G(g(yn), g(yn), g(y)) +G(g(xn), g(xn), g(x))



)

+G
(
g(xn+), g(x), g(x)

)
+G

(
g(yn+), g(y), g(y)

)
<G

(
g(x), g(xn), g(xn)

)
+G

(
g(y), g(yn), g(yn)

)
+G

(
g(xn+), g(x), g(x)

)
+G

(
g(yn+), g(y), g(y)

)
.

Taking the limit as n→ ∞ in the above inequality, we obtain

G
(
F(x, y), g(x), g(x)

)
+G

(
F(y,x), g(y), g(y)

)
= .

This implies that g(x) = F(x, y) and g(y) = F(y,x). Thus we prove that (x, y) is a coupled
coincidence point of F and g . �

The following example is valid for Theorem ..

Example . Let X =R. Define G : X × X × X → [, +∞) by G(x, y, z) = |x – y| + |x – z| +
|y – z| and let F : X ×X → X be defined by

F(x, y) =
x + y


, (x, y) ∈ X,

and g : X → X by g(x) = x
 . Let y =  and y = . Then we have g(y) ≤ g(y), but F(x, y) ≤

F(x, y), and so the mapping F does not satisfy the mixed g-monotone property.
Letting x,u, y, v, z,w ∈ X, we have

G
(
F(x,u),F(y, v),F(z,w)

)

=
∣∣∣∣x + u


–
y + v


∣∣∣∣ +
∣∣∣∣x + u


–
z +w


∣∣∣∣ +
∣∣∣∣y + v


–
z +w


∣∣∣∣
≤

∣∣∣∣x – y


∣∣∣∣ +
∣∣∣∣x – z



∣∣∣∣ +
∣∣∣∣y – z



∣∣∣∣ +
∣∣∣∣u – v



∣∣∣∣ +
∣∣∣∣u –w



∣∣∣∣ +
∣∣∣∣v –w



∣∣∣∣
=


(|x – y| + |x – z| + |y – z|) + 


(|u – v| + |u –w| + |v –w|)

and we have

G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))


=
G( x ,

y
 ,

z
 )


+
G( u ,

v
 ,

w
 )



=



(|x – y| + |x – z| + |y – z|)

+



(|u – v| + |u –w| + |v –w|).
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Now, let φ ∈ � such that φ(t) = t/, then

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)
.

Therefore, if we applyTheorem.withM = X, we know that F has a coupled coincidence
point (, ).

Next, we give a sufficient condition for the uniqueness of the coupled coincidence point
in Theorem ..

Theorem . In addition to the hypotheses of Theorem ., suppose that for every
(x, y), (x∗, y∗) ∈ X ×X there exists (u, v) ∈ X ×X such that

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈ M and
(
g(u), g(v), g

(
x∗), g(y∗), g(x∗), g(y∗)) ∈ M.

Suppose also that φ is a non-decreasing function. Then F and g have a unique coupled
common fixed point, that is, there exists a unique (x, y) ∈ X ×X such that x = g(x) = F(x, y)
and y = g(y) = F(y,x).

Proof From Theorem ., the set of coupled coincidence points is nonempty. Suppose
(x, y) and (x∗, y∗) are coupled coincidence points of F , that is,

g(x) = F(x, y), g(y) = F(y,x), g
(
x∗) = F

(
x∗, y∗) and g

(
y∗) = F

(
y∗,x∗).

We shall show that

g
(
x∗) = g(x) and g

(
y∗) = g(y). ()

By assumption there is (u, v) ∈ X ×X such that

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈ M and
(
g(u), g(v), g

(
x∗), g(y∗), g(x∗), g(y∗)) ∈ M.

Put u = u, v = v and choose u, v ∈ X, such that g(u) = F(u, v) and g(v) = F(v,u).
Then similarly as in the proof of Theorem ., we can inductively define sequences {g(un)}
and {g(vn)} such that

g(un) = F(un–, vn–) and g(vn) = F(vn–,un–) for all n≥ .

SinceM is (F∗, g)-invariant and (g(u), g(v), g(x), g(y), g(x), g(y)) ∈M, we have

(
F(u, v),F(v,u),F(x, y),F(y,x),F(x, y),F(y,x)

) ∈M.

That is, (g(u), g(v), g(x), g(y), g(x), g(y)) ∈M.
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From (g(u), g(v), g(x), g(y), g(x), g(y)) ∈ M, if we use again the property of (F∗, g)-
invariance, then it follows that

(
F(u, v),F(v,u),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈M.

By repeating this process, we get

(
g(un), g(vn), g(x), g(y), g(x), g(y)

) ∈ M for all n ≥ . ()

SinceM is (F∗, g)-invariant, we get

(
g(y), g(x), g(y), g(x), g(vn), g(un)

) ∈ M for all n ≥ . ()

Thus from (), (), and (), we have

G
(
g(un+), g(x), g(x)

)
+G

(
g(vn+), g(y), g(y)

)
=G

(
F(un, vn),F(x, y),F(x, y)

)
+G

(
F(vn,un),F(y,x),F(y,x)

)
=G

(
F(un, vn),F(x, y),F(x, y)

)
+G

(
F(y,x),F(y,x),F(vn,un)

)

≤ φ

(
G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y))



)

+ φ

(
G(g(y), g(y), g(vn)) +G(g(x), g(x), g(un))



)

= φ
(
G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y))



)
. ()

Thus from(), we have

G(g(un+), g(x), g(x)) +G(g(vn+), g(y), g(y))


≤ φ

(
G(g(un), g(x), g(x)) +G(g(vn), g(y), g(y))



)
. ()

Since φ is non-decreasing and (), we get

G(g(un+), g(x), g(x)) +G(g(vn+), g(y), g(y))


≤ φn
(
G(g(u), g(x), g(x)) +G(g(v), g(y), g(y))



)
()

for each n≥ . Letting n → +∞ in () and using Lemma ., this implies

lim
n→∞G

(
g(un+), g(x), g(x)

)
= lim

n→∞G
(
g(vn+), g(y), g(y)

)
= . ()

Similarly, we obtain

lim
n→∞G

(
g(un+), g

(
x∗), g(x∗)) = lim

n→∞G
(
g(vn+), g

(
y∗), g(y∗)) = . ()

Hence, from (), (), and Proposition ., we get g(x∗) = g(x) and g(y∗) = g(y).
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Since g(x) = F(x, y) and g(y) = F(y,x), by commutativity of F and g , we have

g
(
g(x)

)
= g

(
F(x, y)

)
= F

(
g(x), g(y)

)
and g

(
g(y)

)
= g

(
F(y,x)

)
= F

(
g(y), g(x)

)
. ()

Denote g(x) = z and g(y) = w. Then from ()

g(z) = F(z,w) and g(w) = F(w, z)). ()

Therefore, (z,w) is a coupled coincidence fixed point of F and g . Then from ()with x∗ = z
and y∗ = w, it follows that g(z) = g(x) and g(w) = g(y), that is,

g(z) = z and g(w) = w. ()

From () and (), z = g(z) = F(z,w) and w = g(w) = F(w, z). Therefore, (z,w) is a coupled
common fixed point of F and g .
To prove the uniqueness, assume that (p,q) is another coupled common fixed point.

Then by () we have p = g(p) = g(z) = z and q = g(q) = g(w) = w. �

Next, we give a simple application of our results to coupled coincidence point theorems
in partially ordered metric spaces with the mixed g-monotone property.

Corollary . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist φ ∈ �, F : X × X → X, and
g : X → X such that

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)

for all x, y, z,u, v,w ∈ X for which g(x)� g(y) � g(z) and g(u) � g(v) � g(w).
Suppose also that F is continuous and has the mixed g-monotone property, F(X × X) ⊆

G(X) and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)� F(x, y) and g(y)� F(y,x),

then there exists (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).

Proof We define the subset M ⊆ X by M = {(x,u, y, v, z,w) ∈ X : x � y � z,u � v � w}.
From Example ., M is an (F∗, g)-invariant set which satisfies the transitive property.
By (), we have

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)

for all (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M.
Since x, y ∈ X such that

g(x)� F(x, y) and g(y) � F(y,x).
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We have (F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)) ∈M. Since F is continuous, all
the hypotheses of Theorem . hold, and we have x = F(x, y) and y = F(y,x). �

Corollary . Let (X,�) be a partially ordered set and G be a G-metric on X such that
(X,G,�) is regular. Suppose that there exist φ ∈ �, F : X × X → X, and g : X → X such
that

G
(
F(x,u),F(y, v),F(z,w)

) ≤ φ

(
G(g(x), g(y), g(z)) +G(g(u), g(v), g(w))



)

for all x, y, z,u, v,w ∈ X for which g(x)� g(y) � g(z) and g(u) � g(v) � g(w).
Suppose also that (g(X),G) is complete, F has the mixed g-monotone property, F(X ×

X) ⊆G(X), and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)� F(x, y) and g(y)� F(y,x),

then there exists (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).

Proof As in Corollary ., we get

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

) ∈M.

Since any two sequences {g(xn)}, {g(yn)} in X such that {g(xn)} is non-decreasing sequence
with {g(xn)} → g(x) and {g(yn)} is non-increasing sequence with {g(yn)} → g(y), for all
n≥ .
Since (X,G,�) is regular, we have

g(x) � g(x) � · · · � g(xn) � g(x)

and

g(y) � g(y) � · · · � g(yn) � g(y).

Therefore, we have (g(x), g(y), g(xn), g(yn), g(xn), g(yn)) ∈ M for all n ≥ , and so the whole
assumption of Theorem . holds, thus F has a coupled coincidence point. �

Next, we show the uniqueness of a coupled fixed point of F .

Corollary . In addition to the hypothesis of Corollary . (Corollary .), suppose that
for every (x, y), (x∗, y∗) ∈ X×X there exists a (u, v) ∈ X×X such that (F(u, v),F(v,u)) is com-
parable to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Suppose also that φ is a non-decreasing
function. Then F and g have a unique coupled common fixed point, that is, there exists a
unique (x, y) ∈ X ×X such that x = g(x) = F(x, y) and y = g(y) = F(y,x).

Proof We define the subset M ⊆ X by M = {(x,u, y, v, z,w) ∈ X : x � y � z,u � v � w}.
From Example ., M is an (F∗, g)-invariant set which satisfies the transitive property.
Thus, the proof of the existence of a coupled fixed point is straightforward by following
the same lines as in the proof of Corollary . (Corollary .).
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Next, we show the uniqueness of a coupled fixed point of F .
Since for all (x, y), (x∗, y∗) ∈ X×X, there exists (u, v) ∈ X×X such that g(x) � g(u), g(y) �

g(v) and g(x∗) � g(u), g(y∗) � g(v) we can conclude that

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈ M

and

(
g(u), g(v), g

(
x∗), g(y∗), g(x∗), g(y∗)) ∈ M.

Therefore, since all the hypotheses of Theorem . hold, and F has a unique coupled fixed
point. The proof is completed. �
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