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Abstract
Inspired by the notion of Mustafa and Sims’ G-metric space and the attention that this
kind of metric has received in recent times, we introduce the concept of a G-metric
space in any number of variables, and we study some of the basic properties. Then
we prove that the family of this kind of metric is closed under finite products. Finally,
we show some fixed-point theorems that improve and extend some well-known
results in this field.
MSC: 46T99; 47H10; 47H09; 54H25

Keywords: partially ordered set; fixed point; contractive mapping; G-metric space

1 Introduction
In the s, Gähler [, ] tried to generalize the notion of metric and introduced the
concept of -metric spaces inspired by the mapping that associated the area of a triangle
to its three vertices. Later, Dhage [] changed the axioms and presented the concept of a
D-metric. Unfortunately, both kinds of metrics appear not to have as good properties as
their authors announced (see [–]). To overcome these drawbacks, Mustafa and Sims
[] presented the notion of a G-metric space, which have received much attention since
then. The literature on this topic, especially in related fixed point theory, has grown a lot
in recent times (see, for instance, [–] and references therein).
The main aim of the present paper is to introduce the notion of a G-metric space in any

number of variables. To do that, we have been inspired by the perimeter of a triangle, as
well as Dhage, which in the multidimensional case can be seen as the sum of all distances
between any pair of points. In this sense, the axioms we present and the properties we
deduce are very natural. We also prove two relevant facts: the product of metrics of this
kind is also a metric in this sense, and there is no a trivially way to reduce the number
of variables (which, for instance, permits us to reduce a G∗

n-metric to the Mustafa and
Sims’ spaces). Later, we demonstrate some fixed-point theorems distinguishing between
the axioms that the metric verifies (G∗

n-metrics and Gn-metrics). As a consequence, our
main results are, obviously, valid in the context of G-metric spaces.

2 Preliminaries
Let n be a positive integer such that n≥ . Henceforth, X will denote a non-empty set and
Xn will denote the product space X × X × n· · · × X. Throughout this manuscript, m and
k will denote non-negative integers. Unless otherwise stated, ‘for all m’ will mean ‘for all
m ≥ ’. Let R+

 = [,∞) and let N = {, , , . . .}.
©2014 Roldán et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
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Proposition  If {am}m≥, {am}m≥, . . . , {aNm}m≥ ⊂ R
+
 are N sequences of non-negative

real numbers and we define bm = max(am,am, . . . ,aNm) for all m ≥ , then {bm}m≥ → 
if, and only if, {ajm}m≥ →  for all j ∈ {, , . . . ,N}.

Definition  (Khan et al. []) An altering distance function is a continuous, non-
decreasing mapping φ : R+

 → R
+
 such that φ–({}) = {}. Let � denote the family of

all altering distance functions.

Lemma  If ψ ∈ � and {am} ⊂ [,∞) verifies {ψ(am)} → , then {am} → .

Corollary  If ψ ,ϕ ∈ � and {am} ⊂ [,∞) verifies ψ(am+) ≤ (ψ – ϕ)(am) for all m, then
{am} → .

The following kind of mapping was introduced by Popescu in [] and Moradi and
Farajzadeh in [].

Definition  We will denote by � the family of all mappings ϕ :R+
 →R

+
 verifying:

if {tm}m∈N ⊂R
+
 and

{
ϕ(tm)

} → , then {tm} → . ()

Remark  Obviously, � ⊂ �.

Definition  We will say that � is a partial preorder on X (or (X,�) is a preordered set
or (X,�) is a partially preordered space) if the following properties hold.
• Reflexivity: x� x for all x ∈ X .
• Transitivity: If x, y, z ∈ X verify x� y and y� z, then x� z.

Definition  (Mustafa and Sims []) A generalizedmetric (or aG-metric) on X is a map-
ping G : X → R

+
 verifying, for all x, y, z ∈ X:

(G) G(x,x,x) = .
(G) G(x,x, y) >  if x 	= y.
(G) G(x,x, y)≤G(x, y, z) if y 	= z.
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables).
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) (rectangle inequality).

In [], the authors proved that, in general, the product space of G-metric spaces is not
a G-metric space (unless the factors are symmetric, that is, that they can be reduced to
metric spaces). To overcome this drawback, Roldán andKarapınar introduced the concept
of G∗-metric spaces, in which the axiom (G) is omitted.

Definition  (Roldán and Karapınar []) A G∗-metric on X is a mapping G : X → R
+


verifying (G), (G), (G) and (G).

Using this class of spaces, these authors proved that the product of G∗-metric spaces is
also a G∗-metric space, and they also showed some related fixed point results. This is the
case of the generalized metrics that we are going to introduce in the following section.
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3 Multidimensional G∗-metric spaces
The following definition is a natural extension of the concept of a G-metric space. Note
that, for convenience, we change the order in which we present the axioms with respect
to the order Mustafa and Sims chose.

Definition  A G∗
n-metric on X is a mapping G : Xn →R

+
 verifying, for all x,x, . . . ,xn,

x, y,a ∈ X:

(A) G(x,x, . . . ,x) = .
(A) If x 	= x then G(x,x,x, . . . ,xn) > .
(A) If σ : �n → �n is a permutation, then G(xσ (),xσ (), . . . ,xσ (n)) = G(x,x, . . . ,xn) (sym-

metry in all its variables).
(A) G(x,x,x, . . . ,xn) ≤ G(x,a,a,a, . . . ,a) + G(a,x,x,x, . . . ,xn) (multidimensional in-

equality).

We will say that G is a Gn-metric (or a G-metric on n variables) if it also verifiesa:

(A) If x 	= y 	= x 	= x 	= · · · 	= xn– 	= xn, then G(x,x,x, . . . ,x, y)≤ G(x, y,x,x, . . . ,xn).

Remark  Following the previous definition, it is not difficult to prove that a G∗
-metric

space is a classical metric space, a G-metric space if a G-metric space in the sense of
Mustafa and Sims [], and a G∗

-metric space if a G∗-metric space in the sense of Roldán
and Karapınar [].
However, a G∗

n-metric does not generate a G∗
n–-metric in a trivial way since, if G is a

G∗
n-metric on X and we define G,G : Xn– →R

+
, for all (x,x, . . . ,xn–) ∈ Xn–, by

G(x,x, . . . ,xn–) = G(x,x,x,x, . . . ,xn–) and

G(x,x, . . . ,xn–) = G(z,x,x,x, . . . ,xn–)

(where z ∈ X is fixed), then G and G are not G∗
n–-metrics (G does not have to verify

(A) and G need not verify (A)).

Example  Each metric space (X,d) can be provided with a Gn-metric defining Gd :
Xn →R

+
 by

Gd(x,x, . . . ,xn) =



n∑

i,j=

d(xi,xj) =
n∑

i,j=,i<j

d(xi,xj) for all (x,x, . . . ,xn) ∈ Xn.

Lemma  If (X,G) is a G∗
n-metric space and we define dG : X ×X →R

+
 by

dG(x, y) =max
(
G(x, y, y, . . . , y),G(y,x,x, . . . ,x)

)
for all x, y ∈ X,

then dG is a metric on X . Furthermore, if d is a metric on X, then dGd = (n – )d.

For brevity, when the last arguments are repeated, we will denote

G(x, y, y, y, . . . , y) by G
(
x, [y]n–

)
and

G(x, y, z, z, z, . . . , z) by G
(
x, y, [z]n–

)
or G

(
x, [z]n–, y

)
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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Corollary  If (X,G) is a G∗
n-metric space and we define ds

G : X ×X → R
+
 by

ds
G(x, y) = G

(
x, [y]n–

)
+ G

(
y, [x]n–

)
for all x, y ∈ X,

then ds
G is also a metric on X .Moreover, dG ≤ ds

G ≤ dG .

Themetric dG generates a uniqueHausdorff topology τG on eachG∗
n-metric space (X,G)

such that βG
x = {BG(x, r) : r > } is a neighborhood system at each x ∈ X, where BG(x, r) de-

notes the ball {y ∈ X :max(G(x, [y]n–),G(y, [x]n–)) < r}. This topology yields the following
notions of convergence, Cauchy sequence, completeness, and continuity.

Definition  Let (X,G) be a G∗
n-metric space, let {xm} ⊆ X be a sequence and let x ∈ X

be a point. We will say that:
• {xm} G-converges to x (we will denote this by {xm} G→ x) if

lim
m,m,...,mn–→∞G(xm ,xm , . . . ,xmn– ,x) = ,

that is, for all ε >  there is m ∈N such that if m,m, . . . ,mn– ≥m, then
G(xm ,xm , . . . ,xmn– ,x) < ε;

• {xm} is a G-Cauchy sequence if limm,m,...,mn→∞ G(xm ,xm , . . . ,xmn– ,xmn ) =  (that is,
for all ε >  there is m ∈N such that if m,m, . . . ,mn–,mn ≥m, then
G(xm ,xm , . . . ,xmn– ,xmn ) < ε);

• a subset A⊆ X is G-complete is every G-Cauchy sequence in A is G-convergent in A;
• a mapping F : XN → X is G-continuous if for all N sequences {xm}, {xm}, . . . , {xNm} ⊆ X
such that {xim} G→ zi ∈ X for all i ∈ {, , . . . ,N}, we have
{F(xm,xm, . . . ,xNm)} G→ F(z, z, . . . , zN ).

Notice that, by the symmetry condition (A), we could reduce the previous definitions
to the case in which mn ≥ mn– ≥ · · · ≥ m ≥ m ≥ m. When the G∗

n-metric space is
preordered, we can also consider the following class of spaces.

Definition  Let (X,G) be a G∗
n-metric space and let � be a preorder on X. We will say

that (X,G,�) is regular-non-decreasing if it verifies the following property:

� If {xm} ⊆ X is a �-non-decreasing sequence (xm � xm+ for all m) that G-converges to
x ∈ X , then xm � x for all m.

We will say that (X,G,�) is regular-non-increasing when:

� If {ym} ⊆ X is a �-non-increasing sequence (ym � ym+ for all m) that G-converges to
y ∈ X , then ym � y for all m.

The space (X,G,�) is regular if it is both regular-non-decreasing and regular-non-
increasing.

Some properties of a G∗
n-metric space are listed in the following result.

Lemma Let (X,G) be aG∗
n-metric space, let {xm} ⊆ X be a sequence and let x, y,x,x,x,

. . . ,xn ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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() If there exist i, j ∈ {, , . . . ,n} such that xi 	= xj, then G(x,x,x, . . . ,xn) > .
() If G(x,x,x, . . . ,xn) = , then x = x = x = · · · = xn.
() G(x, [y]n–)≤ (n – )G(y, [x]n–).
() G(x,x,x, . . . ,xn) ≤ ∑n

i= G(xi, [a]n–) for all a ∈ X .
() {xm} G-converges to x if, and only if, limm→∞ G(xm, [x]n–) = , which is equivalent to

{xm} dG-converges to x.
() {xm} is G-Cauchy if, and only if, it is dG-Cauchy.

Proof () Suppose that xi 	= xj (i 	= j) and let σ : �n → �n be any permutation such that
σ () = i and σ () = j. Then, by axiom (A)

G(x,x,x, . . . ,xn) = G(xσ (),xσ (),xσ (), . . . ,xσ (n)) = G(xi,xj,xσ (), . . . ,xσ (n)) > .

() The first item establishes that if two points are different, then the G-metric is strictly
positive. Then, if the G-metric takes the value zero, then all points must be equal.
() Taking into account that G is symmetric in all its variables, we can apply n –  times

the axiom (A) using a = x to deduce

G(x, y, y, y, . . . , y) = G(y, y, y, . . . , y, y︸ ︷︷ ︸
n–

,x)≤ G(y,x,x,x, . . . ,x,x︸ ︷︷ ︸
n–

) + G(x, y, y, y, . . . , y, y︸ ︷︷ ︸
n–

,x)

= G(y,x,x,x, . . . ,x,x) + G(y, y, y, . . . , y, y︸ ︷︷ ︸
n–

,x,x)

≤ G(y,x,x,x, . . . ,x,x) +
(
G(y,x,x,x, . . . ,x,x) + G(x, y, y, y, . . . , y, y︸ ︷︷ ︸

n–

,x,x)
)

= G(y,x,x,x, . . . ,x,x) + G(y, y, y, . . . , y, y︸ ︷︷ ︸
n–

,x,x,x)

≤ · · · ≤ (n – )G(y,x,x,x, . . . ,x,x).

() By (A) and (A),

G(x,x,x, . . . ,xn) ≤ G
(
x, [a]n–

)
+ G(a,x,x, . . . ,xn)

= G
(
x, [a]n–

)
+ G(x,x,x, . . . ,xn,a)

≤ G
(
x, [a]n–

)
+ G(x,a,a, . . . ,a,a) + G(a,x,x, . . . ,xn,a)

= G
(
x, [a]n–

)
+ G

(
x, [a]n–

)
+ G(x,x, . . . ,xn,a,a)≤ · · ·

≤
n∑

i=

G
(
xi, [a]n–

)
.

() Suppose that {xm} G-converges to x, and let ε >  be arbitrary. Using ε′ = ε/(n –
) > , by hypothesis, there exists m ∈ N such that if m,m, . . . ,mn– ≥ m, then
G(xm ,xm , . . . ,xmn– ,x) < ε′. In particular, if m = m = m = · · · = mn– ≥ m, then, by
item (),

G
(
xm, [x]n–

) ≤ (n – )G
(
x, [xm]n–

)
< (n – )ε′ = ε.

Therefore, limm→∞ G(xm, [x]n–) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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Conversely, suppose that limm→∞ G(xm, [x]n–) =  and fix ε >  arbitrary. Using ε/(n –
) > , letm ∈N be such that ifm ≥m, then G(xm, [x]n–) < ε/(n – ). Therefore, by item
() with a = x, ifm,m, . . . ,mn– ≥m, we have

G(xm ,xm , . . . ,xmn– ,x)≤
n–∑

i=

G
(
xmi , [x]

n–) <
n–∑

i=

ε

n – 
= ε.

() Suppose that {xm} is G-Cauchy and let ε > . There is m ∈ N such that if m,m,
. . . ,mn–,mn ≥ m, then G(xm ,xm , . . . ,xmn– ,xmn ) < ε. Let m,m′ ≥ m. Hence G(xm,
[xm′ ]n–) < ε and G(xm′ , [xm]n–) < ε and we deduce that dG(xm,xm′ ) =max(G(xm, [xm′ ]n–),
G(xm′ , [xm]n–)) < ε. Therefore, {xm} is dG-Cauchy.
Conversely, suppose that {xm} is dG-Cauchy and let ε > . Given ε/n > , there ism ∈N

such that if m,m′ ≥ m, then dG(xm,xm′ ) < ε/n. Therefore, if m,m, . . . ,mn–,mn ≥ m,
item () ensures us that

G(xm ,xm , . . . ,xmn– ,xmn ) ≤
n∑

i=

G
(
xmi , [xm ]

n–) ≤
n∑

i=

dG(xmi ,xm ) <
n∑

i=

ε

n
= ε.

Hence, {xm} is G-Cauchy. �

Corollary  A sequence {xm} on a G∗
n-metric space (X,G) is not G-Cauchy if, and only

if, there exist a positive ε >  and two subsequences {xn{k}}k≥ and {xm(k)}k≥ of {xm} such
that k ≤ n(k) <m(k) < n(k + ),

G
(
xm(k), [xn(k)]n–

)
> ε and G

(
xm(k)–, [xn(k)]n–

) ≤ ε for all k ∈N.

To prove our main results, the following refinement of Corollary  plays a key role.

Lemma  Suppose that a sequence {xm}m∈N in a G∗
n-metric space (X,G) is not G-Cauchy

and verifies {G(xm+, [xm]n–)}m∈N → . Then there exist ε >  and two subsequences
{xm(k)}k∈N and {xn(k)}k∈N such that, for all k ∈N,

k ≤ n(k) <m(k) < n(k + ), G
(
xm(k), [xn(k)]n–

)
> ε and G

(
xm(k)–, [xn(k)]n–

) ≤ ε.

Furthermore, for all p,p, . . . ,pn ≥ , we have

lim
k→∞

G(xn(k)+p ,xn(k)+p ,xn(k)+p , . . . ,xn(k)+pn– ,xm(k)+pn ) = ε. ()

Moreover,

lim
k→∞

G(xn(k)–,xn(k),xn(k)+,xn(k)+, . . . ,xn(k)+n–,xm(k)–) = ε.

In particular,

lim
k→∞

G
(
xm(k), [xn(k)]n–

)
= ε.

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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Proof First part is Corollary . Now suppose that {xm}m∈N verifies

{
G

(
xm+, [xm]n–

)}
m∈N → . ()

By item () of Lemma , we have  ≤ G(xm, [xm+]n–) ≤ (n – )G(xm+, [xm]n–) for all m,
so

{
G

(
xm, [xm+]n–

)}
m∈N → . ()

Notice that, using (A),

ε < G
(
xm(k), [xn(k)]n–

) ≤ G
(
xm(k), [xm(k)–]n–

)
+ G

(
xm(k)–, [xn(k)]n–

)

≤ G
(
xm(k), [xm(k)–]n–

)
+ ε.

Using equation () and taking the limit as k → ∞ we deduce that

lim
k→∞

G
(
xm(k), [xn(k)]n–

)
= ε. ()

Next we show, by induction, that for all p ≥ ,

lim
k→∞

G
(
xn(k)+p , [xn(k)]

n–,xm(k)
)
= ε. ()

If p = , the claim holds by equation (). Suppose that equation () holds for some p ≥ ;
we will prove it for p + . On the one hand,

G
(
xn(k)+p+, [xn(k)]

n–,xm(k)
) ≤ G

(
xn(k)+p+, [xn(k)+p ]

n–) + G
(
xn(k)+p , [xn(k)]

n–,xm(k)
)
,

and, on the other hand,

G
(
xn(k)+p , [xn(k)]

n–,xm(k)
) ≤ G

(
xn(k)+p , [xn(k)+p+]

n–) + G
(
xn(k)+p+, [xn(k)]

n–,xm(k)
)
.

Joining the two inequalities, for all k ∈N,

G
(
xn(k)+p , [xn(k)]

n–,xm(k)
)
– G

(
xn(k)+p , [xn(k)+p+]

n–)

≤ G
(
xn(k)+p+, [xn(k)]

n–,xm(k)
)

≤ G
(
xn(k)+p+, [xn(k)+p ]

n–) + G
(
xn(k)+p , [xn(k)]

n–,xm(k)
)
,

taking the limit as k → ∞, and applying equations () and (), we deduce that

ε –  ≤ lim
k→∞

G
(
xn(k)+p+, [xn(k)]

n–,xm(k)
) ≤  + ε,

that is, equation () holds for p + . This completes the induction and equation () is valid
for any p ≥ . Next we prove that, for all p,p ≥ ,

lim
k→∞

G
(
xn(k)+p ,xn(k)+p , [xn(k)]

n–,xm(k)
)
= ε. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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Fix p ≥  arbitrarily. If p = , equation () is true by equation (). Suppose that equation
() is true for some p ≥  and we will prove it for p + . Indeed, on the one hand,

G
(
xn(k)+p ,xn(k)+p+, [xn(k)]

n–,xm(k)
)

= G
(
xn(k)+p+,xn(k)+p , [xn(k)]

n–,xm(k)
)

≤ G
(
xn(k)+p+, [xn(k)+p ]

n–) + G
(
xn(k)+p ,xn(k)+p , [xn(k)]

n–,xm(k)
)
,

and, on the other hand,

G
(
xn(k)+p ,xn(k)+p , [xn(k)]

n–,xm(k)
)

≤ G
(
xn(k)+p , [xn(k)+p+]

n–) + G
(
xn(k)+p+,xn(k)+p , [xn(k)]

n–,xm(k)
)
.

Combining the two inequalities, for all k ∈N,

G
(
xn(k)+p ,xn(k)+p , [xn(k)]

n–,xm(k)
)
– G

(
xn(k)+p , [xn(k)+p+]

n–)

≤ G
(
xn(k)+p+,xn(k)+p , [xn(k)]

n–,xm(k)
)

≤ G
(
xn(k)+p+, [xn(k)+p ]

n–) + G
(
xn(k)+p ,xn(k)+p , [xn(k)]

n–,xm(k)
)
.

Taking the limit as k → ∞ and applying equations () and (), we deduce that

ε –  ≤ lim
k→∞

G
(
xn(k)+p+,xn(k)+p , [xn(k)]

n–,xm(k)
) ≤  + ε,

that is, equation () also holds for p + . This completes the second induction. Repeating
this reasoning in all arguments, we conclude that equation () holds. Exactly the same
argument lets us prove that

lim
k→∞

G(xn(k)–,xn(k),xn(k)+,xn(k)+, . . . ,xn(k)+n–,xm(k)–) = ε. �

4 Product of G∗
n-metric spaces

In [], the authors proved that, in general, the product space ofG-metric spaces is not aG-
metric space (unless the factors are symmetric, that is, that they can be reduced to metric
spaces). Later, Roldán and Karapınar [] introduced the concept of G∗-metric spaces,
in which the axiom (G) is omitted. Then they succeeded in proving that the product of
G∗-metric spaces is also a G∗-metric space. This is the case of G∗

n-metric spaces.

Theorem  Let {(Xi,Gi)}Ni= be a family of G∗-metric spaces, consider the product space
X = X ×X × · · · ×XN and define Gmax

n and Gsum
n on X

n by

Gmax
n (Z,Z, . . . ,Zn) = max

≤i≤N
Gi

(
zi, z

i
, . . . , z

i
n
)

and

Gsum
n (Z,Z, . . . ,Zn) =

N∑

i=

Gi
(
zi , z


i , . . . , z

n
i
)

for all Z = (z, z , . . . , zN ),Z = (z, z, . . . , zN ), . . . ,Zn = (zn, zn, . . . , zNn ) ∈ X. Then the follow-
ing statements hold.

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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() Gmax
n and Gsum

n are G∗
n-metrics on X. Also they are equivalent since

Gmax
n ≤ Gsum

n ≤NGmax
n .

() If Zm = (zm, zm, . . . , zNm) ∈X for allm andW = (w,w, . . . ,wN ) ∈X, then {Zm}
Gmax
n -converges (respectively, Gsum

n -converges) toW if, and only if, each {zim}
Gi-converges to wi.

() {Zm}m≥ is Gmax
n -Cauchy if, and only if, each {zim}m≥ is Gi-Cauchy for all

i ∈ {, , . . . ,n}.
() (X,Gmax

n ) (respectively, (X,Gsum
n )) is complete if, and only if, every (Xi,Gi) is complete.

Proof We only reason with Gmax
n since the other case is similar. Note that if Zi =

(zi , zi , . . . , zNi ) ∈ X = X × X × · · · × XN , then zji ∈ Xj for all i ∈ {, , . . . ,n} and all
j ∈ {, , . . . ,N}.
() We prove four axioms.
(A) If Z = (z, z, . . . , zN ) ∈ X, then Gmax

n (Z,Z, . . . ,Z) = max≤i≤N Gi(zi, zi, . . . , zi) =
max≤i≤N  = .
(A) Suppose that Z 	= Z, that is, there is j ∈ {, , . . . ,N} such that zj 	= zj. Then

Gj(z
j
, z

j
, . . . , z

j
n) >  and we deduce that

Gmax
n (Z,Z, . . . ,Zn) = max

≤i≤N
Gi

(
zi, z

i
, . . . , z

i
n
) ≥ Gj

(
zj, z

j
, . . . , z

j
n
)
> .

(A) If σ :�n → �n is a permutation, then

Gmax
n (Zσ (),Zσ (), . . . ,Zσ (n)) = max

≤i≤N
Gi

(
ziσ (), z

i
σ (), . . . , z

i
σ (n)

)

= max
≤i≤N

Gi
(
zi, z

i
, . . . , z

i
n
)
= Gmax

n (Z,Z, . . . ,Zn).

(A) LetW = (w,w, . . . ,wN ). Then

Gmax
n (Z,Z, . . . ,Zn) = max

≤i≤N
Gi

(
zi, z

i
, . . . , z

i
n
)

≤ max
≤i≤N

[
Gi

(
zi,w

i,wi, . . . ,wi) + Gi
(
wi, zi, z

i
, . . . , z

i
n
)]

≤ max
≤i≤N

Gi
(
zi,w

i,wi, . . . ,wi) + max
≤i≤N

Gi
(
wi, zi, z

i
, . . . , z

i
n
)

= Gmax
n (Z,W,W, . . . ,W) + Gmax

n (W,Z,Z, . . . ,Zn).

() It follows from Proposition , item () of Lemma , and the fact that

Gmax
n (Zm,W,W, . . . ,W) = max

≤i≤N
Gi

(
zim,w

i,wi, . . . ,wi).

() It is the same reasoning as taking into account that

Gmax
n (Zm ,Zm ,Zm , . . . ,Zmn ) = max

≤i≤N
Gi

(
zim , z

i
m , z

i
m , . . . , z

i
mn

)
.

() Assume that (Xi,Gi) is complete for all i ∈ {, , . . . ,n} and let {Zm}m≥ be a Gmax
n -

Cauchy sequence in X. By item (), each sequence {zim}m≥ is Gi-Cauchy for all i ∈

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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{, , . . . ,n}. Since (Xi,Gi) is complete, there is wi ∈ X such that {zim} Gi→ wi, for all i ∈
{, , . . . ,n}. If W = (w,w, . . . ,wN ) ∈ X, item () guarantees that {Zm} Gmax

n→ W. Therefore,
(X,Gmax

n ) is complete. The converse is similar. �

5 Some fixed point results on G∗
n-metric spaces

The following result is a natural extension of Theorem  in [] and of Theorem . in
[]. We highlight two facts: on the one hand, if n ≥ , the following result cannot be re-
duced to metric spaces since the role of x and y is not symmetric; on the other hand, it
cannot be reduced to G-metric spaces (three arguments) because repeating some argu-
ments does not yield G-metric spaces (see Remark  and also Remark  in []).

Theorem Let (X,�) be a preordered set endowed with a G∗
n-metric G and let T : X → X

be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular-non-decreasing.
(d) There exists x ∈ X such that x � Tx.
(e) There exist two mappings ψ ,ϕ ∈ � such that, for all x, y ∈ X with x� y,

ψ
(
G

(
Tx,Ty,Tx,Tx, . . . ,Tx

)) ≤ (ψ – ϕ)
(
G(x, y,Tx,Tx, . . . ,Tx)

)
. ()

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

Proof Define xm = Tmx for all m ≥ . Since T is �-non-decreasing, then xm � xm+ for
allm ≥ . Then

ψ
(
G

(
xm+, [xm+]n–

))
=ψ

(
G

(
Txm,Txm+,Txm,Txm, . . . ,Txm

))

≤ (ψ – ϕ)
(
G(xm,xm+,Txm,Txm, . . . ,Txm)

)

= (ψ – ϕ)
(
G(xm,xm+,xm+,xm+, . . . ,xm+)

)

= (ψ – ϕ)
(
G

(
xm, [xm+]n–

))
.

Applying Lemma , {G(xm, [xm+]n–)} → . By item () of Lemma ,  ≤ G(xm+,
[xm]n–) ≤ (n – )G(xm, [xm+]n–), so

{
G

(
xm, [xm+]n–

)} →  and
{
G

(
xm+, [xm]n–

)} → . ()

Let us show that {xm} is G-Cauchy. Reasoning by contradiction, if {xm} is not G-Cauchy,
by Lemma , there exist ε >  and two subsequences {xn(k)} and {xm(k)} verifying k ≤
n(k) <m(k),

G
(
xm(k),xn(k), [xn(k)+]n–

)
> ε and

G
(
xm(k)–,xn(k), [xn(k)+]n–

) ≤ ε for all k ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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Therefore, by (),

 < ψ(ε) ≤ ψ
(
G

(
xm(k),xn(k), [xn(k)+]n–

))

=ψ
(
G

(
xn(k),xm(k), [xn(k)+]n–

))

=ψ
(
G

(
Txn(k)–,Txm(k)–,

[
Txn(k)–

]n–))

≤ (ψ – ϕ)
(
G

(
xn(k)–,xm(k)–, [Txn(k)–]n–

))

=ψ
(
G

(
xn(k)–,xm(k)–, [xn(k)]n–

))
– ϕ

(
G

(
xn(k)–,xm(k)–, [xn(k)]n–

))
. ()

Consider the sequence of non-negative real numbers {G(xn(k)–,xm(k)–, [xn(k)]n–)}. If this
sequence has a subsequence converging to zero, thenwe can take the limit in equation ()
using this subsequence and we would deduce  < ψ(ε) ≤ , which is impossible. Then
{G(xn(k)–,xm(k)–, [xn(k)]n–)} cannot have a subsequence converging to zero. This means
that there exist δ >  and k ∈N such that

G
(
xn(k)–,xm(k)–, [xn(k)]n–

) ≥ δ for all k ≥ k. ()

Since ϕ is non-decreasing, –ϕ(G(xn(k)–,xm(k)–, [xn(k)]n–)) ≤ –ϕ(δ) < . We also notice
that, using (A),

δ ≤ G
(
xn(k)–,xm(k)–, [xn(k)]n–

)
= G

(
xm(k)–, [xn(k)]n–,xn(k)–

)

≤ G
(
xm(k)–, [xn(k)+]n–

)
+ G

(
xn(k)+, [xn(k)]n–,xn(k)–

)

= G
(
xn(k)+, [xn(k)+]n–,xm(k)–

)
+ G

(
xn(k)+, [xn(k)]n–,xn(k)–

)

≤ (
G

(
xn(k)+, [xn(k)]n–

)
+ G

(
xn(k), [xn(k)+]n–,xm(k)–

))

+
(
G

(
xn(k)+, [xn(k)]n–

)
+ G

(
xn(k), [xn(k)]n–,xn(k)–

))

≤ G
(
xn(k)+, [xn(k)]n–

)
+ ε + G

(
xn(k)+, [xn(k)]n–

)
+ G

(
xn(k)–, [xn(k)]n–

)
. ()

By equations (), (), and (), and taking into account that ψ is non-decreasing, it fol-
lows that, for all k ≥ k,

 < ψ(ε) ≤ ψ
(
G

(
xn(k)–,xm(k)–, [xn(k)]n–

))
– ϕ

(
G

(
xn(k)–,xm(k)–, [xn(k)]n–

))

≤ ψ
(
G

(
xn(k)–,xm(k)–, [xn(k)]n–

))
– ϕ(δ)

≤ ψ
(
G

(
xn(k)+, [xn(k)]n–

)
+ ε + G

(
xn(k)+, [xn(k)]n–

)

+ G
(
xn(k)–, [xn(k)]n–

))
– ϕ(δ). ()

Using equation (), the fact that ψ is continuous and taking the limit when k → ∞ in
equation (), we deduce that  < ψ(ε) ≤ ψ(ε) – ϕ(δ), which is impossible since δ > 
and ϕ(δ) > . This contradiction shows us that {xm} is a G-Cauchy sequence. Since (X,G)
is complete, there exists z ∈ X such that {xm} G→ z.
Now suppose that T is G-continuous. Then {xm+} = {Txm} G→ Tz. By the unicity of the

limit, Tz = z, and z is a fixed point of T .

http://www.fixedpointtheoryandapplications.com/content/2014/1/13
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On the other case, suppose that (X,G,�) is regular. Since {xm} G→ z and {xm} is mono-
tone non-decreasing (w.r.t. �), it follows that xm � z for allm. Hence

ψ
(
G

(
xm+,Tz, [xm+]n–

))
=ψ

(
G

(
Txm,Tz,

[
Txm

]n–))

≤ (ψ – ϕ)
(
G

(
xm, z, [Txm]n–

))

= (ψ – ϕ)
(
G

(
xm, [xm+]n–, z

))
.

Since {xm} G→ z, then {G(xm, [xm+]n–, z)} → . Taking the limit when k → ∞we deduce
that

{
ψ

(
G

(
xm+,Tz, [xm+]n–

))} → .

By Lemma , {G(xm+,Tz, [xm+]n–)} → , so {xm} G→ Tz and we also conclude that z is
a fixed point of T .
To prove the uniqueness, let z, z ∈ X two fixed points of T . By hypothesis, there exists

z ∈ X such that z � z and z � z. Let us show that {Tmz} G→ z. Indeed,

ψ
(
G

(
Tm+z, [z]n–

))
=ψ

(
G

(
Tz,TTmz,

[
Tz

]n–))

≤ (ψ – ϕ)
(
G

(
z,Tmz, [Tz]n–

))

= (ψ – ϕ)
(
G

(
Tmz, [z]n–

))
.

By Lemma , we deduce {G(Tmz, [z]n–)} → , that is, {Tmz} G→ z. The same reasoning
proves that {Tmz} G→ z, so z = z. �

If we particularize the previous result to the case in which n = , we obtain the following
consequence.

Corollary  (Roldán and Karapınar [], Theorem ) Let (X,�) be a preordered set
endowedwith aG∗-metric G and T : X → X be a givenmapping. Suppose that the following
conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular-non-decreasing.
(d) There exists x ∈ X such that x � Tx.
(e) There exist two mappings ψ ,ϕ ∈ � such that, for all x, y ∈ X with x� y,

ψ
(
G

(
Tx,Ty,Tx

)) ≤ ψ
(
G(x, y,Tx)

)
– ϕ

(
G(x, y,Tx)

)
.

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

Taking ψ(t) = t for all t ≥  in the previous theorem, we deduce the following result.

Corollary  Let (X,G) be a complete G∗
n-metric space endowed with a preorder � and

let T : X → X be a �-non-decreasing mapping such that there exists ϕ ∈ � verifying, for

http://www.fixedpointtheoryandapplications.com/content/2014/1/13


Roldán et al. Fixed Point Theory and Applications 2014, 2014:13 Page 13 of 18
http://www.fixedpointtheoryandapplications.com/content/2014/1/13

all x, y ∈ X with x� y,

G
(
Tx,Ty,Tx,Tx, . . . ,Tx

) ≤ G(x, y,Tx,Tx, . . . ,Tx) – ϕ
(
G(x, y,Tx,Tx, . . . ,Tx)

)
.

Assume that T is G-continuous or (X,G,�) is regular. Then T has a fixed point provided
that there is x ∈ X such that x � Tx.

In addition to this, taking ϕ(t) = (– k)t for all t ≥  in the previous corollary, we deduce
the following result.

Corollary  Let (X,G) be a complete G∗
n-metric space endowed with a preorder � and

let T : X → X be a �-non-decreasing mapping such that there exists k ∈ [, ) verifying

G
(
Tx,Ty,Tx,Tx, . . . ,Tx

) ≤ kG(x, y,Tx,Tx, . . . ,Tx) for all x, y ∈ X with x� y.

Assume that T is G-continuous or (X,G,�) is regular. Then T has a fixed point provided
that there is x ∈ X such that x � Tx.

6 Some fixed point results on Gn-metric spaces
The following result is a variation of Theorem  in the setting of Gn-metric spaces.

Theorem Let (X,�) be a preordered set endowedwith aGn-metric G and let T : X → X
be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous.
(d) There exists x ∈ X such that x � Tx.
(e) There exist two mappings ψ ∈ � and ϕ ∈ � such that, for all x, y ∈ X with x� y,

ψ
(
G

(
Tx,Ty,Tx,Tx, . . . ,Tn–x

)) ≤ (ψ – ϕ)
(
G

(
x, y,Tx,Tx, . . . ,Tn–x

))
. ()

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
ω ∈ X such that z � ω and z � ω, we obtain uniqueness of the fixed point.

Proof Define xm = Tmx for all m ≥ . If there exists some m ∈ N such that xm = xm+,
then xm is a fixed point of T . On the contrary, suppose that

xm 	= xm+ for allm ∈N. ()

Since T is �-non-decreasing and x � Tx = x, then xm � xm+ for all m ≥ . Therefore,
taking x = xm and y = xm+n– in equation (), we have

ψ
(
G(xm+,xm+,xm+, . . . ,xm+n–,xm+n)

)

=ψ
(
G

(
Txm,Txm,Txm, . . . ,Tn–xm,Txm+n–

))

=ψ
(
G

(
Txm,Txm+n–,Txm,Txm, . . . ,Tn–xm

))

≤ (ψ – ϕ)
(
G

(
xm,xm+n–,Txm,Txm, . . . ,Tn–xm

))

= (ψ – ϕ)
(
G(xm,xm+,xm+, . . . ,xm+n–)

)
.
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Applying Lemma , {G(xm,xm+,xm+, . . . ,xm+n–)}m≥ → . Taking into account equation
() and (A),

G
(
xm+, [xm]n–

)
= G(xm,xm,xm, . . . ,xm,xm+)

≤ G(xm,xm+,xm+, . . . ,xm+n–) for allm ≥ .

Therefore,

{
G

(
xm+, [xm]n–

)}
m≥ → .

Let us show that {xm} is G-Cauchy. Reasoning by contradiction, if {xm} is not G-Cauchy, by
Lemma , there exist ε >  and two subsequences {xn(k)} and {xm(k)} verifying k ≤ n(k) <
m(k) < n(k + ),

G
(
xm(k), [xn(k)]n–

)
> ε and G

(
xm(k)–, [xn(k)]n–

) ≤ ε for all k ≥ ;

lim
k→∞

G(xn(k)+p ,xn(k)+p ,xn(k)+p , . . . ,xn(k)+pn– ,xm(k)+pn ) = ε for all p,p, . . . ,pn ≥ ;

lim
k→∞

G(xn(k)–,xn(k),xn(k)+,xn(k)+, . . . ,xn(k)+n–,xm(k)–) = ε. ()

In particular, taking appropriate values for p,p, . . . ,pn ≥ , we have

lim
k→∞

G(xn(k),xn(k)+,xn(k)+, . . . ,xn(k)+n–,xm(k)) = ε. ()

From xn(k) � xm(k) and by equation (),

ψ
(
G(xn(k),xn(k)+,xn(k)+, . . . ,xn(k)+n–,xm(k))

)

=ψ
(
G(xn(k),xm(k),xn(k)+,xn(k)+, . . . ,xn(k)+n–)

)

=ψ
(
G

(
Txn(k)–,Txm(k)–,Txn(k)–,Txn(k)–, . . . ,Tn–xn(k)–

))

≤ (ψ – ϕ)
(
G

(
xn(k)–,xm(k)–,Txn(k)–,Txn(k)–, . . . ,Tn–xn(k)–

))

= (ψ – ϕ)
(
G(xn(k)–,xm(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–)

)

= (ψ – ϕ)
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

)

=ψ
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

)

– ϕ
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

)

≤ ψ
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

)

for all k ≥ . Using thatψ is a continuousmapping, and equations () and (), we deduce
that the sequence

{
ϕ
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

)}
k∈N

has a finite limit and, more precisely,

ψ(ε)≤ ψ(ε) – lim
k→∞

ϕ
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

) ≤ ψ(ε).
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Hence

lim
k→∞

ϕ
(
G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–)

)
= .

It follows from equation () that

ε = lim
k→∞

G(xn(k)–,xn(k),xn(k)+, . . . ,xn(k)+n–,xm(k)–) = ,

which contradicts that ε > . This contradiction shows us that {xm} is a G-Cauchy se-
quence. Since (X,G) is complete, there exists z ∈ X such that {xm} G→ z. Furthermore,
since T is G-continuous, then {xm+} = {Txm} G→ Tz. By the unicity of the limit, Tz = z,
and z is a fixed point of T .
To prove the uniqueness, let z, z ∈ X two fixed points of T . By hypothesis, there exists

ω ∈ X such that z � ω and z � ω. Let us show that {ωm = Tmω} G→ z. On the one
hand, sinceT is non-decreasing, z = Tmz � Tmω = ωm. On the other hand, for allm ≥ ,

ψ
(
G

(
ωm+, [z]n–

))
=ψ

(
G

(
Tz,Tωm,Tz,Tz, . . . ,Tn–z

))

≤ (ψ – ϕ)
(
G

(
z,ωm,Tz,Tz, . . . ,Tn–z

))

= (ψ – ϕ)
(
G

(
ωm, [z]n–

))
.

By Lemma , we deduce {G(ωm, [z]n–)} → , that is, by item () of Lemma , {ωm =
Tmω} G→ z. The same reasoning proves that {Tmω} G→ z, so z = z. �

In the following result, we suppose that ϕ ∈ � , and we analyze the case in which T is
not necessarily continuous.

Theorem Let (X,�) be a preordered set endowedwith aGn-metricG and let T : X → X
be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular.
(d) There exists x ∈ X such that x � Tx.
(e) There exist two mappings ψ ,ϕ ∈ � such that, for all x, y ∈ X with x� y,

ψ
(
G

(
Tx,Ty,Tx,Tx, . . . ,Tn–x

)) ≤ (ψ – ϕ)
(
G

(
x, y,Tx,Tx, . . . ,Tn–x

))
.

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

Proof By Remark , ϕ ∈ � ⊆ �, so this result holds when T is continuous. Now suppose
that (X,G,�) is regular. Repeating the previous proof, we know that {xm = Tmx} G→ z.
Since {xm} is �-non-decreasing and (X,G,�) is regular, it follows that xm � z for all m.
Hence

ψ
(
G(xm+,xm+,xm+, . . . ,xm+n–,Tz)

)

=ψ
(
G

(
Txm,Tz,Txm,Txm, . . . ,Tn–xm

))
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≤ (ψ – ϕ)
(
G

(
xm, z,Txm,Txm, . . . ,Tn–xm

))

= (ψ – ϕ)
(
G(xm,xm+,xm+, . . . ,xm+n–, z)

)
.

As {xm} G→ z, we know that {G(xm,xm+,xm+, . . . ,xm+n–, z)}m≥ → . Since ψ and ϕ are
continuous, then {(ψ – ϕ)(G(xm,xm+,xm+, . . . ,xm+n–, z))}m≥ → , so {ψ(G(xm+,xm+,
xm+, . . . ,xm+n–,Tz))}m≥ → . By Lemma ,

{
G(xm+,xm+,xm+, . . . ,xm+n–,Tz)

}
m≥ → 

and this means that {xm+} G→ Tz. The unicity of the limit leads us to conclude that
Tz = z. �

Theorems  and  can be particularized to the case in which ψ(t) = t for all t ≥  as
follows.

Corollary  Let (X,G) be a complete Gn-metric space endowed with a preorder � and
let T : X → X be a �-non-decreasing, G-continuous mapping such that there exists ϕ ∈ �

verifying, for all x, y ∈ X with x� y,

ψ
(
G

(
Tx,Ty,Tx,Tx, . . . ,Tn–x

))

≤ G
(
x, y,Tx,Tx, . . . ,Tn–x

)
– ϕ

(
G

(
x, y,Tx,Tx, . . . ,Tn–x

))
.

Then T has a fixed point provided that there is x ∈ X such that x � Tx.

Corollary  Let (X,G) be a complete Gn-metric space endowed with a preorder � and
let T : X → X be a �-non-decreasing mapping such that there exists ϕ ∈ � verifying, for
all x, y ∈ X with x� y,

G
(
Tx,Ty,Tx,Tx, . . . ,Tn–x

)

≤ G
(
x, y,Tx,Tx, . . . ,Tn–x

)
– ϕ

(
G

(
x, y,Tx,Tx, . . . ,Tn–x

))
.

Assume that T is G-continuous or (X,G,�) is regular. Then T has a fixed point provided
that there is x ∈ X such that x � Tx.

The following result is a particularization to the case in which ϕ(t) = (–k)t for all t ≥ ,
where k ∈ [, ).

Corollary  Let (X,G) be a complete Gn-metric space endowed with a preorder � and
let T : X → X be a�-non-decreasing mapping such that there exists k ∈ [, ) verifying, for
all x, y ∈ X with x� y,

G
(
Tx,Ty,Tx,Tx, . . . ,Tn–x

) ≤ kG
(
x, y,Tx,Tx, . . . ,Tn–x

)
.

Assume that T is G-continuous or (X,G,�) is regular. Then T has a fixed point provided
that there is x ∈ X such that x � Tx.
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7 Consequences
Similar (but easier) techniques permit us to prove the following result.

Theorem Let (X,�) be a preordered set endowedwith aG∗
n-metricG and let T : X → X

be a given mapping. Suppose that the following conditions hold:
(a) (X,G) is complete.
(b) T is non-decreasing (w.r.t. �).
(c) Either T is G-continuous or (X,G,�) is regular-non-decreasing.
(d) There exists x ∈ X such that x � Tx.
(e) There exist two mappings ψ ,ϕ ∈ � such that, for all x,x, . . . ,xn ∈ X with

x � x � x � · · · � xn,

ψ
(
G(Tx,Tx,Tx, . . . ,Txn)

) ≤ (ψ – ϕ)
(
G(x,x,x, . . . ,xn)

)
.

Then T has a fixed point. Furthermore, if for all z, z ∈ X fixed points of T there exists
z ∈ X such that z � z and z � z, we obtain uniqueness of the fixed point.

In particular, taking Y = X ×X, we can conclude the following result.

Corollary  (Choudhury andMaity [], Theorem .) Let (X,�) be a partially ordered
set andG be aG-metric on X such that (X,G) is a complete G-metric space. Let F : X×X →
X be a continuous mapping having the mixed monotone property on X . Assume that there
exists a k ∈ [, ) such that for x, y, z,u, v,w ∈ X, the following holds:

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]

for all x� u� w and y� v� z where either u 	= w or v 	= z.
If there exist x, y ∈ X such that x � F(x, y) and y � F(y,x), then F has a coupled

fixed point in X, that is, there exist x, y ∈ X such that x = F(x, y) and y = F(y,x).
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Ankara, Turkey. 3Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok, 10140, Thailand.

Acknowledgements
The first author has been partially supported by Junta de Andalucía by project FQM-268 of the Andalusian CICYE. The
third author was supported by the Higher Education Research Promotion and National Research University Project of
Thailand, Office of the Higher Education Commission (Under NRU-CSEC Project No. NRU56000508).

Endnote
a Notice that in this axiom, it is possible that x = x3 or y = x4 .
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