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Abstract
Two common fixed theorems for weakly compatible mappings satisfying general
contractive conditions of integral type in metric spaces are proved and an illustrative
example is provided. The results obtained in this paper substantially extend and
improve several previous results, particularly Theorem 2.1 of Branciari (Int. J. Math.
Math. Sci. 29(9):531-536, 2002), Theorem 2 of Rhoades (Int. J. Math. Math. Sci.
2003(63):4007-4013, 2003) and Theorem 2 of Vijayaraju et al. (Int. J. Math. Math. Sci.
2005(15):2359-2364, 2005). A nontrivial example with uncountably many points is also
provided to support the results presented herein.
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1 Introduction and preliminaries
In , Branciari [] introduced the notion of contractive mappings of integral type in
metric spaces and proved the following fixed point theorem for the contractive mapping
of integral type, which is a nice generalization of the Banach contraction principle.

Theorem . ([]) Let (X,d) be a complete metric space, c ∈ (, ), and let f : X → X be a
mapping such that

∫ d(fx,fy)


ϕ(s)ds≤ c

∫ d(x,y)
ϕ(s)ds, ∀x, y ∈ X,

where ϕ : [, +∞) → [, +∞) is a Lebesgue integrable mapping which is summable on each
compact subset of [, +∞) and such that for all ε > ,

∫ ε


ϕ(s)ds > .

Then f has a unique fixed point a ∈ X such that for each x ∈ X, limn→∞ f nx = a.

Afterward, the researchers [–] and others extended the result to more general con-
tractive conditions of integral type. In particular, Rhoades [] proved the following ex-
tension of Theorem ..
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Theorem . ([]) Let (X,d) be a complete metric space, k ∈ [, ), f : X → X be a map-
ping such that

∫ d(fx,fy)


ϕ(s)ds≤ k

∫ m(x,y)
ϕ(s)ds, ∀x, y ∈ X,

where

m(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),

d(x, fy) + d(y, fx)


}
,

ϕ : [, +∞) → [, +∞) is a Lebesgue integrable mapping which is summable on each com-
pact subset of [, +∞) and such that for all ε > ,

∫ ε


ϕ(s)ds > .

Then f has a unique fixed point a ∈ X and, for each x ∈ X, limn→∞ f nx = a.

Vijayaraju et al. [] extended further Theorems . and . from a single mapping to a
pair of mappings. Using a rational expression for a contractive condition of integral type,
Vetro [] extended also Theorem . and proved the following common fixed point the-
orem for weakly compatible mappings.

Theorem . ([]) Let (X,d) be a metric space and let A, B, S and T be self-mappings of
X with S(X)⊆ B(X) and T(X)⊆ A(X) such that

∫ d(Sx,Ty)


ϕ(s)ds≤ α

∫ m(x,y)


ϕ(s)ds + β

∫ M(x,y)


ϕ(s)ds, ∀x, y ∈ X,

where

m(x, y) = d(By,Ty)
 + d(Ax,Sx)
 + d(Ax,By)

,

M(x, y) =max
{
d(Ax,By),d(Ax,Sx),d(By,Ty)

}
,

α > , β > , α +β <  and ϕ : [, +∞)→ [, +∞) is a Lebesgue integrable mapping on each
compact subset of [, +∞) and such that for all ε > ,

∫ ε


ϕ(s)ds > .

Suppose that one of A(X), B(X), S(X) and T(X) is a complete subset of X and the pairs {A,S}
and {B,T} are weakly compatible. Then A, B, S and T have a unique common fixed point
in X.

Motivated and inspired by the results in [–], in this paper we introduce more general
contractive mappings of integral type, which include the contractive mappings of integral
type in [, , , , ] as special cases, and we establish the existence and uniqueness
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of common fixed points for these contractive mappings of integral type with weak com-
patibility. Our results extend, improve and unify the corresponding results in [, , , ,
]. A nontrivial example with uncountably many points is also provided to support the
results presented herein.
Throughout this paper, we assume that R+ = [,+∞), R = (–∞, +∞), N = {} ∪ N,

where N denotes the set of all positive integers and
� = {ϕ : ϕ :R+ →R

+ satisfies that ϕ is Lebesgue integrable, summable on each
compact subset of R+ and

∫ ε

 ϕ(t)dt >  for each ε > },
� = {ψ :ψ :R+ →R

+ is upper semi-continuous on R
+ \ {}, ψ() =  and ψ(t) < t for

each t > },
� = {ψ : ψ :R+ →R

+ is nondecreasing on R
+, ψ(t) < t and

∑∞
n= ψ

n(t) < +∞ for
each t > }.

Recall that a pair of self-mappings f and g in a metric space (X,d) are said to be weakly
compatible if for all t ∈ X the equality ft = gt implies fgt = gft.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn


ϕ(t)dt = 

if and only if limn→∞ rn = .

2 Common fixed point theorems
Nowwe show two common fixed point theorems for four contractivemappings of integral
type in metric spaces.

Theorem . Let A, B, S and T be self-mappings of a metric space (X,d) such that
(C) S(X)⊆ B(X) and T(X) ⊆ A(X);
(C) the pairs {A,S} and {B,T} are weakly compatible;
(C) one of A(X), B(X), S(X) and T(X) is a complete subset of X and

∫ d(Sx,Ty)


ϕ(t)dt ≤ ψ

(
max

{∫ mi(x,y)


ϕ(t)dt : ≤ i≤ 

})
, ∀x, y ∈ X, (.)

where (ψ ,ϕ) is in � × � and

m(x, y) = d(By,Ty)
 + d(Ax,Sx)
 + d(Ax,By)

,

m(x, y) = d(Ax,Sx)
 + d(By,Ty)
 + d(Ax,By)

,

m(x, y) =
d(Sx,By)d(Ty,Ax)

 + d(Ax,By)
,

m(x, y) =max

{
d(Ax,By),d(Ax,Sx),d(By,Ty),



[
d(Sx,By) + d(Ty,Ax)

]}
.

(.)

Then A, B, S and T have a unique common fixed point in X .
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Proof Let x ∈ X. It follows from (C) that there exist two sequences {yn}n∈N and {xn}n∈N

in X satisfying

yn+ = Sxn = Bxn+ and yn+ = Txn+ = Axn+, ∀n ∈ N. (.)

Put dn = d(yn, yn+) for each n ∈N.
Firstly we show that A, B, S and T have at most a common fixed point in X. Suppose

that u and v are two different common fixed points of A, B, S and T in X. It follows from
(.), (.) and (ψ ,ϕ) ∈ � × � that

m(u, v) = d(Bv,Tv)
 + d(Au,Su)
 + d(Au,Bv)

= ,

m(u, v) = d(Au,Su)
 + d(Bv,Tv)
 + d(Au,Bv)

= ,

m(u, v) =
d(Su,Bv)d(Tv,Au)

 + d(Au,Bv)
=

d(u, v)
 + d(u, v)

,

m(u, v) =max

{
d(Au,Bv),d(Au,Su),d(Bv,Tv),



[
d(Su,Bv) + d(Tv,Au)

]}
= d(u, v)

and

∫ d(u,v)


ϕ(t)dt =

∫ d(Su,Tv)


ϕ(t)dt

≤ ψ

(
max

{∫ mi(u,v)


ϕ(t)dt : ≤ i≤ 

})

= ψ

(
max

{
,,

∫ d(u,v)
+d(u,v)


ϕ(t)dt,

∫ d(u,v)


ϕ(t)dt

})

= ψ

(∫ d(u,v)


ϕ(t)dt

)
<

∫ d(u,v)


ϕ(t)dt,

which is a contradiction. Hence A, B, S and T have at most a common fixed point in X.
Secondly we show that A, B, S and T have a common fixed point Aa ∈ X if there exist

a,b ∈ X satisfying

Aa = Sa = Bb = Tb. (.)

Assume that (.) holds for some a,b ∈ X. Put c = Aa. Note that (C) implies that

Sc = SAa = ASa = Ac and Bc = BTb = TBb = Tc. (.)

Suppose that c 	= Tc. In view of (.), (.), (.), (.) and (ψ ,ϕ) ∈ � × �, we infer that

m(a, c) = d(Bc,Tc)
 + d(Aa,Sa)
 + d(Aa,Bc)

= ,

m(a, c) = d(Aa,Sa)
 + d(Bc,Tc)
 + d(Aa,Bc)

= ,
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m(a, c) =
d(Sa,Bc)d(Tc,Aa)

 + d(Aa,Bc)
=
d(c,Bc)d(Tc, c)
 + d(c,Bc)

=
d(c,Tc)
 + d(c,Tc)

,

m(a, c) =max

{
d(Aa,Bc),d(Aa,Sa),d(Bc,Tc),



[
d(Sa,Bc) + d(Tc,Aa)

]}

=max

{
d(c,Bc), , ,



[
d(c,Bc) + d(Tc, c)

]}
= d(c,Tc)

and

∫ d(c,Tc)


ϕ(t)dt =

∫ d(Sa,Tc)


ϕ(t)dt

≤ ψ

(
max

{∫ mi(a,c)


ϕ(t)dt : ≤ i ≤ 

})

=ψ

(
max

{
,,

∫ d(c,Tc)
+d(c,Tc)


ϕ(t)dt,

∫ d(c,Tc)


ϕ(t)dt

})

=ψ

(∫ d(c,Tc)


ϕ(t)dt

)
<

∫ d(c,Tc)


ϕ(t)dt,

which is impossible. Consequently, c = Tc = Bc. Similarly we conclude that c = Ac = Sc.
That is, c is a common fixed point of A, B, S and T .
Thirdly we show that (.) holds for some a,b ∈ X. In order to prove (.), we have to

consider three possible cases as follows.
Case . There exists n ∈ N satisfying dn = . We claim that dn+ = . Otherwise

dn+ > . Using (.)-(.) and (ψ ,ϕ) ∈ � × �, we deduce that

m(xn ,xn+) = d(Bxn+,Txn+)
 + d(Axn ,Sxn )
 + d(Axn ,Bxn+)

= d(yn+, yn+)
 + d(yn , yn+)
 + d(yn , yn+)

= dn+,

m(xn ,xn+) = d(Axn ,Sxn )
 + d(Bxn+,Txn+)
 + d(Axn ,Bxn+)

= d(yn , yn+)
 + d(yn+, yn+)
 + d(yn , yn+)

= ,

m(xn ,xn+) =
d(Sxn ,Bxn+)d(Txn+,Axn )

 + d(Axn ,Bxn+)

=
d(yn+, yn+)d(yn+, yn )

 + d(yn , yn+)
= ,

m(xn ,xn+) =max

{
d(Axn ,Bxn+),d(Axn ,Sxn ),d(Bxn+,Txn+),



[
d(Sxn ,Bxn+) + d(Txn+,Axn )

]}

=max

{
d(yn , yn+),d(yn , yn+),d(yn+, yn+),



[
d(yn+, yn+) + d(yn+, yn )

]}
=max{dn ,dn+} = dn+
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and

∫ dn+


ϕ(t)dt =

∫ d(yn+,yn+)


ϕ(t)dt =

∫ d(Sxn ,Txn+)


ϕ(t)dt

≤ ψ

(
max

{∫ mi(xn ,xn+)


ϕ(t)dt : ≤ i≤ 

})

=ψ

(
max

{∫ dn+


ϕ(t)dt, , ,

∫ dn+


ϕ(t)dt

})

<
∫ dn+


ϕ(t)dt,

which is a contradiction. Hence dn+ = . It follows that

Axn = yn = yn+ = Sxn and Bxn+ = yn+ = yn+ = Txn+.

Put a = xn and b = xn+. It is easy to see that (.) holds and yn is a common fixed
point of A, B, S and T .
Case . There exists n ∈ N satisfying dn– = . As in the proof of Case , we infer

similarly that (.) holds for a = xn and b = xn–, and yn– is a common fixed point of
A, B, S and T .
Case . yn 	= yn+ for all n ∈N. Now we claim that dn ≤ dn– for all n ∈N. Suppose that

dn > dn– for some n ∈N. By virtue of (.), (.) and (ψ ,ϕ) ∈ � × �, we arrive at

m(xn,xn–) = d(Bxn–,Txn–)
 + d(Axn,Sxn)
 + d(Axn,Bxn–)

= d(yn–, yn)
 + d(yn, yn+)
 + d(yn, yn–)

= dn–
 + dn
 + dn–

< dn,

m(xn,xn–) = d(Axn,Sxn)
 + d(Bxn–,Txn–)
 + d(Axn,Bxn–)

= d(yn, yn+)
 + d(yn–, yn)
 + d(yn, yn–)

= dn,

m(xn,xn–) =
d(Sxn,Bxn–)d(Txn–,Axn)

 + d(Axn,Bxn–)

=
d(yn+, yn–)d(yn, yn)

 + d(yn, yn–)
= , (.)

m(xn,xn–) =max

{
d(Axn,Bxn–),d(Axn,Sxn),d(Bxn–,Txn–),



[
d(Sxn,Bxn–) + d(Txn–,Axn)

]}

=max

{
d(yn, yn–),d(yn, yn+),d(yn–, yn),



[
d(yn+, yn–) + d(yn, yn)

]}

=max{dn–,dn} = dn
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and

∫ dn


ϕ(t)dt =

∫ d(yn+,yn)


ϕ(t)dt =

∫ d(Sxn ,Txn–)


ϕ(t)dt

≤ ψ

(
max

{∫ mi(xn ,xn–)


ϕ(t)dt : ≤ i≤ 

})

=ψ

(
max

{∫ dn–
+dn

+dn–


ϕ(t)dt,

∫ dn


ϕ(t)dt, ,

∫ dn


ϕ(t)dt

})

=ψ

(∫ dn


ϕ(t)dt

)
<

∫ dn


ϕ(t)dt, (.)

which is absurd. Hence dn ≤ dn– for each n ∈ N. As in the proofs of (.) and (.),
we infer similarly that dn+ ≤ dn for all n ∈ N. Consequently, {dn}n∈N is a nonincreasing
positive sequence, which means that there exists a constant r ≥  with

lim
n→∞dn = r. (.)

Suppose that r > . Making use of (.), (.), (.), (.) and (ψ ,ϕ) ∈ � × � and
Lemma ., we get that

∫ r


ϕ(t)dt = lim sup

n→∞

∫ dn


ϕ(t)dt = lim sup

n→∞

∫ d(yn+,yn)


ϕ(t)dt

= lim sup
n→∞

∫ d(Sxn ,Txn–)


ϕ(t)dt

≤ lim sup
n→∞

ψ

(
max

{∫ mi(xn ,xn–)


ϕ(t)dt : ≤ i ≤ 

})

≤ ψ

(
lim sup
n→∞

max

{∫ dn–
+dn

+dn–


ϕ(t)dt,

∫ dn


ϕ(t)dt, ,

∫ max{dn–,dn}


ϕ(t)dt

})

=ψ

(
max

{∫ r


ϕ(t)dt,

∫ r


ϕ(t)dt, ,

∫ r


ϕ(t)dt

})

=ψ

(∫ r


ϕ(t)dt

)
<

∫ r


ϕ(t)dt,

which is a contradiction. Hence r = . That is,

lim
n→∞dn = . (.)

In order to prove that {yn}n∈N is a Cauchy sequence, by (.) we need only to prove that
{yn}n∈N is a Cauchy sequence. Suppose that {yn}n∈N is not a Cauchy sequence. It follows
that there exists ε >  such that for each even integer k there are even integers m(k),
n(k) with m(k) > n(k) > k and

d(yn(k), ym(k)) ≥ ε. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/132


Liu et al. Fixed Point Theory and Applications 2014, 2014:132 Page 8 of 16
http://www.fixedpointtheoryandapplications.com/content/2014/1/132

For every even integer k, let m(k) be the least even integer exceeding n(k) satisfying
(.). It follows that

d(yn(k), ym(k)–) < ε, ∀k ∈N. (.)

Note that

d(yn(k), ym(k)) ≤ d(yn(k), ym(k)–) + dm(k)– + dm(k)–, ∀k ∈N;
∣∣d(yn(k)+, ym(k)) – d(yn(k), ym(k))

∣∣ ≤ dn(k), ∀k ∈N;
∣∣d(yn(k), ym(k)–) – d(yn(k), ym(k))

∣∣ ≤ dm(k)–, ∀k ∈N;
∣∣d(yn(k)+, ym(k)–) – d(yn(k)+, ym(k))

∣∣ ≤ dm(k)–, ∀k ∈N.

(.)

In terms of (.)-(.), we know that

ε = lim
k→∞

d(yn(k), ym(k)) = lim
k→∞

d(yn(k)+, ym(k))

= lim
k→∞

d(yn(k), ym(k)–) = lim
k→∞

d(yn(k)+, ym(k)–). (.)

In light of (.), (.), (.), (.), (ψ ,ϕ) ∈ � × � and Lemma ., we deduce that

m(xn(k),xm(k)–)

= d(Bxm(k)–,Txm(k)–)
 + d(Axn(k),Sxn(k))

 + d(Axn(k),Bxm(k)–)

= d(ym(k)–, ym(k))
 + d(yn(k), yn(k)+)
 + d(yn(k), ym(k)–)

→  as k → ∞,

m(xn(k),xm(k)–)

= d(Axn(k),Sxn(k))
 + d(Bxm(k)–,Txm(k)–)
 + d(Axn(k),Bxm(k)–)

= d(yn(k), yn(k)+)
 + d(ym(k)–, ym(k))
 + d(yn(k), ym(k)–)

→  as k → ∞,

m(xn(k),xm(k)–)

=
d(Sxn(k),Bxm(k)–)d(Txm(k)–,Axn(k))

 + d(Axn(k),Bxm(k)–)

=
d(yn(k)+, ym(k)–)d(ym(k), yn(k))

 + d(yn(k), ym(k)–)
→ ε

 + ε
as k → ∞,

m(xn(k),xm(k)–)

=max

{
d(Axn(k),Bxm(k)–),d(Axn(k),Sxn(k)),d(Bxm(k)–,Txm(k)–),



[
d(Sxn(k),Bxm(k)–) + d(Txm(k)–,Axn(k))

]}

=max

{
d(yn(k), ym(k)–),d(yn(k), yn(k)+),d(ym(k)–, ym(k)),



[
d(yn(k)+, ym(k)–) + d(ym(k), yn(k))

]} → ε as k → ∞

http://www.fixedpointtheoryandapplications.com/content/2014/1/132
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and
∫ ε


ϕ(t)dt = lim sup

k→∞

∫ d(yn(k)+,ym(k))


ϕ(t)dt = lim sup

k→∞

∫ d(Sxn(k),Txm(k)–)


ϕ(t)dt

≤ lim sup
k→∞

ψ

(
max

{∫ mi(xn(k),xm(k)–)


ϕ(t)dt : ≤ i ≤ 

})

≤ ψ

(
lim sup
k→∞

max

{∫ mi(xn(k),xm(k)–)


ϕ(t)dt : ≤ i ≤ 

})

=ψ

(
max

{
,,

∫ ε
+ε


ϕ(t)dt,

∫ ε


ϕ(t)dt

})

=ψ

(∫ ε


ϕ(t)dt

)
<

∫ ε


ϕ(t)dt,

which is a contradiction. Therefore {yn}n∈N is a Cauchy sequence.
Assume that A(X) is complete. Notice that {yn}n∈N ⊆ A(X), which implies that {yn}n∈N

converges to a point c ∈ A(X). Obviously limn→∞ yn = c. Put a ∈ A–c. It follows thatAa = c.
Suppose that Sa 	= c. In view of (.)-(.), (ψ ,ϕ) ∈ � × �, Lemma . and limn→∞ yn = c,
we infer that

m(a,xn–) = d(Bxn–,Txn–)
 + d(Aa,Sa)

 + d(Aa,Bxn–)

= d(yn–, yn)
 + d(c,Sa)
 + d(c, yn–)

→  as n → ∞,

m(a,xn–) = d(Aa,Sa)
 + d(Bxn–,Txn–)
 + d(Aa,Bxn–)

= d(c,Sa)
 + d(yn–, yn)
 + d(c, yn–)

→ d(c,Sa) as n→ ∞,

m(a,xn–) =
d(Sa,Bxn–)d(Txn–,Aa)

 + d(Aa,Bxn–)

=
d(Sa, yn–)d(yn, c)

 + d(c, yn–)
→  as n→ ∞,

m(a,xn–) = max

{
d(Aa,Bxn–),d(Aa,Sa),d(Bxn–,Txn–),



[
d(Sa,Bxn–) + d(Txn–,Aa)

]}

= max

{
d(c, yn–),d(c,Sa),d(yn–, yn),



[
d(Sa, yn–) + d(yn, c)

]} → d(c,Sa) as n→ ∞

and
∫ d(Sa,c)


ϕ(t)dt = lim sup

n→∞

∫ d(Sa,yn)


ϕ(t)dt = lim sup

n→∞

∫ d(Sa,Txn–)


ϕ(t)dt

≤ lim sup
n→∞

ψ

(
max

{∫ mi(a,xn–)


ϕ(t)dt : ≤ i≤ 

})

http://www.fixedpointtheoryandapplications.com/content/2014/1/132
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≤ ψ

(
lim sup
n→∞

max

{∫ mi(a,xn–)


ϕ(t)dt : ≤ i≤ 

})

=ψ

(
max

{
,

∫ d(c,Sa)


ϕ(t)dt, ,

∫ d(c,Sa)


ϕ(t)dt

})

=ψ

(∫ d(c,Sa)


ϕ(t)dt

)
<

∫ d(c,Sa)


ϕ(t)dt,

which is a contradiction. Therefore, Sa = c, which together with (C) means that c ∈ B(X).
Put b ∈ B–c, that is, Bb = c. Suppose that c 	= Tb. By means of (.), (.) and (ψ ,ϕ) ∈
� × �, we get that

m(a,b) = d(Bb,Tb)
 + d(Aa,Sa)
 + d(Aa,Bb)

= d(c,Tb),

m(a,b) = d(Aa,Sa)
 + d(Bb,Tb)
 + d(Aa,Bb)

= ,

m(a,b) =
d(Sa,Bb)d(Tb,Aa)

 + d(Aa,Bb)
= ,

m(a,b) =max

{
d(Aa,Bb),d(Aa,Sa),d(Bb,Tb),



[
d(Sa,Bb) + d(Tb,Aa)

]}

=max

{
,,d(c,Tb),



[
 + d(Tb, c)

]}

= d(c,Tb)

and

∫ d(c,Tb)


ϕ(t)dt =

∫ d(Sa,Tb)


ϕ(t)dt ≤ ψ

(
max

{∫ mi(a,b)


ϕ(t)dt : ≤ i≤ 

})

=ψ

(
max

{∫ d(c,Tb)


ϕ(t)dt, , ,

∫ d(c,Tb)


ϕ(t)dt

})

=ψ

(∫ d(c,Tb)


ϕ(t)dt

)
<

∫ d(c,Tb)


ϕ(t)dt,

which is impossible. That is, c = Tb. Hence (.) holds.
Assume that T(X) is complete. Notice that {yn}n∈N ⊆ T(X), which implies that {yn}n∈N

converges to a point c ∈ T(X). Obviously limn→∞ yn = c. Put b ∈ T–c. It follows
that Tb = c. Observe that T(X) ⊆ A(X), which implies that there exists a ∈ X with
Aa = Tb = c. As in the proof of completeness of A(X), we infer that (.) holds. Simi-
larly we conclude that (.) holds if one of B(X) and S(X) is complete. This completes the
proof. �

As in the proof of Theorem . we have the following result and omit its proof.

Theorem . Let A, B, S and T be self-mappings of a metric space (X,d) satisfying (C)-
(C) and

∫ d(Sx,Ty)


ϕ(t)dt ≤ ψ

(∫ m(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/132
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where (ψ ,ϕ) is in � × � and m is defined by (.). Then A, B, S and T have a unique
common fixed point in X.

Remark . Theorems . and . extend, improve and unify Theorem . in [, ], The-
orem  in [, , ] and Corollary  in []. The following example reveals that Theo-
rem . is both an indeed generalization of Theorem . in [], Theorem  in [, ] and
Corollary  in [], and different from Theorems .-. in [].

Example . Let X = R be endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X. Let S,T : X → X be defined by

Sx =

⎧⎨
⎩
, ∀x ∈ X – {},

 , x = ,

Tx = , ∀x ∈ X.

Now we claim that Theorem  and Corollary  in [] cannot be used to prove the ex-
istence of common fixed points of the mappings S and T in X, and Theorem  in [],
Theorem . in [] and Theorems .-. in [] are useless in proving the existence of
fixed points of the mapping S in X.
Suppose that there exists (ϕ,ψ) ∈ � × � satisfying the condition of Theorem  in [],

that is,

∫ d(Sx,Ty)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where

M(x, y) =max

{
d(x, y),d(x,Sx),d(y,Ty),



[
d(y,Sx) + d(x,Ty)

]}
. (.)

Put x =  and y = 
 . It follows from (.), (.) and (ϕ,ψ) ∈ � × � that

M(x, y) =max

{
d(x, y),d(x,Sx),d(y,Ty),



[
d(y,Sx) + d(x,Ty)

]}

=max

{
d
(
,



)
,d

(
,



)
,d

(


, 

)
,



[
d
(


,



)
+ d(, )

]}

=



and

∫ 



ϕ(t)dt =

∫ d(Sx,Ty)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)

=ψ

(∫ 



ϕ(t)dt

)
<

∫ 



ϕ(t)dt,

which is impossible.

http://www.fixedpointtheoryandapplications.com/content/2014/1/132
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Suppose that there exist ϕ ∈ � and k ∈ [, ) satisfying the condition of Corollary  in
[], that is,

∫ d(Sx,Ty)


ϕ(t)dt ≤ k

∫ n(x,y)


ϕ(t)dt for each distinct x, y ∈ X, (.)

where

n(x, y) =max

{
d(x, y),

d(y,Ty)[ + d(x,Sx)]
 + d(x, y)

}
. (.)

Take x =  and y = 
 . It follows from (.), (.), k ∈ [, ) and ϕ ∈ � that

n(x, y) =max

{
d(x, y),

d(y,Ty)[ + d(x,Sx)]
 + d(x, y)

}

=max

{
d
(
,



)
,
d(  , )[ + d(,  )]

 + d(,  )

}

=



and

∫ 



ϕ(t)dt =

∫ d(Sx,Ty)


ϕ(t)dt ≤ k

∫ n(x,y)


ϕ(t)dt

= k
∫ 




ϕ(t)dt <

∫ 



ϕ(t)dt,

which is a contradiction.
Suppose that there exist ϕ ∈ � and k ∈ [, ) satisfying the condition of Theorem  in

[], that is,

∫ d(Sx,Sy)


ϕ(t)dt ≤ k

∫ m(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where

m(x, y) =max

{
d(x, y),d(x,Sx),d(y,Sy),



[
d(y,Sx) + d(x,Sy)

]}
. (.)

Put x =  and y = 
 . It follows from (.), (.), k ∈ [, ) and ϕ ∈ � that

m(x, y) =max

{
d(x, y),d(x,Sx),d(y,Sy),



[
d(y,Sx) + d(x,Sy)

]}

=max

{
d
(
,



)
,d(,S),d

(


,S




)
,



[
d
(


,S

)
+ d

(
,S




)]}

=max

{


,


,


,



}

=
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and

∫ 



ϕ(t)dt =

∫ d(Sx,Sy)


ϕ(t)dt ≤ k

∫ m(x,y)


ϕ(t)dt = k

∫ 



ϕ(t)dt <

∫ 



ϕ(t)dt,

which is absurd. Observe that Theorem  in [] generalizes Theorem . in [], hence
Theorem . in [] cannot be used to prove the existence of fixed points of S in X.
Suppose that there exists ϕ ∈ � satisfying the condition of Theorem . in [], that is,

∫ d(Sx,Sy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where

α :R+ → [, ) and lim sup
s→t

α(s) < , ∀t > . (.)

Put x =  and y = 
 . It follows from (.), (.) and ϕ ∈ � that

∫ 



ϕ(t)dt =

∫ d(Sx,Sy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,y)


ϕ(t)dt

= α

(



)∫ 



ϕ(t)dt <

∫ 



ϕ(t)dt,

which is impossible.
Suppose that there exists ϕ ∈ � satisfying the condition of Theorem . in [], that is,

∫ d(Sx,Sy)


ϕ(t)dt

≤ α
(
d(x, y)

)∫ d(x,Sx)


ϕ(t)dt + β

(
d(x, y)

)∫ d(y,Sy)


ϕ(t)dt, ∀x, y ∈ X, (.)

where

α,β :R+ → [, ) satisfy that α(t) + β(t) < , ∀t ∈R
+,

lim sup
s→+

β(s) <  and lim sup
s→t+

α(s)
 – β(s)

< , ∀t > .
(.)

Put x =  and y = 
 . It follows from (.), (.) and ϕ ∈ � that

∫ 



ϕ(t)dt =

∫ d(Sx,Sy)


ϕ(t)dt

≤ α
(
d(x, y)

)∫ d(x,Sx)


ϕ(t)dt + β

(
d(x, y)

)∫ d(y,Sy)


ϕ(t)dt

=
[
α

(



)
+ β

(



)]∫ 



ϕ(t)dt <

∫ 



ϕ(t)dt,

which is a contradiction.
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Suppose that there exists ϕ ∈ � satisfying the condition of Theorem . in [], that is,

∫ d(Sx,Sy)


ϕ(t)dt ≤ γ

(
d(x, y)

)(∫ d(x,Sx)


ϕ(t)dt +

∫ d(y,Sy)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where

γ :R+ →
[
,




)
and lim sup

s→t+

γ (s)
 – γ (s)

< , ∀t > . (.)

Put x =  and y = 
 . It follows from (.), (.) and ϕ ∈ � that

∫ 



ϕ(t)dt =

∫ d(Sx,Sy)


ϕ(t)dt

≤ γ
(
d(x, y)

)(∫ d(x,Sx)


ϕ(t)dt +

∫ d(y,Sy)


ϕ(t)dt

)

= γ
(



)∫ 



ϕ(t)dt <

∫ 



ϕ(t)dt,

which is impossible.
Next we prove, by using Theorem ., that the mappings A, B, S and T have a unique

common fixed point in X, where A,B : X → X are defined by

Ax =


x and Bx =



x, ∀x ∈ X.

Define two functions ψ ,ϕ :R+ →R
+ by

ϕ(t) = t + t + t, ∀t ∈ [, +∞) and ψ(t) =

⎧⎨
⎩
t, ∀t ∈ [,  ],
t

+t , ∀t ∈ (  , +∞).

It is easy to see that (C), (C) and (C) hold. Let x, y ∈ X. In order to verify (.), we have
to consider two possible cases as follows.
Case . x ∈ X \ {}. It is clear that

∫ d(Sx,Ty)


ϕ(t)dt =  ≤ ψ

(∫ m(x,y)


ϕ(t)dt

)
.

Case . x = . Note that ψ is nondecreasing on (  , +∞),

m(, y) =max

{
d(A,By),d(A,S),d(By,Ty),



[
d(S,By) + d(Ty,A)

]}

=max

{∣∣∣∣  –
y



∣∣∣∣,
∣∣∣∣  –




∣∣∣∣,
∣∣∣∣y




– 

∣∣∣∣, 
(∣∣∣∣ –

y



∣∣∣∣ +
∣∣∣∣ – 



∣∣∣∣
)}

≥ 
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and

∫ d(S,Ty)


ϕ(t)dt =

∫ 




(
t + t + t

)
dt =




<



=



 + 

=ψ

(



)

=ψ

(∫ 



(
t + t + t

)
dt

)

≤ ψ

(∫ m(,y)


ϕ(t)dt

)
.

Hence (.) holds. That is, the conditions of Theorem . are satisfied. Consequently,
Theorem . implies that A, B, S and T have a unique common fixed point  ∈ X.
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