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Abstract
We improve Angelov’s fixed point theorems of �-contractions and j-nonexpansive
maps in uniform spaces and investigate their fixed point sets using the concept of
virtual stability. Some interesting examples and an application to the solution of a
certain integral equation in locally convex spaces are also given.
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1 Introduction
In  [], Angelov introduced the notion of �-contractions on Hausdorff uniform
spaces, which simultaneously generalizes the well-known Banach contractions on metric
spaces as well as γ -contractions [] on locally convex spaces, and he proved the existence
of their fixed points under various conditions. Later in  [], he also extended the no-
tion of�-contractions to j-nonexpansivemaps and gave some conditions to guarantee the
existence of their fixed points. However, there is a minor flaw in his proof of Theorem 
[] where the surjectivity of the map j is implicitly used without any prior assumption.
Additionally, we observe that such a map j can be naturally replaced by a multi-valued
map J to obtain a more general, yet interesting, notion of J-nonexpansiveness. Therefore,
in this work, we aim to correct and simplify the proof of Theorem  [] as well as extend
the notion of j-nonexpansive maps to J-nonexpansive maps and investigate the existence
of their fixed points. Then we introduce J-contractions, a special kind of J-nonexpansive
maps, that play the similar role as Banach contractions in yielding the uniqueness of fixed
points.With the notion of J-contractions, we are able to recover results on�-contractions
proved in [] as well as present some new fixed point theorems in which one of them nat-
urally leads to a new existence theorem for the solution of a certain integral equation in
locally convex spaces. Finally, we prove that, under amild condition, J-nonexpansivemaps
are always virtually stable in the sense of [] and hence their fixed point sets are retracts of
their convergence sets. An example of a virtually stable J-nonexpansive map whose fixed
point set is not convex is also given.

2 Fixed point theorems
For any set S, we will use P f (S) and |S| to denote the set of all nonempty finite subsets of S
and the cardinality of S, respectively. Let (E,A) be a Hausdorff uniform space whose uni-
formity is generated by a saturated family of pseudometricsA = {dα : α ∈ A} indexed by A,
∅ �= X ⊆ E, and J : A→P f (A). Interested readers should consult [] for general topological
concepts of uniform spaces, and [] for the complete development of fixed point theory in
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uniform spaces that motivates this work. We first give the definition of a J-nonexpansive
map as follows:

Definition . A self-map T : X → X is said to be J-nonexpansive if for each α ∈ A,

dα(Tx,Ty) ≤
∑

β∈J(α)
dβ (x, y),

for any x, y ∈ X.

Example . Let  < p < ∞, E = �p be equipped with the weak topology, and T : �p → �p

be defined by

T(x,x, . . . ) =
( |x + x|


,
|x + x|


,x,x, . . .

)
,

for any (x,x, . . . ) ∈ �p. Then A = {|f | : f ∈ �∗
p}, where |f |(x) = |f (x)| for each x ∈ �p.

By Theorem . in [], we have

∣∣f (Tx – Ty)
∣∣ ≤

∣∣∣∣‖f ‖ (x – y + x – y)
∣∣∣∣ +

∣∣∣∣‖f ‖ (x – y + x – y)
∣∣∣∣

+
∣∣‖f ‖(x – y)

∣∣ + ∣∣‖f ‖(x – y)
∣∣ + ∣∣f (x – y)

∣∣,
for each f ∈ �∗

p, x = (x,x, . . . ) ∈ �p and y = (y, y, . . . ) ∈ �p. Here, ‖f ‖ = sup{|f (x)| : x ∈
X,‖x‖ ≤ }.
By letting J : �∗

p → P f (�∗
p) be defined by J(f ) = {|f |, |g|, |g|, |g|, |g|}, for each f ∈ �∗

p,
where

g(x) =
‖f ‖


(x + x), g(x) =
‖f ‖


(x + x), g(x) = ‖f ‖x, g(x) = ‖f ‖x,

for each x = (x,x, . . . ) ∈ �p, it follows that T is J-nonexpansive.

The above definition of a J-nonexpansive map clearly extends the definition of a
j-nonexpansive map in []. Before giving general existence criteria for fixed points of
J-nonexpansive maps, we need the following notations. For each α ∈ A and n ∈ N, we
let

An(α) =
{
(α, . . . ,αn) : α ∈ J(α) and αk ∈ J(αk–) for  < k ≤ n

}
and

A(α) =
{
(α,α, . . . ) : α ∈ J(α) and αk ∈ J(αk–) for k > 

}
.

When there is no ambiguity, we will denote an element of both An(α) and A(α) simply by
(αk). Notice that for each α ∈ A and n ∈ N, the sets An(α) and πn(A(α)) are finite, where
πn denotes the nth coordinate projection (αk) �→ αn.

Lemma . Every J-nonexpansive map is continuous.

http://www.fixedpointtheoryandapplications.com/content/2014/1/134
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Proof Suppose T : X → X is J-nonexpansive. Let x ∈ X and (xγ ) be a net in X converging
to x. Then for each α ∈ A, we have

dα(Txγ ,Tx) ≤
∑

β∈J(α)
dβ (xγ ,x).

Since (xγ ) converges to x, (dβ (xγ ,x)) converges to  for any β ∈ A, and this proves the
continuity of T . �

Theorem . Let T : X → X be J-nonexpansive whose A(α) is finite for any α ∈ A. Then
T has a fixed point in X if and only if there exists x ∈ X such that

(i) the sequence (Tnx) has a convergence subsequence, and
(ii) for each α ∈ A and (αk) ∈ A(α), limn→∞ dαn (x,Tx) = .

Proof (⇒): It is obvious by letting x be a fixed point of T .
(⇐): Suppose that (Tnix) converges to some z ∈ X. Let α ∈ A and (αk) ∈ A(α). Then

limi→∞ dα(z,Tnix) =  and limn→∞ dαn (x,Tx) = . We can choose N ∈ N sufficiently
large so that dα(z,Tnix) < ε and dαni

(x,Tx) < ε, for all i≥N . It follows that

dα

(
z,Tni+x

) ≤ dα

(
z,Tnix

)
+ dα

(
Tnix,Tni (Tx)

)
≤ dα

(
z,Tnix

)
+

∑
(αk )∈Ani (α)

dαni
(x,Tx)

≤ (
 +

∣∣A(α)∣∣)ε.
Since α is arbitrary, (Tni+x) converges to z. By the continuity of T , we have z = Tz and
hence z is a fixed point of T . �

As a corollary of the previous theorem, we immediately obtain Theorem  [], with a
corrected and simplified proof, as follows:

Corollary . Let T : X → X be a j-nonexpansive map. If there exists x ∈ X such that
(i) the sequence (Tnx) has a convergence subsequence, and
(ii) for every α ∈ A, limn→∞ djn(α)(x,Tx) = ,

then T has a fixed point.

Proof The proof follows directly from the previous theorem by considering the map J :
α �→ {j(α)}. Notice that A(α) = {(jn(α))} which is finite. �

Wewill now consider a special kind of J-nonexpansive maps that resemble Banach con-
tractions in yielding the uniqueness of fixed points. Let� denote the family of all functions
φ : [,∞) → [,∞) satisfying the following conditions:

(�) φ is non-decreasing and continuous from the right, and
(�) φ(t) < t for any t > .

Notice that φ() = , and we will call φ ∈ � subadditive if φ(t + t) ≤ φ(t) + φ(t) for all
t, t ≥ . Also, for a subfamily {φα}α∈A of �, α ∈ A, (αk) ∈ An(α) and i≤ n, we let

φi
(αk ) = φα ◦ · · · ◦ φαi .

http://www.fixedpointtheoryandapplications.com/content/2014/1/134
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Definition . A self-map T : X → X is said to be a J-contraction if for each α ∈ A, there
exists φα ∈ � such that

dα(Tx,Ty) ≤
∑

β∈J(α)
φα

(
dβ (x, y)

)
,

for any x, y ∈ X, and φα is subadditive whenever |J(α)| > .

Clearly, a �-contraction as defined in [] is a J-contraction and a J-contraction is always
J-nonexpansive. A natural example of a J-contraction can be obtained by adding (finitely
many) appropriate �-contractions as shown in the following example.

Example . Given two �-contractions T : X → X and T : X → X as defined []. Then
there exist j, j : A→ A, and for each α ∈ A, there exist φ,α ,φ,α ∈ � such that

dα(Tx,Ty) ≤ φ,α
(
dj(α)(x, y)

)
and dα(Tx,Ty) ≤ φ,α

(
dj(α)(x, y)

)
,

for any α ∈ A and x, y ∈ X. If for each α ∈ A, j(α) �= j(α) and there is a subadditive φ,α ∈ �

so that φ,α(t) ≤ φ,α(t) and φ,α(t) ≤ φ,α(t) for any t ≥ , then the map H = T + T is
clearly a J-contraction with respect to J(α) = {j(α), j(α)} and φH,α = φ,α for any α ∈ A.

Lemma . If T : X → X is a J-contraction. Then we have

dα

(
Tnx,Tny

) ≤
∑

(αk )∈An(α)

φα ◦ φn–
(αk )

(
dαn (x, y)

)
,

for any α ∈ A, n≥  and x, y ∈ X.

Proof Recall that φα is assumed to be subadditive whenever |J(α)| > . Then, for any α ∈ A,
n≥  and x, y ∈ X, we clearly have

dα

(
Tnx,Tny

) ≤
∑

α∈J(α)
φα

(
dα

(
Tn–x,Tn–y

))

≤
∑

α∈J(α)
φα

( ∑
α∈J(α)

φα

(
dα

(
Tn–x,Tn–y

)))

≤
∑

α∈J(α)

∑
α∈J(α)

φα ◦ φα

(
dα

(
Tn–x,Tn–y

))
...

≤
∑

α∈J(α)

∑
α∈J(α)

· · ·
∑

αn∈J(αn–)
φα ◦ φα ◦ · · · ◦ φαn–

(
dαn (x, y)

)

=
∑

(αk )∈An(α)

φα ◦ φn–
(αk )

(
dαn (x, y)

)
.

�

We now obtain some general criteria for the existence of fixed points of J-contractions.

Theorem . Suppose X is sequentially complete and T : X → X is a J-contraction whose
A(α) is finite for any α ∈ A. If T satisfies the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2014/1/134
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(i) for each α ∈ A, there exists cα ∈ � such that

φαi (t)≤ cα(t),

for any (αk) ∈ A(α), i ∈N, t ≥ , and
(ii) there exists x ∈ X such that for each α ∈ A, (αk) ∈ A(α), i ∈N and n,m ∈N, we have

dαi

(
Tnx,Tmx

) ≤Mα(x),

for someMα(x) ∈ R,
then T has a fixed point.Moreover, if for each α ∈ A and x, y ∈ X, there exists Fα(x, y) ∈ R+



such that

dαi (x, y)≤ Fα(x, y),

for all (αk) ∈ A(α) and i ∈N, then the fixed point of T is unique.

Proof For each α ∈ A and n,m,N ∈N, since φα is non-decreasing, we have

dα

(
Tnx,Tmx

) ≤
∑

α∈J(α)
φα

(
dα

(
Tn–x,Tm–x

))

≤
∑

α∈J(α)
φα

(
sup

{
dα

(
Tn–x,Tm–x

)
: n,m ≥N

})
,

and by letting hα
N := sup{dα(Tnx,Tmx) : n,m ≥N}, it follows that

hα
N ≤

∑
α∈J(α)

φα

(
sup

{
dα

(
Tn–x,Tm–x

)
: n,m ≥N

})

=
∑

α∈J(α)
φα

(
hα
N–

)

≤
∑

α∈J(α)

∑
α∈J(α)

φα

(
φα

(
hα
N–

))
...

≤
∑

(αk )∈AN–(α)

φα ◦ φN–
(αk )

(
hαN–


)

≤
∑

(αk )∈AN–(α)

cNα
(
Mα(x)

)

≤ ∣∣A(α)∣∣cNα (
Mα(x)

)
. ()

Also, for a given t ≥ , since  ≤ cNα (t) = cα(cN–
α (t)) < cN–

α (t), we have limN→∞ cNα (t) = rα
for some rα ≥ . Since cα is right continuous, we have limN→∞ cα(cN–

α (t)) = cα(rα), and
hence cα(rα) = rα . Therefore, rα = . By (), it follows that limN→∞ hα

N = . Since α is ar-
bitrary, (Tkx) is a Cauchy sequence and, by sequential completeness, converges to some
z ∈ X. Notice also that z must be a fixed point of T by continuity.

http://www.fixedpointtheoryandapplications.com/content/2014/1/134


Chaoha and Songsa-ard Fixed Point Theory and Applications 2014, 2014:134 Page 6 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/134

Now suppose that for each x, y ∈ X and α ∈ A, there exists Fα(x, y) ∈ R+
 such that

dαi (x, y) ≤ Fα(x, y) for all (αk) ∈ A(α) and i ∈ N. If x, y are fixed points of T , then by
Lemma ., we have for each α ∈ A and n ∈N,

dα(x, y) = dα

(
Tnx,Tny

)
≤

∑
(αk )∈An(α)

φα ◦ φn–
(αk )

(
dαn (x, y)

)

≤
∑

(αk )∈An(α)

cnα
(
dαn (x, y)

)

≤ ∣∣A(α)∣∣cnα(
Fα(x, y)

)
.

Since limn→∞ cnα(Fα(x, y)) = , we must have x = y. �

As a corollary of the previous theorem, we immediately obtain Theorem  in [] as fol-
lows.

Corollary . Suppose X is a bounded and sequentially complete subset of E and T : X →
X is �-contraction. If

(i) for each α ∈ A, there exists cα ∈ � such that φjn(α)(t) ≤ cα(t) for all n ∈N and t ≥ ,
(ii) for each n ∈N, sup{djn(α)(x, y) : x, y ∈ X} ≤ p(α) := sup{dα(x, y) : x, y ∈ X},

then there exists a unique fixed point x ∈ X of T .

Proof For each x,x, y ∈ X, α ∈ A, (αk) ∈ A(α) and i,m,n ∈ N, by letting J(α) = {j(α)} and
Mα(x) = p(α) = Fα(x, y), we have A(α) = {(α, j(α), j(α), . . . , jk(α), . . . )}, dαi (Tmx,Tnx) =
dji(α)(Tmx,Tnx) ≤ Mα(x) and dαi (x, y) ≤ Fα(x, y). Hence, by Theorem ., T has a
unique fixed point. �

Theorem . Suppose X is sequentially complete and T : X → X is a self-map satisfying:
for each α ∈ A and k ∈ N, there exist φα,k ∈ �, a finite set Dα,k and a map Pα,k : Dα,k → A
such that

dα

(
Tkx,Tky

) ≤
∑

γ∈Dα,k

φα,k
(
dPα,k (γ )(x, y)

)
,

for any x, y ∈ X.
. If there exists x ∈ X such that for each α ∈ A there existsMα(x) ∈ R+

 so that∑
k∈N |Dα,k|φα,k(Mα(x)) < ∞ and

dPα,k (γ )(x,Tx) ≤Mα(x),

for all k ∈N and γ ∈Dα,k , then T has a fixed point in X .
. If for each α ∈ A and x, y ∈ X , there exists Fα(x, y) ∈ R+

 such that∑
k∈N |Dα,k|φα,k(Fα(x, y)) < ∞ and

dPα,k (γ )(x, y) ≤ Fα(x, y),

http://www.fixedpointtheoryandapplications.com/content/2014/1/134
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for all k ∈N and γ ∈Dα,k , then T has a unique fixed point in X and, for any x ∈ X ,
the sequence (Tnx) converges to the fixed point of T .

Proof First notice that T is clearly a J-contraction.
. For any α ∈ A andm > n ∈N, we have

dα

(
Tnx,Tmx

) ≤
∑
n≤i<m

dα

(
Tix,Ti+x

)

≤
∑
n≤i<m

∑
γ∈Dα ,i

φα,i
(
dPα,i(γ )(x,Tx)

)

≤
∑
n≤i<m

|Dα,i|φα,i
(
Mα(x)

)
.

Also, since
∑

k∈N |Dα,k|φα,k(Mα(x)) < ∞, (Tkx) is a Cauchy sequence and converges to a
fixed point of T by the sequential completeness of X and the continuity of T .
. For any x ∈ X, α ∈ A andm > n ∈N, we have

dα

(
Tnx,Tmx

) ≤
∑
n≤i<m

dα

(
Tix,Ti+x

)

≤
∑
n≤i<m

∑
γ∈Dα ,i

φα,i
(
dPα,i(γ )(x,Tx)

)

≤
∑
n≤i<m

|Dα,i|φα,i
(
Fα(x,Tx)

)
.

Also, since
∑

k∈N |Dα,k|φα,k(Fα(x,Tx)) <∞, (Tkx) is a Cauchy sequence and converges to a
fixed point of T by the sequential completeness of X and the continuity of T .
Now, since for each α ∈ A, k ∈N and x, y ∈ F(T),

dα(x, y) = dα

(
Tkx,Tky

)
≤

∑
γ∈Dα,k

φα,k
(
dPα,k (γ )(x, y)

)

≤
∑

γ∈Dα,k

φα,k
(
Fα(x, y)

)

= |Dα,k|φα,k
(
Fα(x, y)

)
,

and limk→∞ |Dα,k|φα,k(Fα(x, y)) = , we have the uniqueness. �

Corollary . (Theorem  in []) Let us suppose
(i) for each α ∈ A and n > , there exist φα,n ∈ � and j(α,n) ∈ A such that

dα

(
Tnx,Tny

) ≤ φα,n
(
dj(α,n)(x, y)

)
,

for any x, y ∈ X ,
(ii) there exists x ∈ X such that dj(α,n)(x,Tx) ≤ p(α) < ∞ (n = , , . . . ),∑

n φα,n(p(α)) < ∞ and j : A×N→ A.
Then T has at least one fixed point in X.

http://www.fixedpointtheoryandapplications.com/content/2014/1/134
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Proof By letting Dα,k = {j(α,k)} for any α ∈ A and k ∈ N and Pα,k = πk|Dα,k . Then for each
i ∈ N, we have |Dα,i| =  andMα(x) = p(α). By Theorem .(), T has a fixed point. �

Theorem. Suppose X is sequentially complete and T : X → X is a J-contraction whose
A(α) is finite for each α ∈ A. If, for each α ∈ A, there exists cα ∈ � satisfying:

(i) cα(t)/t is non-decreasing in t,
(ii) φαn (t) ≤ cα(t) for any (αk) ∈ A(α), n ∈N and t ∈ [,∞), and
(iii) there exist x ∈ X andMα(x) ∈ R+ such that dαn (x,Tx)≤Mα(x) for any

(αk) ∈ A(α) and n ∈N,
then T has a fixed point in X.

Proof Let Dα,i = Ai(α), Pα,i((αk)) = αi, and φα,i(t) = ciα(t) for any i ∈ N, α ∈ A, (αk) ∈ Ai(α),
and t ∈ [,∞). Then for any α ∈ A and x, y ∈ X, we have, by Lemma .,

dα

(
Tix,Tiy

) ≤
∑

(αk )∈Ai(α)

φα ◦ φi–
(αk )

(
dαi (x, y)

)

≤
∑

(αk )∈Ai(α)

ciα
(
dαi (x, y)

)

=
∑

(αk )∈Dα,i

φα,i
(
dPα,i((αk ))(x, y)

)
.

Since

|Dα,i+|φα,i+(Mα(x))
|Dα,i|φα,i(Mα(x))

=
|Ai+(α)|ci+α (Mα(x))
|Ai(α)|ciα(Mα(x))

≤ cα(ciα(Mα(x)))
ciα(Mα(x))

≤ cα(Mα(x))
Mα(x)

< ,

for any i ∈N, we have
∑

i∈N |Dα,i|φα,i(Mα(x)) < ∞. Then by Theorem .(),T has a fixed
point. �

Corollary . (Theorem  in []) Let us suppose
(i) the operator T : X → X is a �-contraction,
(ii) for each α ∈ A there exists a �-function cα such that φjn(α)(t)≤ cα(t) for all n ∈N

and cα(t)/t is non-decreasing,
(iii) there exists an element x ∈ X such that djn(α)(x,Tx) ≤ p(α) <∞ (n = , , . . . ).

Then T has at least one fixed point in X.

Proof By letting J(α) = {j(α)} for any α ∈ A and Mα(x) = p(α). Then |A(α)| = , and, by
Theorem ., T has a fixed point. �

Example . Given a sequentially complete locally convex space X, and two �-
contractions T,T : X → X; i.e., there exist j, j : A → A, and for each α ∈ A, there exist
φ,α ,φ,α ∈ � such that

dα(Tx,Ty) ≤ φ,α
(
dj(α)(x, y)

)
and dα(Tx,Ty) ≤ φ,α

(
dj(α)(x, y)

)
,

for any α ∈ A and x, y ∈ X. Suppose further that

http://www.fixedpointtheoryandapplications.com/content/2014/1/134
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(i) jn+ = jn ◦ j and jn ◦ j = jn+ for any n ∈N,
(ii) for each α ∈ A, φ,α(t) = c(α)t and φ,α(t) = c(α)t for some c(α) + c(α) ∈ (, ),

and
(iii) there exists x ∈ X such that djn (α)(x,Tx) ≤ p(x,α) < ∞ and

djn(α)(x,Tx) ≤ p(x,α) < ∞ for any α ∈ A and n = , , . . . .
Then H = T+T

 is a J-contraction with J(α) = {j(α), j(α)} and φH,α(t) = (c(α) + c(α))t.
Also, by (i) and (iii), we have |A(α)| =  < ∞ and

dαn (x,Hx) ≤
dαn (x,Tx) + dαn (x,Tx)


≤ p(x,α) + p(x,α)


.

Hence,H satisfies all conditions in Theorem ., and it has a fixed point in X. Notice that
H may not be a �-contraction, by choosing j and j so that dj(α) + dj(α) /∈ A for some
α ∈ A, and hence Theorem  in [] cannot be applied.

We now end this section by giving an application to the solution of a certain integral
equation in locally convex spaces.

Example . Following terminologies in [], let X be an S-space topologized by the
family of seminorms {| · |α : α ∈ A} and C([,T];X) the space of all continuous functions
from [,T] into X topologized by the family of seminorms {‖ · ‖α : α ∈ A}, where ‖x‖α :=
supt∈[,T] |x(t)|α for any x ∈ C([,T];X). Let L(X) denote the set of all continuous linear
operators on X,

L(X) =
{
l ∈ L(X) : ∀α ∈ A,∃M(α) > ,∀x ∈ X, |lx|α ≤M(α)|x|α

}
,

and let {S(t)}t≥ be a C-semigroup on X such that S : [,∞)→ L(X) is locally bounded.
Now, we replace H and H in [] by conditions (N), (N) and (N) as follows:
(N) B : C([,T];X)→ C([,T];X) is an operator such that there exists JB : A→P f (A)

so that for any α ∈ A, there is kα,B ∈ Lloc([,T]; [,∞)) such that

∣∣Bx(t) – By(t)
∣∣
α

≤ kα,B(t)
∑

β∈JB(α)

∣∣x(t) – y(t)
∣∣
β
,

for any x, y ∈ C([,T];X).
(N) f : [,T]×X ×X → X is continuous and there exist Jf : A→P f (A) and

Kf ∈ Lloc([,T]; [,∞)) such that for each α ∈ A,

∣∣f (t,u, v) – f (t,u, v)
∣∣
α

≤ Kf (t)
( ∑

β∈Jf (α)
|u – u|β + |v – v|α

)
,

for any t ∈ [,T] and u,u, v, v ∈ X ,
(N) Kf · kα,B ∈ Lloc([,T]; [,∞)).
Consider the integral equation

x(t) = S(t)x +
∫ t


S(t – s)f

(
s,x(s),Bx(s)

)
ds; t ∈ [,T] ()
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whose solution is closely related to the mild solution of the differential equation

dx
dt

= ax + f
(
t,x(t),Bx(t)

)
,

where a denotes the infinitesimal generator of {S(t)}t≥.
We now define an operator G on Cx ([,T];X) = {x ∈ C([,T];X) : x() = x} by

(Gx)(t) = S(t)x +
∫ t


S(t – s)f

(
s,x(s),Bx(s)

)
ds,

for any x ∈ Cx ([,T];X). Following the proof of Theorem  in [] and for each t > ,
S(t) ∈ L(X), then we can show that, for any α ∈ A, there existsM(α) >  such that

‖Gx –Gy‖α ≤Hα

( ∑
β∈Jf (α)

‖x – y‖β +
∑

β∈JB(α)
‖x – y‖β

)
,

where Hα =max{M(α)
∫ T
 Kf (s)ds,M(α)

∫ T
 Kf (s)kα,B(s)ds}. It is easy to see that if for each

α ∈ A,Hα ∈ (, ) and Jf (α)∩ JB(α) = ∅, thenG is a J-contraction with JG(α) = Jf (α)∪ JB(α).
In particular, if we assume further that for each α ∈ A, Jf (α) = {α}, |JB(α)| =  such that

JB ◦ JB = JB and Hα =HJB(α) <

 . Then for any k ∈N and x, y ∈ Cx ([,T];X), we have

∥∥Gkx –Gky
∥∥

α
≤Hk

α‖x – y‖α +

( k∑
i=

(HJB(α))
k–iHi

α

)
‖x – y‖JB(α)

=Hk
α‖x – y‖α +

( k∑
i=

k–iHk
α

)
‖x – y‖JB(α)

≤ k–Hk
α

(
‖x – y‖α +

k∑
i=

‖x – y‖JB(α)
)
.

Now, by letting φα,k(t) = k–Hk
αt, Dα,k = {(,α), (, JB(α))(, JB(α)), . . . , (k, JB(α))}, Pα,k(γ ) =

π(γ ), and Fα(x, y) =max{‖x – y‖α ,‖x – y‖JB(α)}, we have
(i) ‖x – y‖Pα,k (γ ) ≤ Fα(x, y) for any x, y ∈ Cx ([,T];X), k ∈N, α ∈ A, and γ ∈Dα,k ,
(ii)

∑
k∈N |Dα,k|φα,k(Fα(x, y)) =

∑
k∈N

k+
 (Hα)kFα(x, y) < ∞ for any x, y ∈ Cx ([,T];X)

and α ∈ A.
Therefore, by Theorem .(), G has a unique fixed point, so the integral equation ()

has a unique solution.

3 Fixed point sets
In this section, we will show that, under a mild condition, a J-nonexpansive map is always
virtually stable. This immediately gives a connection between the fixed point set and the
convergence set of a J-nonexpansive map. Recall that a continuous self-map T : X → X,
whose fixed point set F(T) is nonempty, on a Hausdorff space X is said to be virtually
stable [] if for each x ∈ F(T) and each neighborhood U of x, there exist a neighborhood
V of x and an increasing sequence (kn) of positive integers such that Tkn (V ) ⊆ U for all
n ∈N. When the sequence (kn) is independent of the point x and the neighborhoodU , we
simply call T a uniformly virtually stable map with respect to (kn). For example, a (quasi-)
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nonexpansive self-map, whose fixed point set is nonempty, on a metric space is always
uniformly virtually stable with respect to the sequence (n) of all natural numbers. An im-
portant feature of a virtually stable map is the connection between its fixed point set and
its convergence set as given in the following theorem.

Theorem . ([], Theorem .) Suppose X is a regular space. If T : X → X is virtually
stable, then F(T) is a retract of C(T),where C(T) is the (Picard) convergence set of T defined
as follows:

C(T) =
{
x ∈ X : the sequence

(
Tnx

)
converges

}
.

As in the previous section, let (E,A) be a Hausdorff uniform space whose uniformity is
generated by a saturated family of pseudometrics A = {dα : α ∈ A} indexed by A and ∅ �=
X ⊆ E. The following theorem gives a general criterion for a self-map on X to be virtually
stable.

Theorem . Let T : X → X be a self-map whose fixed point set F(T) is nonempty, and
which satisfies the following conditions:

(i) for each α ∈ A and k ∈N, there exist a finite set Dα,k and a map Pα,k :Dα,k → A such
that

dα

(
Tkx,Tky

) ≤
∑

γ∈Dα,k

dPα,k (γ )(x, y),

for any x, y ∈ X ,
(ii) there exists N ∈N such that |Dα,n| ≤ |Dα,N | and Pα,n(Dα,n) ⊆ Pα,N (Dα,N ) for any

n≥N and α ∈ A.
Then T is uniformly virtually stable with respect to the sequence of all natural numbers.

Proof Let z ∈ F(T) and let U be a neighborhood of z. We may assume that U =
⋂m

i={w ∈
X : dαi (w, z) < ε} for some ε >  and α, . . . ,αm ∈ A. For each n ∈N, let

Vn =
m⋂
i=

⋂
γ∈Dαi ,n

{
w ∈ X : dPαi ,n(γ )(w, z) <

ε

|Dαi ,n|
}
.

By (ii), there exists N ∈ N such that |Dαi ,n| ≤ |Dαi ,N | and Pαi ,n(Dαi ,n) ⊆ Pαi ,N (Dαi ,N ) for
any n ≥ N and i = , . . . ,m. Let V = V ∩ V ∩ · · · ∩ VN which is clearly a nonempty open
subset of X, y ∈ V , l ∈N and i ∈ {, . . . ,m}. It follows that

dαi

(
Tly, z

)
= dαi

(
Tly,Tlz

) ≤
∑

γ∈Dαi ,l

dPαi ,l(γ )
(y, z).

If l <N , then

dαi

(
Tly, z

)
<

∑
γ∈Dαi ,l

ε

|Dαi ,l|
= ε.
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If l ≥ N , since Pαi ,l(γ ) ∈ Pαi ,l(Dαi ,l) ⊆ Pαi ,N (Dαi ,N ), we have dPαi ,l(γ )
(y, z) < ε

|Dαi ,N | for each
γ ∈Dαi ,l , and hence

dαi

(
Tly, z

)
<

∑
γ∈Dαi ,l

ε

|Dαi ,N | =
ε|Dαi ,l|
|Dαi ,N | ≤ ε.

Hence, T is uniformly virtually stable with respect to the sequence of all natural num-
bers. �

Corollary . Suppose that T is J-nonexpansive with F(T) �= ∅. If there exists N ∈N such
that |An(α)| ≤ |AN (α)| and πn(An(α)) ⊆ πN (AN (α)) for any n ≥ N and α ∈ A, then T is
uniformly virtually stable with respect to the sequence of all natural numbers.

Proof By letting Dα,n = An(α) and Pα,n = πn|An(α) for any n ∈N and α ∈ A, we have

dα

(
Tlx,Tly

) ≤
∑

γ∈Dα,l

dPα,l(γ )(x, y),

for any x, y ∈ X. The result then follows from Theorem .. �

Example . Let E = � equipped with the weak topology and T : � → � be defined by

T(x,x, . . . ) =
( |x + x|


,
|x + x|


,x,x, . . .

)
,

for any (x,x, . . . ) ∈ �. ThenA = {|f | : f ∈ �}, and by Lemma . and Theorem . in [],
we have

∣∣f (Tnx – Tny
)∣∣

≤ ‖f ‖
[√




(|x – y + x – y| + |x – y + x – y|
)

+
√
(|x – y| + |x – y| + |x – y + x – y| + |x – y + x – y|)

 – 
√


]

+ ‖f ‖
(


|x – y| + |x – y + x – y| + 


|x – y| + |x – y + x – y|

)

+ ‖f ‖|x – y| + ‖f ‖|x – y| +
∣∣f (x – y)

∣∣,
for each f ∈ �, n ∈N, x = (x,x, . . . ) and y = (y, y, . . . ) ∈ �.
By letting J : � →P(�) be defined by J(f ) = {|f |, |g|, |g|, |g|, |g|} for each f ∈ �, where

g(x) = ‖f ‖
(

√



+


√


 – 
√

+ 

)
(x + x),

g(x) = ‖f ‖
(

√



+


√


 – 
√

+ 

)
(x + x),

g(x) = ‖f ‖
(


√


 – 
√

+



)
x, g(x) = ‖f ‖

(

√


 – 
√

+



)
x,

for each x = (x,x, . . . ) ∈ �, it follows that T is J-nonexpansive.
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Notice that (, , . . . ) is a fixed point of T , and for each f ∈ � and n,m ∈N, πn(A(|f |)) =
πm(A(|f |)). Then, by Theorem ., T is virtually stable and hence the fixed point set of T
is a retract of the convergence set of T . Moreover, the fixed point set is not convex be-
cause x = (, , , , , . . . ) and y = (, , –,–, , . . . ) are fixed points of T , while the convex
combination 

x +

y = (, , –,–, , . . . ) is not.
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