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Abstract

We improve Angelov’s fixed point theorems of ®-contractions and j-nonexpansive
maps in uniform spaces and investigate their fixed point sets using the concept of
virtual stability. Some interesting examples and an application to the solution of a
certain integral equation in locally convex spaces are also given.
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1 Introduction

In 1987 [1], Angelov introduced the notion of ®-contractions on Hausdorff uniform
spaces, which simultaneously generalizes the well-known Banach contractions on metric
spaces as well as y -contractions [2] on locally convex spaces, and he proved the existence
of their fixed points under various conditions. Later in 1991 [3], he also extended the no-
tion of ®-contractions to j-nonexpansive maps and gave some conditions to guarantee the
existence of their fixed points. However, there is a minor flaw in his proof of Theorem 1
[3] where the surjectivity of the map j is implicitly used without any prior assumption.
Additionally, we observe that such a map j can be naturally replaced by a multi-valued
map / to obtain a more general, yet interesting, notion of /-nonexpansiveness. Therefore,
in this work, we aim to correct and simplify the proof of Theorem 1 [3] as well as extend
the notion of j-nonexpansive maps to /-nonexpansive maps and investigate the existence
of their fixed points. Then we introduce J-contractions, a special kind of J-nonexpansive
maps, that play the similar role as Banach contractions in yielding the uniqueness of fixed
points. With the notion of /-contractions, we are able to recover results on ®-contractions
proved in [1] as well as present some new fixed point theorems in which one of them nat-
urally leads to a new existence theorem for the solution of a certain integral equation in
locally convex spaces. Finally, we prove that, under a mild condition, /-nonexpansive maps
are always virtually stable in the sense of [4] and hence their fixed point sets are retracts of
their convergence sets. An example of a virtually stable /-nonexpansive map whose fixed

point set is not convex is also given.

2 Fixed point theorems

For any set S, we will use P/ (S) and |S| to denote the set of all nonempty finite subsets of S
and the cardinality of S, respectively. Let (E, .A) be a Hausdorff uniform space whose uni-
formity is generated by a saturated family of pseudometrics A = {d,, : « € A} indexed by A,
@ #X CE,and]: A — P/(A). Interested readers should consult [5] for general topological
concepts of uniform spaces, and [6] for the complete development of fixed point theory in
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uniform spaces that motivates this work. We first give the definition of a J-nonexpansive
map as follows:

Definition 2.1 A self-map T : X — X is said to be /-nonexpansive if for each o € A,

do(Tx, Ty) < Y dp(x,y),
peJ(a)

for any x,y € X.

Example 2.2 Let1<p < oo, E = £, be equipped with the weak topology, and T': £, — £,
be defined by

e + o3| [ + gl

T(xl’x21~--)= (T; 3 !x31x4;~'>:

for any (x1,%2,...) € £,. Then A={|f|:f € Z;}, where |f|(x) = |f(x)| for eachx € £,,.
By Theorem 4.6 in [7], we have

I
3
+ [ NG = y0)| + | I 112 = 32)| + [f(x = p)

+ M(962 — Y2t X4 —J’4)

[f(Tx—Ty)|§ 3

(%1 =31 + %3 —3)

’

for each f € Z;;, x = (x1,%,...) €£p and ¥y = (y1,¥2,...) € £,. Here, ||f|| = sup{|[f(x)] : x €
X, |lxll <1}

By letting J : £ — P/(£) be defined by J(f) = {|f],g], €], |gs], 1gal}, for each f € £,
where

gl(x) = @(xl +x3), gZ(x) - ”fT”

(2 +x1), @) =fllx,  galx) = Ifllxa,
for each x = (x1,%9,...) € £, it follows that T is J-nonexpansive.

The above definition of a J-nonexpansive map clearly extends the definition of a
j-nonexpansive map in [3]. Before giving general existence criteria for fixed points of
J-nonexpansive maps, we need the following notations. For each « € A and n € N, we
let

Aylx) = {(al,...,an) coq € J(a) and o € J(op_1) for1 < k < n}
and
Ala) = {(O[I,Olg,...) :oq € J(a) and o € J(ag_q) for k > 1}.
When there is no ambiguity, we will denote an element of both A, («) and A(«) simply by

(o). Notice that for each o € A and # € N, the sets A, («) and 7,(A(x)) are finite, where
7, denotes the nth coordinate projection (o) — .

Lemma 2.3 Every J-nonexpansive map is continuous.


http://www.fixedpointtheoryandapplications.com/content/2014/1/134

Chaoha and Songsa-ard Fixed Point Theory and Applications 2014, 2014:134 Page3of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/134

Proof Suppose T : X — X is J-nonexpansive. Let x € X and (x, ) be a net in X converging
to x. Then for each o € A, we have

do(Tx,, Tx) < Z dg(x,,%).
BeJ(a)

Since (x,) converges to x, (dg(x,,x)) converges to 0 for any B € A, and this proves the
continuity of 7. O

Theorem 2.4 Let T : X — X be J-nonexpansive whose A(x) is finite for any o € A. Then
T has a fixed point in X if and only if there exists xo € X such that

(i) the sequence (T"xo) has a convergence subsequence, and

(ii) foreach o € A and (o) € Ale), limy,_, o0 da, (%0, To) = 0.

Proof (=): It is obvious by letting x, be a fixed point of T'.

(«<): Suppose that (T"ix,) converges to some z € X. Let @ € A and (ax) € A(«). Then
lim;_, o do (2, T"%0) = 0 and lim,_, « da,, (%0, Tx0) = 0. We can choose N € N sufficiently
large so that d,(z, T"x) < € and d%, (x0, Txo) < €, for all i > N. It follows that

do (2, T" ' %0) < do (2, T"x0) + do (T" %0, T" (T%0))
<dylz, T

(2 T"x0) + Y da, (%0, To)

(k) eAn; (@)

< (1+|A(@)])e.

Since « is arbitrary, (T"*1x,) converges to z. By the continuity of T, we have z = Tz and
hence z is a fixed point of T. O

As a corollary of the previous theorem, we immediately obtain Theorem 1 [3], with a
corrected and simplified proof, as follows:

Corollary 2.5 Let T : X — X be a j-nonexpansive map. If there exists xo € X such that
(i) the sequence (T"xy) has a convergence subsequence, and
(ii) for every o € A, 1imy,_, ¢ djn(a)(x0, Txo) = 0,

then T has a fixed point.

Proof The proof follows directly from the previous theorem by considering the map J :
a > {j(a)}. Notice that A(«) = {(/”(«r))} which is finite. O

We will now consider a special kind of /-nonexpansive maps that resemble Banach con-
tractions in yielding the uniqueness of fixed points. Let ® denote the family of all functions
¢ :[0,00) — [0, 00) satisfying the following conditions:

(®1) ¢ is non-decreasing and continuous from the right, and
(®2) ¢(t) <tforanyt>0.

Notice that ¢(0) = 0, and we will call ¢ € ® subadditive if ¢(f; + £5) < ¢(t1) + ¢(t>) for all
t1,t2 > 0. Also, for a subfamily {¢y}yca of ©, @ € A, (k) € Ay() and i < n, we let

Plog) = Pey © -+ © Pu-
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Definition 2.6 A self-map T : X — X is said to be a J-contraction if for each « € A, there
exists ¢, € @ such that

da(Tx! T)’) =< Z ¢a(d/3(x7y))y
Bel(a)

for any x,y € X, and ¢,, is subadditive whenever |J(«)| > 1.

Clearly, a ®-contraction as defined in [1] is a /-contraction and a J-contraction is always
J-nonexpansive. A natural example of a /-contraction can be obtained by adding (finitely
many) appropriate ®-contractions as shown in the following example.

Example 2.7 Given two ®-contractions 77 : X — X and T, : X — X as defined [1]. Then
there exist j1,j» : A — A, and for each « € A, there exist ¢y 4,924 € © such that

doz(Tlx) le) =< d)l,a (djl(a)(x:y)) and da(TZx’ sz) =< ¢2,a (djg(a)(x;y));

foranyo € Aand x,y € X. Ifforeach @ € A, j1 () #j2() and there is a subadditive ¢3, € ®
so that ¢y, (£) < ¢34(¢) and ¢y (2) < ¢34(t) for any t > 0, then the map H = T1 + T is
clearly a J-contraction with respect to J(«) = {ji(c),j2()} and ¢p 4 = ¢3, for any « € A.

Lemma 2.8 If T : X — X is a J-contraction. Then we have

da (T”x, T”y) < Z ¢ot ] ¢Zx_;(1) (doty, (x, y))’

(ax)€An(@)
foranya € A, n>2and x,y € X.

Proof Recall that ¢, is assumed to be subadditive whenever |/(«)| > 1. Then, forany « € A4,
n> 2 and x,y € X, we clearly have

do(T"%, T"Y) < Y ta(de (T2, T"))

ar€/(a)

<y %( D" oy (A (T, T’”y)))
a1€/(e) a€/(a)

=

Z Z Pa © Poy (daz(Tn_Zx’ Tn_zy))

a1€]() a€/(er1)

IA

Z Z Z d)ao¢a10---0¢an,1(dan(x’y))

ajef(@) ar€/(e1)  an€llay-1)

= Y a0 ) (da,x.9)).

(ax)€An(@)

O
We now obtain some general criteria for the existence of fixed points of J-contractions.

Theorem 2.9 Suppose X is sequentially complete and T : X — X is a J-contraction whose
Al(a) is finite for any o € A. If T satisfies the following conditions:
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(i) foreach a € A, there exists c, € ® such that

$a,(t) < ca (),

forany (o) € A(a), i eN, t >0, and
(ii) there exists xo € X such that for each a € A, (ax) € A(a), i € N and n,m € N, we have

Aoy (T"%0, T"%0) < Ma(%0),

for some My(xo) € R,
then T has a fixed point. Moreover, if for each a € A and x,y € X, there exists Fy(x,y) € R§
such that

dai(x’y) S Fa(x)y)x

forall () € A(a) and i € N, then the fixed point of T is unique.

Proof For each o € A and n,m,N € N, since ¢, is non-decreasing, we have

do(T"%0, T"%0) < Y (e (T" %0, T" ' %0))
a1 €/ ()

< Z bo (sup{de, (T" %0, T 'x0) : 1,m = N}),
ar€/(a)

and by letting 4%, := sup{d,(T"xo, T"xo) : n,m > N}, it follows that

Z o (sup{do(l (T”’lxo, T""lxo) Tn,m > N})

a1€/(a)

Z%

0(16]

YooY Sl ()

a1€/(a) ag€f(e)

IA

IA

Z ¢ao¢N1( orN-)

(ak)€AN-1 ()

Z N (My(x0))

(ak)€AN-1 ()

< |A(e)| ] (Mq (%0)). @)

IA

Also, for a given £ > 0, since 0 < ¢ (£) = ¢, (N 71(2)) < cN71(¢), we have limy_ oo N (£) = 74
for some r, > 0. Since ¢, is right continuous, we have limy_, « ¢, (Y 71(¢)) = ¢4(rs), and
hence ¢, (ry) = 4. Therefore, r, = 0. By (1), it follows that limy_, /4%, = 0. Since « is ar-
bitrary, (T*xo) is a Cauchy sequence and, by sequential completeness, converges to some
z € X. Notice also that z must be a fixed point of T' by continuity.
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Now suppose that for each %,y € X and o € A, there exists F,(x,y) € R} such that
dy;(%,9) < Fy(x,y) for all (ax) € A(a) and i € N. If x, y are fixed points of T, then by

Lemma 2.8, we have for eacha € A and 7 € N,

do(%,9) = do(T"x, T"y)

< D $uodl)(du ()

(O‘k)EAn( o)

< > d(day )

(ax)€An(@)

< |A(@)|c} (Fo ().
Since lim,,_, o, ¢} (Fy (%, ¥)) = 0, we must have x = y. O

As a corollary of the previous theorem, we immediately obtain Theorem 1 in [1] as fol-

lows.

Corollary2.10 Suppose X is a bounded and sequentially complete subset of Eand T : X —
X is ®-contraction. If
(i) foreach o € A, there exists ¢y, € ® such that ) (t) < co(t) foralln e Nand t > 0,
(ii) for each n e N, sup{djn()(x,y) : %,y € X} < p(a) := sup{dy(%,y) : x,y € X},
then there exists a unique fixed point x € X of T

Proof For each xp,x,y € X, ¢ € A, (ax) € A(w) and i,m,n € N, by letting J(«) = {j(«)} and
My(xo) = pla) = Fulx,y), we have A(e) = {(a,j(@), > (@), ..., j* (@), ...)}, do,(T™%0, T"%0) =
djio)(T™"x0, T"x0) < My(x0) and d,(x,y) < Fy(x,y). Hence, by Theorem 2.9, T has a
unique fixed point. d

Theorem 2.11 Suppose X is sequentially complete and T : X — X is a self-map satisfying:
foreach a € A and k € N, there exist ¢y € O, a finite set Dy and a map Py y : Doy — A
such that

do(T* %, T*) < 3" Gai(dr,yon ),

¥ €Dq k

forany x,y € X.
1. Ifthere exists xo € X such that for each a € A there exists My (xo) € R{ so that
ZkeN |Da,k|¢a,k(Ma(x0)) < 00 and

dPa,k(V)(xO’ Txo) < My (x0),

forallk e N andy € Dy, then T has a fixed point in X.
2. Ifforeach a € A and x,y € X, there exists F,(x,y) € R{ such that

> ke Dok |@a ik (Fa (%, ) < 00 and

dp, ()%, y) < Fo(%,9),

Page 6 of 13
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forallk e N and y € Dy, then T has a unique fixed point in X and, for any x € X,
the sequence (T"x) converges to the fixed point of T.

Proof First notice that T is clearly a /-contraction.

1. For any « € A and m > n € N, we have

da (T”xo, meo) < Z da (Tixo, THI?C())

n<i<m

< Z Z ¢ot,i(dPa_i(y)(x01Tx0))

n<i<myeDgy,i

< Y IDuilei(Ma(xo)).

n<i<m

Also, since D" . Dokl Pk (Mo (0)) < 00, (T*x,) is a Cauchy sequence and converges to a
fixed point of T by the sequential completeness of X and the continuity of 7.
2.Foranyx € X, « € A and m > n € N, we have

dy (T"x, T”’x) < Z dy ( Tix, T”lx)

n<i<m

=< Z Z ¢a,i(d1’a,i(y)(x’ Tx))

n<i<my€Dgy,i

< D 1Duilpui(Fulx, T)).

n<i<m

Also, since Dy . Dokl Po ik (Fo (%, T)) < 00, (T*x) is a Cauchy sequence and converges to a
fixed point of T by the sequential completeness of X and the continuity of 7.
Now, since for each @ € A, k € Nand x,y € F(T),

do(%,9) = do (T x, Try)

= Z ¢a’k(dpa,k(l/)(x’y))

v €Dq k

= Z ¢a,k(Fcl(x’y))

Y GDa,k

= |Da,k|¢a,k(ch (x’y))r
and limy_, o0 | Do k| k (Fu (%, ¥)) = 0, we have the uniqueness. d

Corollary 2.12 (Theorem 5 in [1]) Let us suppose
(i) foreach a € A and n >0, there exist ¢o, € O and j(a,n) € A such that

Ao (T"%, T"Y) < Gan(djin) (,9)),

forany x,y € X,
(ii) there exists xo € X such that dj,n (%0, Txo) < p(a) <00 (n=1,2,...),
> Panpla)) <ooandj: A x N— A.
Then T has at least one fixed point in X.

Page 7 of 13
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Proof By letting Dy« = {j(«, k)} for any « € A and k € N and Py x = 7x|p, - Then for each
i € N, we have |D,,;| =1 and M, (xo) = p(@). By Theorem 2.11(2), T has a fixed point. [

Theorem 2.13 Suppose X is sequentially complete and T : X — X is a J-contraction whose
Ala) is finite for each o € A. If, for each a € A, there exists c, €  satisfying:
(i) cq(2)/t is non-decreasing in t,
(il) ¢, () <colt) for any (ax) € A(a), n € N and t € [0,00), and
(iii) there exist xo € X and M, (xo) € R* such that dg,, (xo, Txo) < My(x0) for any
(o) € A() and n € N,
then T has a fixed point in X.

Proof Let Dy = Ai(@0), Pyi((ax)) = o, and g i(£) = ¢, (¢) for any i € N, o € A, (o) € Ai(),
and ¢ € [0,00). Then for any « € A and %,y € X, we have, by Lemma 2.8,

do(T'% T'Y) < D o 0 Bl (Ao (%,9))

(ax)eA(a)
< Z dﬂtl (xv
(ax)eA(a)
Z Gai(Apy (@) %))
(ag)€Dg,i

Since

[Dg i1 | @a,iv1 (M (%0)) _ |z () |5 (M (x0)) - ca (€, (Me(%0))) - Ca(Mey(%0)) <1

[ D, il P, i (Mo (x0)) |Ai(a)lc,(Ma(x0)) — ¢, (Mulx0)) — Mqlxo)

foranyi e N,wehave )", \ [Dq,il$a,i(Mq(%0)) < 00. Then by Theorem 2.11(1), T has a fixed
point. g

Corollary 2.14 (Theorem 2 in [1]) Let us suppose
(i) the operator T : X — X is a ®-contraction,
(ii) for each a € A there exists a O-function c, such that ¢ (t) < cu(t) foralln e N
and ¢, (t)/t is non-decreasing,
(iil) there exists an element xo € X such that dja)(xo, Txo) < pla) <oco (n=1,2,...).
Then T has at least one fixed point in X.

Proof By letting J(«) = {j(a)} for any « € A and M, (xo) = p(). Then |A(x)| = 1, and, by
Theorem 2.13, T has a fixed point. d

Example 2.15 Given a sequentially complete locally convex space X, and two &-

contractions T, Ty : X — X; i.e., there exist jj,j, : A — A, and for each o € A, there exist
D10, P20 € P such that

do(T12, T1y) < Pra(dj) (%)) and  do(Tox, Toy) < $oa(djp@) (7)),

for any @ € A and %,y € X. Suppose further that
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(i) 4 =5 ojyand ¥ ojy = j3* for any n € N,
(i) for each o € A, ¢14(¢) = c1(@)t and ¢4 (£) = co(a)t for some ¢ (@) + co(a) € (0,1),
and
(iii) there exists xy € X such that d/‘f(a)(xo’ Tix0) < p1(xo, ) < 00 and
d/g(a)(xo, Tyxo) < pa(x,a) <ooforanyw € Aandn=1,2,....
Then H = % is a J-contraction with J(«) = {j1(«), j2()} and ¢ (£) = (c1(@) + c2())E.
Also, by (i) and (iii), we have |A(x)| =2 < 0o and

do, (%0, T1X0) + dg, (%0, Tox %0,) + pa(x0,
dy, (%0, Hxo) < a,,( 0, T1%0) an( 0, To%xo) S1‘91( 0,0) + pa(Xo )‘
2 2
Hence, H satisfies all conditions in Theorem 2.13, and it has a fixed point in X. Notice that

H may not be a ®-contraction, by choosing j, and j, so that dj, ) + dj,«) ¢ A for some

a € A, and hence Theorem 2 in [1] cannot be applied.

We now end this section by giving an application to the solution of a certain integral

equation in locally convex spaces.

Example 2.16 Following terminologies in [8], let X be an S-space topologized by the
family of seminorms {| - |, : @ € A} and C([0, T']; X) the space of all continuous functions
from [0, T] into X topologized by the family of seminorms {|| - ||, : @ € A}, where ||x||, :=
SUP,c(o,7] 1#(t)|o for any x € C([0, T; X). Let L(X) denote the set of all continuous linear
operators on X,

Lo(X) = {l eL(X):Ya e A,AM(a) >0,Vx € X, |Ix|, < M(a)|x|a},

and let {S(£)};>0 be a Cp-semigroup on X such that S : [0,00) — Lo(X) is locally bounded.
Now, we replace H3 and H5 in [8] by conditions (N1), (N2) and (N3) as follows:
(N1) B:C([0, T];X) — C([0, T]; X) is an operator such that there exists Jz : A — P/(A)
so that for any a € A, there is k, 5 € Lt ([0, T]; [0, 00)) such that

loc

|Bx(t) - By(t)|, < kap(t) Y |x(t)—y(0)
Belp(a)

ﬂy

for any x,y € C([0, T]; X).
(N2) f:[0,T] x X x X — X is continuous and there exist J; : A — Pf(A) and
Ky e L' ([0, T];[0,00)) such that for each « € 4,

loc

If (& w1, v1) = f (& 2, v3) |, EKJf(t)( Z |1 — ua|p + V1 — V2|a>,

peJf(@)

for any t € [0, T] and uy, uz,v1,v2 € X,
(NB) I<f : koz,B S Ll ([0: T]r [O, OO))

loc
Consider the integral equation

x(2) = S(t)xo + /tS(t —$)f (s,x(s), Bx(s)) ds; t€[0,T] (2)
0
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whose solution is closely related to the mild solution of the differential equation

d.
g ax +f(t,x(t),Bx(t)),
dt
where a denotes the infinitesimal generator of {S(¢)};>o-
We now define an operator G on Cy, ([0, T1; X) = {x € C([0, T1; X) : x(0) = xo} by

(Gx)(t) = S(t)xg + /Ot S(t - s)f(s,x(s),Bx(s)) ds,

for any x € C,,([0, T]; X). Following the proof of Theorem 3 in [8] and for each ¢ > 0,
S(t) € Lo(X), then we can show that, for any « € A, there exists M(«) > 0 such that

||Gx—Gy||a§Ha< Dolx-ylg+ Y ||x—y||ﬁ),

Belf(@) Be/p(@)

where H, = max{M(«) fOT Ky (s) ds, M(a) fOT Ky (s)ke,(s) ds}. It is easy to see that if for each

a €A, H, €(0,1) and Jr() N Jp(e) = @, then G is a J-contraction with J () = J (o) U J().
In particular, if we assume further that for each o € A, Jy(«) = {a}, |[/z(e)| = 1 such that

JgoJg=Jpand Hy = Hyy(e) < % Then for any k € N and %,y € Cy, ([0, T]; X), we have

k
|G*x— Gy, < HEllx = ylla + (Z(zHJBm))k-"H;;) % = Y1500
i=1

k
= H¥|lx —yllo + (Z 2k"'H§> % = ¥ll5()

i=1

k
< 2k—1H§<||x o+ D=y “’B“”)'

i=1

Now, by letting ¢, (t) = 2° Ht, Do = {(L @), (1,J3(e))(2, (@), - ., (k, Ja(@))}, Pai(y) =
72(y), and Fo (%, y) = max{[lx — ylla, [I* = ¥ll5(0) }, we have
(@) e =yllp, x() < Ful,y) forany x,y € Cy, ([0, T]; X), k € N, @ € A, and y € Dy,
(i) Y ten Pkl Pak(Fa(x,9)) = Ygen 5H(2Ha) Fo(x,9) < 00 for any x,y € Cyy ([0, TT; X)
and o € A.
Therefore, by Theorem 2.11(2), G has a unique fixed point, so the integral equation (2)
has a unique solution.

3 Fixed point sets

In this section, we will show that, under a mild condition, a /-nonexpansive map is always
virtually stable. This immediately gives a connection between the fixed point set and the
convergence set of a /-nonexpansive map. Recall that a continuous self-map 7' : X — X,
whose fixed point set F(T) is nonempty, on a Hausdorff space X is said to be virtually
stable [4] if for each x € F(T') and each neighborhood U of «, there exist a neighborhood
V of x and an increasing sequence (k,) of positive integers such that 7% (V) C U for all
n € N. When the sequence (k) is independent of the point x and the neighborhood U, we
simply call 7" a uniformly virtually stable map with respect to (k,). For example, a (quasi-)
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nonexpansive self-map, whose fixed point set is nonempty, on a metric space is always
uniformly virtually stable with respect to the sequence (#) of all natural numbers. An im-
portant feature of a virtually stable map is the connection between its fixed point set and

its convergence set as given in the following theorem.

Theorem 3.1 ([4], Theorem 2.6) Suppose X is a regular space. If T : X — X is virtually
stable, then F(T) is a retract of C(T), where C(T) is the (Picard) convergence set of T defined
as follows:

C(T) = {x € X : the sequence (T"x) converges}.

As in the previous section, let (E,.4) be a Hausdorff uniform space whose uniformity is
generated by a saturated family of pseudometrics A = {d, : « € A} indexed by A and @ #
X C E. The following theorem gives a general criterion for a self-map on X to be virtually
stable.

Theorem 3.2 Let T : X — X be a self-map whose fixed point set F(T) is nonempty, and
which satisfies the following conditions:
(i) foreach a € A and k € N, there exist a finite set Dy y and a map Py : Dy y — A such
that

do (T*x, Try) < Z dp, ()%, Y),

VGDa,k

forany x,y € X,
(ii) there exists N € N such that |Dy,,| < |Don| and Py, (Dyu) S Pyn(Dgn) for any
n>Nanda € A.

Then T is uniformly virtually stable with respect to the sequence of all natural numbers.

Proof Let z € F(T) and let U be a neighborhood of z. We may assume that U = () {w €
X :dy,(w,z) <€} for some € >0 and ay,...,0, € A. For each n € N, let

m
Vn=m m weX :dp,,,()(W:2) < < }

i=1 VeDal-,n |D011',n|

By (ii), there exists N € N such that |Dq,,| < |Do,n| and Py, 4(Dy;n) € Py n(Dy;n) for
anyn>Nandi=1,...,m. Let V=V, N V,N-.-N Vy which is clearly a nonempty open
subsetof X,y € V,le Nand i€ {1,...,m}. It follows that

dat(le’Z) = dai(le’ le) = Z dPa,-,z(y)(y’ 2).

VGDcti,l
If [ < N, then

€
= €.
|D0ti,l|

dy, (le, z) < Z

VEDoti,l
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If I > N, since Py, (y) € Py, 1(Dy, 1) € Py, n(Do, n), we have dp 0 2) < 55— for each
¥ € Dy, and hence

Dul _
dav T[ ) € 6| ol
4 yz)<y§ D]~ Dl =

Hence, T is uniformly virtually stable with respect to the sequence of all natural num-
bers. O

Corollary 3.3 Suppose that T is J-nonexpansive with F(T) # (). If there exists N € N such
that |A,(@)| < |An(@)| and 7,(A,(@)) € Tn(An(e)) for any n > N and a € A, then T is
uniformly virtually stable with respect to the sequence of all natural numbers.

Proof By letting Dy ,, = A,(ar) and Py, = 7|4, (o) for any n € N and « € A, we have

do(T'x, T'y) Z dp,,0)(%,),

7€Dq1
for any x,y € X. The result then follows from Theorem 3.2. g

Example 3.4 Let E = {, equipped with the weak topology and T : £, — ¢, be defined by

T(x1,%2,...) = M, %2 + 24| » X3, X4,
3 3
for any (x1,%,,...) € £o. Then A = {|f| . f € £»}, and by Lemma 4.5 and Theorem 4.6 in [7],
we have
(T = T")]

5
<2|lf|||: (1% = y1 +x3 = 3| + %3 = Y2 + X4 — ya)

f(lx1—yll+|xz—yz|+|x1 y1+x3—y3|+Ixz—yz+x4—y4l)]
962

1
+ |lf||< ler =1l + %1 —y1 +x3 —y3] + §|x2 — Yol + X2 —y2 + x4 —y4|>
+ 1 Hor = yal + 1f sz =yl + [f (e =),

foreachf € £y, neN, x = (x1,%,...) and y = (y1,¥2,...) € £a.
By letting J : £, — P(£;) be defined by J(f) = {|f|, 11, 121, |g3, |ga|} for each f € £5, where

gl(x)—w(zgf 926ff )x1+x3),

2@ =11 <2f f{zﬁ

g3<x)=|vn<9 {f :)x g4(x)=|lf||(9 {f ‘;)xz

for each x = (x1,%5,...) € £y, it follows that T is J-nonexpansive.

+ 1> (xz + x4),

Page 12 0f 13
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Notice that (0,0, ...) is a fixed point of T, and for each f € £, and n,m € N, 7,(A(|f])) =
Tm(A(|f])). Then, by Theorem 3.2, T is virtually stable and hence the fixed point set of T
is a retract of the convergence set of 7. Moreover, the fixed point set is not convex be-
causex = (1,1,2,2,0,...) and y = (1,1,-4,—4,0,...) are fixed points of 7, while the convex
combination %x + %y =(1,1,-1,-1,0,...) is not.
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