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Abstract
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1 Introduction
Over the past decade the researchers [–] introduced a lot of contractive mappings of
integral type and discussed the existence of fixed points and commonfixed points for these
mappings in metric spaces and modular spaces, respectively. Branciari [] was the first to
study the existence of fixed points for the contractive mapping of integral type and proved
the following result, which extends the Banach fixed point theorem.

Theorem . ([]) Let f be a mapping from a complete metric space (X,d) into itself sat-
isfying

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (, ) is a constant and ϕ ∈ � = {ϕ : ϕ : R+ → R
+ is Lebesgue integrable,

summable on each compact subset of R+ and
∫ ε

 ϕ(t)dt >  for each ε > }.
Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Rhoades [] and Liu et al. [] extended the result of Branciari and proved the following
fixed point theorems.

Theorem . ([]) Let f be a mapping from a complete metric space (X,d) into itself
satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,fx),d(y,fy),  [d(x,fy)+d(y,fx)]}


ϕ(t)dt, ∀x, y ∈ X,
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where c ∈ (, ) is a constant and ϕ ∈ �. Then f has a unique fixed point a ∈ X such that
limn→∞ f nx = a for each x ∈ X.

Theorem . ([]) Let f be a mapping from a complete metric space (X,d) into itself
satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,fx),d(y,fy),d(x,fy),d(y,fx)}


ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (, ) is a constant and ϕ ∈ �. Assume that f has a bounded orbit at some point
x ∈ X. Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a.

Theorem . ([]) Let f be a mapping from a complete metric space (X,d) into itself
satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,y)


ϕ(t)dt, ∀x, y ∈ X,

where ϕ ∈ � and α :R+ → [, ) is a function with

lim sup
s→t

α(s) < , ∀t > .

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Theorem . ([]) Let f be a mapping from a complete metric space (X,d) into itself
satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ d(x,fx)


ϕ(t)dt + β

(
d(x, y)

)∫ d(y,fy)


ϕ(t)dt, ∀x, y ∈ X,

where ϕ ∈ � and α,β :R+ → [, ) are two functions with

α(t) + β(t) < , ∀t ∈R
+, lim sup

s→+
β(s) < , lim sup

s→t+

α(s)
 – β(s)

< , ∀t > .

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

The purposes of this paper are both to study the existence, uniqueness, and iterative
approximations of fixed points for four new classes of contractive mappings of integral
type, which include the contractive mappings of integral type in [, , ] as special cases,
and to construct four examples with uncountably many points to illustrate that the results
obtained properly generalize Theorems .-. or are different from these theorems.

2 Preliminaries
Throughout this paper, we assume that R = (–∞, +∞), R+ = [,+∞), N = {} ∪N, where
N denotes the set of all positive integers. Let (X,d) be ametric space. For f : X → X,A⊂ X
and (x, y,n) ∈ X ×N, put

Of (x,n) = {f ix : ≤ i ≤ n}, Of (x) = {f ix : ∀i ∈N},
dn = d(f nx, f n+x), δ(A) = sup{d(u, v) : ∀u, v ∈ A},

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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m(x, y) =max{d(x, y),d(x, fx),d(y, fy),  [d(x, fy) + d(y, fx)]},
m(x, y) =max{d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)}.

The Of (x) and Of (x,n) are called the orbit and nth orbit of f at x, respectively.
Let

� = {α : α :R+ → [, ) is a function with lim sups→t α(s) < ,∀t ∈R
+},

� = {α : α :R+ → [, ) is a function with lim sups→t α(s) < ,∀t > },
� = {α : α :R+ → [, ) is a function such that sup{α(s) : ∀s ∈ B} <  for each
nonempty bounded subset B in R

+}.
The following lemma plays an important role in this paper.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a.
Then

lim
n→∞

∫ rn


ϕ(t)dt =

∫ a


ϕ(t)dt.

3 Four fixed point theorems
In this section we show the existence, uniqueness and iterative approximations of fixed
points for four classes of contractive mappings of integral type.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ m(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where (ϕ,α) ∈ � × �. Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for
each x ∈ X.

Proof Let x be an arbitrary point in X. Note that

m
(
f n–x, f nx

)
= max

{
d
(
f n–x, f nx

)
,d

(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,



[
d
(
f n–x, f n+x

)
+ d

(
f nx, f nx

)]}

= max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
= max{dn–,dn}, ∀n ∈N. (.)

It follows from (.) and (.) that

∫ dn


ϕ(t)dt =

∫ d(f nx,f n+x)


ϕ(t)dt

≤ α
(
d
(
f n–x, f nx

))∫ m(f n–x,f nx)


ϕ(t)dt

≤ α(dn–)
∫ max{dn–,dn}


ϕ(t)dt, ∀n ∈N. (.)

Now we prove that

dn ≤ dn–, ∀n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Suppose that (.) does not hold. That is, there exists some n ∈N satisfying

dn > dn–. (.)

Since ϕ ∈ � and α(R+)⊆ [, ), it follows from (.) and (.) that

 <
∫ dn


ϕ(t)dt ≤ α(dn–)

∫ max{dn–,dn }


ϕ(t)dt <

∫ dn


ϕ(t)dt,

which is a contradiction and hence (.) holds. Clearly, (.) implies that there exists a
constant c with limn→∞ dn = c≥ .
Next we prove that c = . Otherwise c > . Taking the upper limit in (.) and using

Lemma . and ϕ ∈ �, we conclude that

 <
∫ c


ϕ(t)dt = lim sup

n→∞

∫ dn


ϕ(t)dt

≤ lim sup
n→∞

(
α(dn–)

∫ max{dn–,dn}


ϕ(t)dt

)

≤ lim sup
n→∞

α(dn–) · lim sup
n→∞

∫ dn–


ϕ(t)dt

≤
(
lim sup

s→c
α(s)

)∫ c


ϕ(t)dt <

∫ c


ϕ(t)dt,

which is absurd. Therefore, c = , that is,

lim
n→∞dn = . (.)

Nowwe claim that {f nx}n∈N is a Cauchy sequence. Suppose that {f nx}n∈N is not a Cauchy
sequence, which means that there is a constant ε >  such that for each positive integer k,
there are positive integers m(k) and n(k) withm(k) > n(k) > k such that

d
(
f m(k)x, f n(k)x

)
> ε.

For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
the above inequality. It follows that

d
(
f m(k)x, f n(k)x

)
> ε and d

(
f m(k)–x, f n(k)x

) ≤ ε, ∀k ∈N. (.)

Note that

d
(
f m(k)x, f n(k)x

) ≤ d
(
f n(k)x, f m(k)–x

)
+ dm(k)–, ∀k ∈N;

∣∣d(
f m(k)x, f n(k)+x

)
– d

(
f m(k)x, f n(k)x

)∣∣ ≤ dn(k), ∀k ∈ N;
∣∣d(

f m(k)+x, f n(k)+x
)
– d

(
f m(k)x, f n(k)+x

)∣∣ ≤ dm(k), ∀k ∈N; (.)
∣∣d(

f m(k)+x, f n(k)+x
)
– d

(
f m(k)+x, f n(k)+x

)∣∣ ≤ dn(k)+, ∀k ∈N;
∣∣d(

f m(k)x, f n(k)+x
)
– d

(
f m(k)x, f n(k)+x

)∣∣ ≤ dn(k)+, ∀k ∈N.

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Making use of (.)-(.), we obtain

ε = lim
k→∞

d
(
f n(k)x, f m(k)x

)

= lim
k→∞

d
(
f m(k)x, f n(k)+x

)

= lim
k→∞

d
(
f m(k)+x, f n(k)+x

)

= lim
k→∞

d
(
f m(k)+x, f n(k)+x

)

= lim
k→∞

d
(
f m(k)x, f n(k)+x

)
. (.)

It follows from (.) and (.) that

m
(
f m(k)x, f n(k)+x

)

=max

{
d
(
f m(k)x, f n(k)+x

)
,d

(
f m(k)x, f m(k)+x

)
,d

(
f n(k)+x, f n(k)+x

)
,



[
d
(
f m(k)x, f n(k)+x

)
+ d

(
f n(k)+x, f m(k)+x

)]}

→ max{ε, , , ε} = ε as k → ∞,

which together with (.), Lemma ., and (ϕ,α) ∈ � × � gives

 <
∫ ε


ϕ(t)dt = lim sup

k→∞

∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

≤ lim sup
k→∞

(
α
(
d
(
f m(k)x, f n(k)+x

))∫ m(f m(k)x,f n(k)+x)


ϕ(t)dt

)

≤ lim sup
k→∞

α
(
d
(
f m(k)x, f n(k)+x

)) · lim sup
k→∞

∫ m(f m(k)x,f n(k)+x)


ϕ(t)dt

≤
(
lim sup

s→ε

α(s)
)∫ ε


ϕ(t)dt <

∫ ε


ϕ(t)dt,

which is a contradiction. Thus {f nx}n∈N is a Cauchy sequence. Since (X,d) is a complete
metric space, it follows that there exists a point a ∈ X such that limn→∞ f nx = a. Suppose
that fa �= a. It is clear that (.) implies that

m
(
f nx,a

)
= max

{
d
(
f nx,a

)
,d

(
f nx, f n+x

)
,d(a, fa),



[
d
(
f nx, fa

)
+ d

(
a, f n+x

)]}

→ d(a, fa) as n→ ∞,

which together with (.), Lemma ., and (ϕ,α) ∈ � × � yields

 <
∫ d(a,fa)


ϕ(t)dt = lim sup

n→∞

∫ d(f n+x,fa)


ϕ(t)dt

≤ lim sup
n→∞

(
α
(
d
(
f nx,a

))∫ m(f nx,a)


ϕ(t)dt

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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≤ lim sup
n→∞

α
(
d
(
f nx,a

)) · lim sup
n→∞

∫ m(f nx,a)


ϕ(t)dt

≤
(
lim sup

s→
α(s)

)∫ d(a,fa)


ϕ(t)dt <

∫ d(a,fa)


ϕ(t)dt as n→ ∞,

which is a contradiction. That is, a = fa.
Finally, we prove that a is a unique fixed point of f in X. Suppose that f has another fixed

point b ∈ X \ {a}. Note that

m(a,b) =max

{
d(a,b),d(a, fa),d(b, fb),



[
d(a, fb) + d(b, fa)

]}
= d(a,b).

It follows from (.), α(R+) ⊆ [, ) and ϕ ∈ � that

 <
∫ d(a,b)


ϕ(t)dt =

∫ d(fa,fb)


ϕ(t)dt ≤ α

(
d(a,b)

)∫ m(a,b)


ϕ(t)dt <

∫ d(a,b)


ϕ(t)dt,

which is a contradiction. This completes the proof. �

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
d(x, y)

)∫ m(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where (ϕ,α) ∈ �×�. Assume that f has a bounded orbit at some point u ∈ X. Then f has
a unique fixed point a ∈ X such that limn→∞ f nu = a.

Proof Without loss of generality we assume that u �= fu. Now we prove that

for each n ∈N there exists k ∈N such that k ≤ n and δ
(
Of (u,n)

)
= d

(
u, f ku

)
. (.)

Let n ∈ N. It is clear that there exist i, j ∈ N such that  ≤ i < j ≤ n and δ(Of (u,n)) =
d(f iu, f ju). Suppose that δ(Of (u,n)) = d(f iu, f ju) for some i, j ∈N with  < i < j ≤ n. In light
of (.) and (ϕ,α) ∈ � × �, we infer that

 <
∫ δ(Of (u,n))


ϕ(t)dt =

∫ d(f iu,f ju)


ϕ(t)dt

≤ α
(
d
(
f i–u, f j–u

))∫ m(f i–u,f j–u)


ϕ(t)dt

≤ α
(
d
(
f i–u, f j–u

))∫ δ(Of (u,n))


ϕ(t)dt <

∫ δ(Of (u,n))


ϕ(t)dt,

which is a contradiction. Thus (.) holds.
Next we prove that Of (u) is a Cauchy sequence. Suppose that Of (u) is not a Cauchy se-

quence. It follows that there exist an ε >  and two strictly increasing sequences {m(p)}p∈N
and {n(p)}p∈N with m(p) > n(p) > p for each p ∈N satisfying

d
(
f m(p)u, f n(p)u

)
> ε, ∀p ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Put r = δ(Of (u)) and B = [, r]. Clearly  < r < +∞. Observe that (ϕ,α) ∈ � × � ensures
that

lim
p→∞

(
sup

{
α(s) : s ∈ B

})n(p) ∫ r


ϕ(t)dt = ,

which implies that there exists some p ∈N with

(
sup

{
α(s) : s ∈ B

})n(p) ∫ r


ϕ(t)dt <

∫ ε


ϕ(t)dt. (.)

Using (.)-(.) and (ϕ,α) ∈ � × �, we know that there exist  < k ≤ m(p) – n(p) + ,
 < k ≤ m(p) – n(p) + , . . . , and  < kn(p)– ≤ m(p) –  satisfying

∫ ε


ϕ(t)dt ≤

∫ d(f n(p)u,f m(p)u)


ϕ(t)dt

≤ α
(
d
(
f n(p)–u, f m(p)–u

))∫ m(f n(p)–u,f m(p)–u)


ϕ(t)dt

≤ α
(
d
(
f n(p)–u, f m(p)–u

))∫ δ(Of (f n(p)–u,m(p)–n(p)+))


ϕ(t)dt

= α
(
d
(
f n(p)–u, f m(p)–u

))∫ d(f n(p)–u,f k+n(p)–u)


ϕ(t)dt

≤ α
(
d
(
f n(p)–u, f m(p)–u

))
α
(
d
(
f n(p)–u, f k+n(p)–u

))

×
∫ δ(Of (f n(p)–u,k+))


ϕ(t)dt

= α
(
d
(
f n(p)–u, f m(p)–u

))
α
(
d
(
f n(p)–u, f k+n(p)–u

))

×
∫ d(f n(p)–u,f k+n(p)–u)


ϕ(t)dt

≤ · · ·
≤ α

(
d
(
f n(p)–u, f m(p)–u

))
α
(
d
(
f n(p)–u, f k+n(p)–u

)) · · · α(
d
(
u, f kn(p)–u

))

×
∫ δ(Of (u,m(p)))


ϕ(t)dt

≤ (
sup

{
α(s) : s ∈ B

})n(p) ∫ r


ϕ(t)dt

<
∫ ε


ϕ(t)dt,

which is impossible. Thus {f nu}n∈N is a Cauchy sequence. Since (X,d) is complete, it fol-
lows that there exists a ∈ X satisfying limn→∞ f nu = a. Suppose that d(a, fa) > . Note that

lim
n→∞m

(
f nu,a

)

= lim
n→∞max

{
d
(
f nu,a

)
,d

(
f nu, f n+u

)
,d(a, fa),d

(
f nu, fa

)
,d

(
a, f n+u

)}

= d(a, fa). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Taking the upper limit in (.) and using (.), Lemma ., and (ϕ,α) ∈ � × �, we
conclude that

 <
∫ d(a,fa)


ϕ(t)dt = lim sup

n→∞

∫ d(f n+u,fa)


ϕ(t)dt

≤ lim sup
n→∞

(
α
(
d
(
f nu,a

))∫ m(f nu,a)


ϕ(t)dt

)

≤ lim sup
n→∞

α
(
d
(
f nu,a

)) · lim sup
n→∞

∫ m(f nu,a)


ϕ(t)dt

≤ sup
{
α(s) : s ∈ [, ]

}∫ d(a,fa)


ϕ(t)dt <

∫ d(a,fa)


ϕ(t)dt,

which is absurd. Therefore, d(a, fa) = , that is, a = fa.
Suppose that f has another fixed point w ∈ X \ {a}. Since

m(a,w) =max
{
d(a,w),d(a, fa),d(w, fw),d(a, fw),d(w, fa)

}
= d(a,w),

it follows from (.) that

 <
∫ d(a,w)


ϕ(t)dt ≤ α

(
d(a,w)

)∫ m(a,w)


ϕ(t)dt

= α
(
d(a,w)

)∫ d(a,w)


ϕ(t)dt <

∫ d(a,w)


ϕ(t)dt,

which is a contradiction. That is, f has a unique fixed point in X. This completes the
proof. �

As in the arguments of Theorems . and ., we conclude similarly the following results
and omit their proofs.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
m(x, y)

)∫ m(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where (ϕ,α) ∈ � × �. Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for
each x ∈ X.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ α

(
m(x, y)

)∫ m(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where (ϕ,α) ∈ �×�. Assume that f has a bounded orbit at some point u ∈ X. Then f has
a unique fixed point a ∈ X such that limn→∞ f nu = a.

4 Remarks and illustrative examples
Now we construct four examples with uncountably many points to show the fixed point
theorems obtained in Section  generalize properly or are different from the known results
in Section .

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Remark . Theorem . generalizes Theorem ., which, in turns, extends Theorem ..
The following example proves that Theorem . both extends substantially Theorem .
and is different from Theorem ..

Example . Let X = [,  ] ⊂R be endowed with the Euclideanmetric d = | · |, f : X → X,
ϕ :R+ →R

+ and α :R+ → [, ) be defined by

f (x) =

⎧⎨
⎩

x
 , ∀x ∈ [, ],

x – , ∀x ∈ (,  ],

ϕ(t) = t, ∀t ∈R
+ and α(t) =

⎧⎨
⎩


 , t = ,


+t , ∀t ∈ (, +∞).

Obviously, (ϕ,α) ∈ � × �. Let x, y ∈ X with y < x. In order to verify (.), we have to
consider six possible cases as follows:
Case .  < y < x ≤ 

 . It is clear that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max{x – y, , , }
=  = d(x, fx)

and

∫ d(fx,fy)


ϕ(t)dt = (x – y) ≤ 


<



≤ 
 + x – y

= α
(
d(x, y)

)∫ 


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case .  ≤ y < x
 and x ≤ . Note that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,



x,


y,


(x – y)

}

= x – y = d(x, y)

and

∫ d(fx,fy)


ϕ(t)dt =

(
x

–
y


)

=
(x – y)


≤ (x – y)

 + x – y

= α
(
d(x, y)

)∫ d(x,y)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.
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Case . x
 ≤ y < x ≤ . It follows that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,



x,


y,



(
x –

y

+ y –

x


)}

=


x = d(x, fx)

and

∫ d(fx,fy)


ϕ(t)dt =

(
x

–
y


)

=
(x – y)



≤ 
 + x – y

· 

x

= α
(
d(x, y)

)∫ d(x,fx)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . 
 < y ≤  < x≤ 

 . Notice that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y, ,



y,



(
 +



y
)}

=  = d(x, fx)

and

∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣x –  –
y


∣∣∣∣


≤ 

<



≤ 
 + x – y

= α
(
d(x, y)

)∫ d(x,fx)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . x –  ≤ y≤ 
 and  < x≤ 

 . It is easy to see that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y, ,



y,



(
 +



y
)}

=  = d(x, fx)

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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and

∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣x –  –
y


∣∣∣∣


≤ 

<



≤ 
 + x – y

= α
(
d(x, y)

)∫ d(x,fx)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . ≤ y < x –  and  < x ≤ 
 . It is easy to verify that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y, ,



y,



(
x –



y – 

)}

= x – y = d(x, y)

and

∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣x –  –
y


∣∣∣∣


≤ 

<



≤ 
 + x – y

≤ (x – y)

 + x – y

= α
(
d(x, y)

)∫ d(x,y)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

That is, (.) holds. It follows from Theorem . that f has a unique fixed point  ∈ X and
limn→∞ f nx =  for each x ∈ X. But we invoke neither Theorem . nor Theorem . to
show that f possesses a fixed point in X.
Suppose that f satisfies the conditions of Theorem ., that is, there exists c ∈ (, ) sat-

isfying




=
∣∣∣∣  –  –




∣∣∣∣


=
∫ d(f 

 ,f )


ϕ(t)dt ≤ c

∫ d(  ,)


ϕ(t)dt

= c
∣∣∣∣  – 

∣∣∣∣


=
c


,

which means that

 <



≤ c < ,

which is a contradiction.

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Suppose that f satisfies the conditions of Theorem ., that is, there exists α ∈ � satis-
fying




=
∣∣∣∣ –




∣∣∣∣


=
∫ d(f  ,f


 )


ϕ(t)dt ≤ α

(
d
(



,



))∫ d(  ,

 )


ϕ(t)dt

= α

(



)∣∣∣∣ –



∣∣∣∣


=



α

(



)
,

which implies that

 ≤ α

(



)
< ,

which is a contradiction.

Remark . Theorem . is a generalization of Theorem .. The below example demon-
strates that Theorem . is different from Theorem ..

Example . Let X = [,  ]∪ [,  ]∪ [, +∞) ⊂R be endowed with the Euclidean metric
d = | · |, f : X → X, ϕ :R+ →R

+ and α :R+ → [, ) be defined by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
, ∀x ∈ [,  ],

x – , ∀x ∈ [,  ],

 , ∀x ∈ [, +∞),

ϕ(t) = t, ∀t ∈R
+ and α(t) =

⎧⎨
⎩


 , t = ,
t

(+t) , ∀t ∈ (, +∞).

It is easy to see that (ϕ,α) ∈ �×� andOf (u) is bounded for each u ∈ X. Let x, y ∈ X with
y < x. In order to verify (.), we have to consider six possible cases as follows:
Case . ≤ y < x ≤ 

 . It is clear that

∫ d(fx,fy)


ϕ(t)dt =  ≤ α

(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case .  ≤ y < x≤ 
 . Note that

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}
= max{x – y, , ,x – y + , y – x + }
= x – y +  = d(x, fy)

and

∫ d(fx,fy)


ϕ(t)dt = |x –  – y + |

= (x – y) ≤ (x – y)(x – y + )

(x – y + )

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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= α
(
d(x, y)

)∫ d(x,fy)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . ≤ y ≤ 
 and  ≤ x ≤ 

 . It follows that

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}
= max

{
x – y, , y – ,x – ,

∣∣y – (x – )
∣∣}

= x –  = d(x, fy)

and

∫ d(fx,fy)


ϕ(t)dt = |x –  – |

= (x – ) ≤ (x – y)(x – )

(x – y + )

= α
(
d(x, y)

)∫ d(x,fy)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . ≤ y < x < +∞. It is easy to see that

∫ d(fx,fy)


ϕ(t)dt =  ≤ α

(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . ≤ y ≤ 
 and x ≥ . It follows that

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

= max

{
x – y,x –



, ,x – y + , y –




}

= x – y +  = d(x, fy)

and

∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣ – (y – )
∣∣∣∣


=
(


– y

)

≤ (x – y)(x – y + )

(x – y + )

= α
(
d(x, y)

)∫ d(x,fy)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.
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Case .  ≤ y≤ 
 and x ≥ . It is clear that

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

= max

{
x – y,x –



, y – ,x – ,



– y

}

= x –  = d(x, fy)

and

∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣ – 
∣∣∣∣


=



≤ (x – )(x – y)

( + x – y)

= α
(
d(x, y)

)∫ d(x,fy)


ϕ(t)dt

= α
(
d(x, y)

)∫ m(x,y)


ϕ(t)dt.

That is, the conditions of Theorem . are fulfilled. It follows from Theorem . that f has
a unique fixed point  ∈ X and limn→∞ f nu =  for each u ∈ X. However, Theorem . is
useless in guaranteeing the existence of a fixed point of f in X. Suppose that f satisfies the
conditions of Theorem ., that is, there exists α ∈ � satisfying




=
∣∣∣∣ – 

∣∣∣∣


=
∫ d(f  ,f )


ϕ(t)dt ≤ α

(
d
(



, 
))∫ d(  ,)


ϕ(t)dt

= α

(



)∣∣∣∣ – 
∣∣∣∣


=



α

(



)
,

which yields

 ≤ α

(



)
< ,

which is impossible.

Remark . Theorem . extends Theorems . and .. The example below is an appli-
cation of Theorem ..

Example . Let X = R
+ be endowed with the Euclidean metric d = | · |, f : X → X, ϕ :

R
+ → R

+ and α :R+ → [, ) be defined by

f (x) =

⎧⎨
⎩

x
 , ∀x ∈ [, ),
x

+x , ∀x ∈ [, +∞),

ϕ(t) = t, ∀t ∈R
+ and α(t) =

⎧⎨
⎩


 , ∀t ∈ [,  ),
t

+t , ∀t ∈ [  , +∞).

Obviously, (ϕ,α) ∈ � × �. Let x, y ∈ X with y < x. In order to verify (.), we have to
consider five possible cases as follows:

http://www.fixedpointtheoryandapplications.com/content/2014/1/138
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Case . ≤ y < x < +∞. It follows that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,

x

 + x
,
y

 + y
,



(
x –

y
 + y

+ y –
x

 + x

)}

=
x

 + x
= d(x, fx)

and

∫ d(fx,fy)


ϕ(t)dt =

(
x

 + x
–

y
 + y

)

=
(x – y)

( + x)( + y)
≤ 


(x – y)

≤ 


(
x

 + x

)

≤ α

(
x

 + x

)(
x

 + x

)

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . x
 ≤ y < x < . It follows that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,

x

,
y

,



(
x –

y

+ y –

x


)}

=
x

= d(x, fx)

and

∫ d(fx,fy)


ϕ(t)dt =

(
x

–
y


)

=


(x – y)

≤ 


(
x


)

= α

(
x


)(
x


)

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case .  ≤ y < x
 and x < . It is clear that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,

x

,
y

,



(
x –

y

+
x

– y

)}

= x – y = d(x, y)
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and

∫ d(fx,fy)


ϕ(t)dt =

(
x

–
y


)

=


(x – y)

≤ α(x – y)(x – y)

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . x
+x ≤ y <  and x ≥ . Notice that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,

x

 + x
,
y

,



(
x –

y

+ y –

x
 + x

)}

=
x

 + x
= d(x, fx)

and

∫ d(fx,fy)


ϕ(t)dt =

(
x

 + x
–
y


)

≤
(

x
 + x

–



· x
 + x

)

=



(
x

 + x

)

≤ α

(
x

 + x

)(
x

 + x

)

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case . ≤ y < x
+x and x ≥ . It is clear that

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}

= max

{
x – y,

x

 + x
,
y

,



(
x –

y

+

x
 + x

– y
)}

= x – y = d(x, y)

and

∫ d(fx,fy)


ϕ(t)dt =

(
x

 + x
–
y


)

≤
(
x

–
y


)

=


(x – y) ≤ α(x – y)(x – y)

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

That is, the conditions of Theorem . are fulfilled. It follows from Theorem . that f has
a unique fixed point  ∈ X and limn→∞ f nx =  for each x ∈ X.

Remark . Theorem . extends Theorem .. The following example shows that The-
orem . both generalizes substantially Theorem . and differs from Theorem ..
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Example . Let X = R
+ be endowed with the Euclidean metric d = | · |, f : X → X, ϕ :

R
+ → R

+ and α :R+ → [, ) be defined by

f (x) =

⎧⎨
⎩

x
 , ∀x ∈ [, ],

x – , ∀x ∈ (, +∞),

ϕ(t) = t, ∀t ∈R
+ and α(t) =

⎧⎨
⎩


 , ∀t ∈ [, ],
(t–)
t , ∀t ∈ (, +∞).

It is clear that (ϕ,α) ∈ �×� andOf (u) is bounded for each u ∈ X. Let x, y ∈ X with y < x.
In order to verify (.), we have to consider four possible cases as follows:
Case .  ≤ y < x ≤ . Note that

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

= max

{
x – y,

x

,
y

,x –

y

,
∣∣∣∣y – x



∣∣∣∣
}

= x –
y

= d(x, fy)

and
∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣x –
y


∣∣∣∣


=
(x – y)


≤ (x – y

 )




= α
(
d(x, fy)

)∫ d(x,fy)


ϕ(t)dt

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case .  ≤ y≤  < x≤  + y
 . Clearly

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

= max

{
x – y, ,

y

,x –

y

, |y – x + |

}

=  = d(x, fx)

and
∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣x –  –
y


∣∣∣∣


≤
(
–
y


)

≤ 


= α
(
d(x, fx)

)∫ d(x,fx)


ϕ(t)dt

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.
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Case .  ≤ y ≤  and  + y
 < x < +∞. Obviously

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}

= max

{
x – y, ,

y

,x –

y

, |y – x + |

}

= x –
y

= d(x, fy)

and
∫ d(fx,fy)


ϕ(t)dt =

∣∣∣∣x –  –
y


∣∣∣∣


≤ (x –  – y
 )



(x – y
 )

·
(
x –

y


)

= α
(
d(x, fy)

)∫ d(x,fy)


ϕ(t)dt

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

Case .  < y < x < +∞. It follows that

m(x, y) = max
{
d(x, y),d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}
= max

{
x – y, , ,x – y + , |y – x + |}

= x – y +  = d(x, fy)

and
∫ d(fx,fy)


ϕ(t)dt = (x – y) ≤ (x – y +  – )

(x – y + )
· (x – y + )

= α
(
d(x, fy)

)∫ d(x,fy)


ϕ(t)dt

= α
(
m(x, y)

)∫ m(x,y)


ϕ(t)dt.

That is, the conditions of Theorem . are fulfilled. It follows from Theorem . that f
has a unique fixed point  ∈ X and limn→∞ f nu =  for each u ∈ X. But we do not invoke
Theorems . and . to show the existence of a fixed point of f in X.
Suppose that f satisfies the conditions of Theorem ., that is, there exists some c ∈ (, )

satisfying

(x – y) =
∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ m(x,y)


ϕ(t)dt

= c(x – y + ), ∀x, y ∈ (, +∞) with y < x,

which yields

 = lim
x–y→+∞

(x – y)

(x – y + )
≤ c < ,

which is impossible.
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Suppose that f satisfies the conditions of Theorem ., that is, there exist α,β : R+ →
[, ) satisfying

α(t) + β(t) < , ∀t ∈R
+, lim sup

s→+
β(s) < , lim sup

s→t+

α(s)
 – β(s)

< , ∀t > 

and

 = ( – ) =
∫ d(f ,f )


ϕ(t)dt

≤ α
(
d(, )

)∫ d(,f )


ϕ(t)dt + β

(
d(, )

)∫ d(,f )


ϕ(t)dt

= α() ·  + β() ·  = α() + β(),

which means that

 ≤ α() + β() < ,

which is absurd.
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