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Abstract
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1 Introduction and preliminaries
The study of fixed points for multivalued contractions and nonexpansive mappings us-
ing the Hausdorff metric was initiated by Markin [] (see also []). Later, various iterative
processes have been used to approximate the fixed points of multivalued nonexpansive
mappings in Banach space, for example, the authors of [–] and [, ] have made ex-
tensive research in this direction, which has led to many new results in the study of fixed
point theory with applications in control theory, convex optimization, differential inclu-
sion, economics, and related topics (see [] and references cited therein for details).
This is so because of the fact that in general almost all problems in various disciplines of

science are nonlinear in nature, and most results of fixed point theory are proposed un-
der the framework of normed linear spaces or Banach spaces as the property of nonlinear
mappings may depend on the linear structure of the underlying spaces. Thus it is neces-
sary to study fixed point theory for nonlinear mappings under the space which does not
have a linear structure but is embedded with a kind of ‘convex structures’. The class of hy-
perbolic spaces, being nonlinear in nature, is a general abstract theoretic setting with rich
geometrical structures for metric fixed point theory. Thus the study of fixed point the-
ory for hyperbolic spaces has been largely motivated and dominated by questions from
nonlinear problems in practice, such as problems of geometric group theory, and others.
However, so far, we have seen notmany results for the approximation iteration ofmultival-
ued nonexpansive mappings in terms of Hausdorff metrics for fixed points in the existing
literature. The purpose of this paper is to extend the iteration scheme ofmultivalued non-
expansive mappings from a Banach space to a hyperbolic space by proving�-convergence
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theorems for two multivalued nonexpansive mappings in terms of mixed type iteration
processes to approximate a common fixed point of two multivalued nonexpansive map-
pings in hyperbolic spaces. The results presented in this paper are new and can be regarded
as an extension of corresponding results from Banach spaces to hyperbolic spaces in the
existing literature given by the authors of [–, –, , , –].
In order to define the concept ofmultivalued nonexpansivemapping in the general setup

of Banach spaces, we first collect some basic concepts.
Let E be a real Banach space. A subset K is called proximinal if for each x ∈ E, there

exists an element k ∈ K such that

d(x,k) = inf
{‖x – y‖ : y ∈ K

}
= d(x,K ).

It iswell known thatweakly compact convex subsets of a Banach space and closed convex
subsets of a uniformly convex Banach space are proximinal. We shall denote the family of
nonempty bounded proximinal subsets of K by P(K ). By following the notation used by
Markin in [], let CB(K ) be the class of all nonempty bounded and closed subsets of K . Let
H be a Hausdorff metric induced by the metric d of E, that is,

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

for every A,B ∈ CB(E). A multivalued mapping T : K → P(K ) is said to be a contraction if
there exists a constant k ∈ [, ) such that for any x, y ∈ K ,

H(Tx,Ty) ≤ k‖x – y‖.

Definition . [] A multivalued mapping T : K → P(K ) is said to be nonexpansive, if

H(Tx,Ty) ≤ ‖x – y‖, ∀x, y ∈ K . (.)

Lemma . [] Let T : K → P(K ) be a multivalued mapping and PT (x) = {y ∈ Tx : ‖x –
y‖ = d(x,Tx)}. Then the following are equivalent.
() x ∈ F(T).
() PT (x) = {x}.
() x ∈ F(PT ).
Moreover, F(T) = F(PT ).

Throughout this paper, we work in the setting of hyperbolic spaces introduced by
Kohlenbach [], defined below, which is more restrictive than the hyperbolic type in-
troduced in [] and more general than the concept of hyperbolic space in [].
We also recall that a hyperbolic space is a metric space (X,d) together with a mapping

W : X × [, ]→ X satisfying
(i) d(u,W (x, y,α))≤ αd(u,x) + ( – α)d(u, y);
(ii) d(W (x, y,α),W (x, y,β)) = |α – β|d(x, y);
(iii) W (x, y,α) =W (y,x, ( – α));
(iv) d(W (x, z,α),W (y,w,α))≤ ( – α)d(x, y) + αd(z,w);

for all x, y, z,w ∈ X and α,β ∈ [, ].
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A nonempty subset K of a hyperbolic space X is convex if W (x, y,α) ∈ K for all x, y ∈ K
and α ∈ [, ]. The class of hyperbolic spaces contains normed spaces and convex subsets
thereof, the Hilbert ball equipped with the hyperbolic metric [], Hadamard manifolds
as well as CAT() spaces in the sense of Gromov (see []).
A hyperbolic space is uniformly convex [] if for any r >  and ε ∈ (, ] there exists a

δ ∈ (, ] such that for all u,x, y ∈ X, we have

d
(
W

(
x, y,




)
,u

)
≤ ( – δ)r,

provided d(x,u)≤ r, d(y,u) ≤ r and d(x, y)≥ εr.
Amap η : (,∞)× (, ]→ (, ] which provides such a δ = η(r, ε) for given r >  and ε ∈

(, ] is known as a modulus of uniform convexity of X. We call η monotone if it decreases
with r (for a fixed ε), i.e., ∀ε > , ∀r ≥ r >  (η(r, ε) ≤ η(r, ε)).
In the sequel, let (X,d) be a metric space and let K be a nonempty subset of X. We shall

denote the fixed point set of a mapping T by F(T) = {x ∈ K : Tx = x}.
We also recall that a single-valued mapping T : K → K is said to be nonexpansive, if

d(Tx,Ty) ≤ d(x, y), ∀x, y ∈ K .

In order to establish our new results for thee iteration scheme ofmultivalued nonexpan-
sive mappings under the framework of hyperbolic spaces, we first recall some facts from
the existing literature.

Lemma. [] Let (X,d,W ) be a complete uniformly convex hyperbolic spacewithmono-
tone modulus of uniform convexity. Then every bounded sequence {xn} in X has a unique
asymptotic center with respect to any nonempty closed convex subset K of X.

Recall that a sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. In this case, wewrite�-limn→∞ xn =
x and call x the �-limit of {xn}.
A mapping T : K → K is semi-compact if every bounded sequence {xn} ⊂ K satisfying

d(xn,Txn) → , has a convergent subsequence.

Lemma . [] Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers satis-
fying

an+ ≤ ( + δn)an + bn, ∀n≥ , (.)

if
∑∞

n= δn < ∞ and
∑∞

n= bn < ∞, then the limit limn→∞ an exists. If there exists a subse-
quence {ani} ⊂ {an} such that ani → , then limn→∞ an = .

Lemma. [] Let (X,d,W ) be a uniformly convex hyperbolic space withmonotonemod-
ulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (, ).
If {xn} and {yn} are sequences in X such that

lim sup
n→∞

d(xn,x)≤ c, lim sup
n→∞

d(yn,x) ≤ c, lim
n→∞d

(
W (xn, yn,αn),x

)
= c,

for some c ≥ . Then limn→∞ d(xn, yn) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/140


Lei et al. Fixed Point Theory and Applications 2014, 2014:140 Page 4 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/140

Lemma . [] Let K be a nonempty closed convex subset of uniformly convex hyperbolic
space and {xn} a bounded sequence in K such that A({xn}) = {y} and r({xn}) = ζ . If {ym} is
another sequence in K such that limm→∞ r(ym, {xn}) = ζ , then limm→∞ ym = y.

2 Main results
Now we have the following key result in this paper.

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Ti : K → P(K ),
i = ,  be a multivalued mapping and TTi be a nonexpansive mapping, let Si : K → P(K ),
i = ,  be a multivalued mapping and SSi be a nonexpansive mapping. Assume that F :=⋂

i= F(TTi )∩ F(SSi ) �= ∅, and for arbitrarily chosen x ∈ K , {xn} is defined as follows:

xn+ =W (SSxn,TTun,αn), yn =W (SSxn,TTvn,βn), ∀n≥ , (.)

where vn ∈ SSxn, un ∈ SSyn, d(vn,un) ≤H(SSxn,SSyn) + τn, {τn}, {αn}, and {βn} satisfy the
following conditions:
() limn→∞ τn = ,

∑∞
n= τn < ∞.

() There exist constants a,b ∈ (, ) with  < b( – a)≤ 
 such that {αn} ⊂ [a,b] and

{βn} ⊂ [a,b].
() ‖xn – p‖ = d(xn,p), ‖yn – p‖ = d(yn,p).
() d(x,TTiy) ≤ d(SSix,TTiy), for all x, y ∈ K and i = , .

Then the sequence {xn} defined by (.) �-converges to a common fixed point of F :=⋂
i= F(TTi )∩ F(SSi ).

Proof The proof of Theorem . is divided into three steps:
Step . First we prove that limn→∞ d(xn,p) exists for each p ∈ F . For any given p ∈ F ,

since TTi , SSi , i = , , is a multivalued nonexpansive mapping, by condition () and (.),
we have

d(xn+,p) = d
(
W (SSxn,TTun,αn),p

)
≤ ( – αn)d(SSxn,p) + αnd(TTun,p)

= ( – αn)d(SSxn,SSp) + αnd(TTun,TTp)

≤ ( – αn)d(xn,p) + αnd(un,p)

≤ ( – αn)d(xn,p) + αnH(SSyn,SSp) + αnτn

≤ ( – αn)d(xn,p) + αn‖yn – p‖ + αnτn

= ( – αn)d(xn,p) + αnd(yn,p) + αnτn, (.)

where

d(yn,p) = d
(
W (SSxn,TTvn,βn),p

)
≤ ( – βn)d(SSxn,p) + βnd(TTvn,p)

= ( – βn)d(SSxn,SSp) + βnd(TTvn,TTp)

≤ ( – βn)d(xn,p) + βnd(vn,p)
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≤ ( – βn)d(xn,p) + βnH(SSxn,SSp) + βnτn

≤ ( – βn)d(xn,p) + βn‖xn – p‖ + βnτn

= ( – βn)d(xn,p) + βnd(xn,p) + βnτn

= d(xn,p) + βnτn. (.)

Substituting (.) into (.) and simplifying it, we have

d(xn+,p) ≤ d(xn,p) + ( + βn)αnτn, (.)

where δn = , bn = ( +βn)αnτn. Since
∑∞

n= τn < ∞ and condition (), it follows from Lem-
ma . that limn→∞ d(xn,p) exist for p ∈F .
Step . We show that

lim
n→∞d(xn,TTixn) = , lim

n→∞d(xn,SSixn) = , i = , . (.)

For each p ∈ F , from the proof of Step , we know that limn→∞ d(xn,p) exists. We may
assume that limn→∞ d(xn,p) = c ≥ . If c = , then the conclusion is trivial. Next, we deal
with the case c > . From (.), we have

d(yn,p) ≤ d(xn,p) + βnτn. (.)

Taking lim sup on both sides in (.), we have

lim sup
n→∞

d(yn,p) ≤ c. (.)

In addition, since

d(TTyn,p) = d(TTyn,TTp) ≤ d(yn,p)

and

d(SSxn,p) = d(SSxn,SSp) ≤ d(xn,p),

we have

lim sup
n→∞

d(TTyn,p) ≤ c (.)

and

lim sup
n→∞

d(SSxn,p) ≤ c. (.)

Since limn→∞ d(xn+,p) = c, it is easy prove that

lim
n→∞d

(
W (SSxn,TTyn,αn),p

)
= c. (.)
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It follows from (.)-(.) and Lemma . that

lim
n→∞d(SSxn,TTyn) = . (.)

By the same method, we can also prove that

lim
n→∞d(SSxn,TTxn) = . (.)

By virtue of the condition (), it follows from (.) and (.) that

lim
n→∞d(xn,TTyn) ≤ lim

n→∞d(SSxn,TTyn) =  (.)

and

lim
n→∞d(xn,TTxn)≤ lim

n→∞d(SSxn,TTxn) = . (.)

From (.) and (.) we have

d(yn,SSxn) = d
(
W (SSxn,TTxn,βn),SSxn

)
≤ βnd(TTxn,SSxn) →  (as n→ ∞) (.)

and

d(yn,SSxn) = d
(
W (SSxn,TTxn,βn),SSxn

)
≤ βnd(TTxn,SSxn) →  (as n→ ∞). (.)

Observe that

d(xn, yn) = d(xn,TTxn) + d(TTxn,SSxn) + d(SSxn, yn).

It follows from (.) and (.) that

lim
n→∞d(xn, yn) = . (.)

This together with (.) implies that

d(xn,TTxn) ≤ d(xn,TTyn) + d(TTyn,TTxn)

≤ d(xn,TTyn) + d(yn,xn) →  (n→ ∞). (.)

On the other hand, from (.) and (.), we have

d(SSxn,TTxn) ≤ d(SSxn,TTyn) + d(TTyn,TTxn)

≤ d(SSxn,TTyn) + d(yn,xn) →  (n→ ∞). (.)
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Hence from (.) and (.), we have

d(SSxn,xn) ≤ d(SSxn,TTxn) + d(TTxn,xn) →  (n→ ∞). (.)

In addition, since

d(xn+,xn) = d
(
W (SSxn,TTyn,αn),xn

)
≤ ( – αn)d(SSxn,xn) + αnd(TTyn,xn),

from (.) and (.), we get

lim
n→∞d(xn+,xn) = . (.)

Finally, for all i = , , we have

d(xn,TTixn) ≤ d(xn, yn) + d(yn,SSixn)

+ d(SSixn,TTiyn) + d(TTiyn,TTixn)

≤ d(xn, yn) + d(yn,SSixn) + d(SSixn,TTiyn),

it follows from (.), (.), (.), (.), and (.) that

lim
n→∞d(xn,TTixn) = , i = , . (.)

Since

d(xn,SSixn) ≤ d(xn,TTixn) + d(TTixn,SSixn),

it follows from (.), (.), and (.) that

lim
n→∞d(xn,SSixn) = , i = , . (.)

Step . Now we prove that the sequence {xn} �-converges to a common fixed point of
F :=

⋂
i= F(TTi )∩ F(SSi ).

In fact, since for each p ∈ F , limn→∞ d(xn,p) exist. This implies that the sequence
{d(xn,p)} is bounded, and so is the sequence {xn}. Hence by virtue of Lemma ., {xn}
has a unique asymptotic center Ak({xn}) = {xn}.
Let {un} be any subsequence of {xn} with AK ({un}) = {u}. It follows from (.) that

lim
n→∞d(un,TTiun) = . (.)

Now, we show that u ∈ F(TTi ). For this, we define a sequence {zn} in K by zj = Tj
Tiu. So we

calculate

d(zj,un) ≤ d
(
Tj
Tiu,T

j
Tiun

)
+ d

(
Tj
Tiun,T

j–
Ti un

)
+ · · · + d(TTiun,un)

= d
(
Tj
Tiu,T

j
Tiun

)
+

j∑
k=

d
(
Tk
Tiun,T

k–
Ti un

)
. (.)
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Since TTi is a nonexpansive mapping, by d(Tj
Tiu,T

j
Tiun) ≤ d(Tj–

Ti u,T
j–
Ti un) ≤ · · · ≤

d(u,un), d(T
j
Tiun,T

j–
Ti un) ≤ d(Tj–

Ti un,T
j–
Ti un)≤ · · · ≤ d(TTiun,un), from (.) we have

d(zj,un)≤ d(u,un) + jd(TTiun,un).

Taking lim sup on the sides of the above estimate and using (.), we have

r
(
zj, {un}

)
= lim sup

n→∞
d(zj,un)≤ lim sup

n→∞
d(u,un) = r

(
u, {un}

)
.

And so

lim sup
j→∞

r
(
zj, {un}

) ≤ r
(
u, {un}

)
.

Since AK ({un}) = {u}, by the definition of asymptotic center AK ({un}) of a bounded se-
quence {un} with respect to K ⊂ X, we have

r
(
u, {un}

) ≤ r
(
y, {un}

)
, ∀y ∈ K .

This implies that

lim inf
j→∞ r

(
zj, {un}

) ≥ r
(
u, {un}

)
.

Therefore we have

lim
j→∞ r

(
zj, {un}

)
= r

(
u, {un}

)
.

It follows from Lemma . that limj→∞ TTiu = u. As TTi is uniformly continuous, TTu =
TTi (limj→∞ Tj

Tiu) = limj→∞ Tj+
Ti u = u. That is u ∈ F(TTi ). Similarly, we also can show that

u ∈ F(SSi ). Hence, u is the common fixed point of TTi and SSi . Reasoning as above, by
utilizing the uniqueness of asymptotic centers, we get x = u. Since {un} is an arbitrary
subsequence of {xn}, we haveA{un} = {u} for all subsequences {un} of {xn}. This proves that
{xn} �-converges to a common fixed point ofF :=

⋂
i= F(TTi )∩F(SSi ). This completes the

proof. �

The following theorem can be obtained from Theorem . immediately.

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Ti : K → P(K ), i =
,  be a multivalued mapping and TTi be a nonexpansive mapping, let Si : K → K , i = , 
be a nonexpansive mapping. Assume that F :=

⋂
i= F(TTi ) ∩ F(Si) �= ∅, and for arbitrarily

chosen x ∈ K , {xn} is defined as follows:

xn+ =W (Sxn,TTun,αn), yn =W (Sxn,TTvn,βn), ∀n≥ , (.)

where vn ∈ Sxn, un ∈ Syn, d(vn,un) ≤ H(Sxn,Syn) + τn, {τn}, {αn}, and {βn} satisfy the
following conditions:

http://www.fixedpointtheoryandapplications.com/content/2014/1/140
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() limn→∞ τn = ,
∑∞

n= τn < ∞.
() There exist constants a,b ∈ (, ) with  < b( – a)≤ 

 such that {αn} ⊂ [a,b] and
{βn} ⊂ [a,b].

() ‖xn – p‖ = d(xn,p), ‖yn – p‖ = d(yn,p).
() d(x,TTiy) ≤ d(Six,TTiy), for all x, y ∈ K and i = , .

Then the sequence {xn} defined by (.) �-converges to a common fixed point of F :=⋂
i= F(TTi )∩ F(Si).

Proof Take SSi = Si in Theorem .. Since all conditions in Theorem . are satisfied, it
follows from Theorem . that the sequence {xn} �-converges to a common fixed point
of F :=

⋂
i= F(TTi )∩ F(Si). This completes the proof of Theorem .. �

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Ti : K → P(K ),
i = ,  be a multivalued mapping and TTi , i = ,  be a nonexpansive mapping. Let Si :
K → P(K ), i = ,  be a multivalued mapping and SSi be a nonexpansive mapping. Assume
that F :=

⋂
i= F(TTi )∩ F(SSi ) �= ∅, for arbitrarily chosen x ∈ K , {xn} is defined as follows:

xn+ =W (xn,TTun,αn), yn =W (xn,TTvn,βn), ∀n≥ , (.)

where vn ∈ SSxn, un ∈ SSyn, d(vn,un) ≤H(SSxn,SSyn)+ τn, I is the identity mapping, {τn},
{αn}, and {βn} satisfy the following conditions:
() limn→∞ τn = ,

∑∞
n= τn < ∞.

() There exist constants a,b ∈ (, ) with  < b( – a)≤ 
 such that {αn} ⊂ [a,b] and

{βn} ⊂ [a,b].
() ‖xn – p‖ = d(xn,p), ‖yn – p‖ = d(yn,p).

Then the sequence {xn} defined by (.) �-converges to a common fixed point of F :=⋂
i= F(TTi ).

Proof Take SSi = I , i = ,  in (.). Since all conditions in Theorem . are satisfied, it
follows from Theorem . that the sequence {xn} �-converges to a common fixed point
of F :=

⋂
i= F(TTi )∩ F(SSi ). This completes the proof of Theorem .. �

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Si : K → P(K ),
i = ,  be a multivalued mapping and SSi be a nonexpansive mapping. Assume that F :=⋂

i= F(SSi ) �= ∅, and for arbitrarily chosen x ∈ K , {xn} is defined as follows:

xn+ =W (SSxn,un,αn), yn =W (SSxn, vn,βn), ∀n≥ , (.)

where vn ∈ SSxn, un ∈ SSyn, d(vn,un) ≤H(SSxn,SSyn) + τn, {τn}, {αn}, and {βn} satisfy the
following conditions:
() limn→∞ τn = ,

∑∞
n= τn < ∞.

() There exist constants a,b ∈ (, ) with  < b( – a)≤ 
 such that {αn} ⊂ [a,b] and

{βn} ⊂ [a,b].
() ‖xn – p‖ = d(xn,p), ‖yn – p‖ = d(yn,p).
() d(x, y) ≤ d(SSix, y), for all x, y ∈ K and i = , .

http://www.fixedpointtheoryandapplications.com/content/2014/1/140
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Then the sequence {xn} defined by (.) �-converges to a common fixed point of F :=⋂
i= F(SSi ).

Proof Take TTi = I , i = ,  in (.). Since all conditions in Theorem . are satisfied, it
follows from Theorem . that the sequence {xn} �-converges to a common fixed point
of F :=

⋂
i= F(SSi ). This completes the proof of Theorem .. �

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Si : K → P(K ),
i = ,  be a multivalued mapping and SSi be a nonexpansive mapping. Assume that F :=⋂

i= F(SSi ) �= ∅, and for arbitrarily chosen x ∈ K , {xn} is defined as follows:

xn+ =W (xn,un,αn), yn =W (xn, vn,βn), ∀n≥ , (.)

where vn ∈ SSxn, un ∈ SSyn, d(vn,un) ≤H(SSxn,SSyn) + τn, {τn}, {αn}, and {βn} satisfy the
following conditions:
() limn→∞ τn = ,

∑∞
n= τn < ∞.

() There exist constants a,b ∈ (, ) with  < b( – a)≤ 
 such that {αn} ⊂ [a,b] and

{βn} ⊂ [a,b].
() ‖xn – p‖ = d(xn,p), ‖yn – p‖ = d(yn,p).
() d(x, y) ≤ d(SSix, y), for all x, y ∈ K and i = , .

Then the sequence {xn} defined by (.) �-converges to a common fixed point of F :=⋂
i= F(SSi ).

Proof Take SSi = I , i = ,  in (.). Since all conditions in Theorem . are satisfied, it
follows from Theorem . that the sequence {xn} �-converges to a common fixed point
of F :=

⋂
i= F(SSi ). This completes the proof of Theorem .. �

Theorem . Let K be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Ti : K → K , i = , 
be a nonexpansive mapping, let Si : K → P(K ), i = ,  be a multivalued mapping and SSi
be a nonexpansive mapping. Assume that F :=

⋂
i= F(Ti) ∩ F(SSi ) �= ∅, and for arbitrarily

chosen x ∈ K , {xn} is defined as follows:

xn+ =W (SSxn,Tun,αn), yn =W (SSxn,Tvn,βn), ∀n≥ , (.)

where vn ∈ SSxn, un ∈ SSyn, d(vn,un) ≤H(SSxn,SSyn) + τn, {τn}, {αn}, and {βn} satisfy the
following conditions:
() limn→∞ τn = ,

∑∞
n= τn < ∞.

() There exist constants a,b ∈ (, ) with  < b( – a)≤ 
 such that {αn} ⊂ [a,b] and

{βn} ⊂ [a,b].
() ‖xn – p‖ = d(xn,p), ‖yn – p‖ = d(yn,p).
() d(x,Tiy) ≤ d(SSix,Tiy), for all x, y ∈ K and i = , .

Then the sequence {xn} defined by (.) �-converges to a common fixed point of F :=⋂
i= F(Ti)∩ F(SSi ).
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Proof Take TTi = Ti, i = ,  in (.). Since all conditions in Theorem . are satisfied, it
follows from Theorem . that the sequence {xn} �-converges to a common fixed point
of F :=

⋂
i= F(Ti)∩ F(SSi ). This completes the proof of Theorem .. �

Wewould like tomention that our key result Theorem . could be regarded as either an
extension or an improvement of the corresponding results in the existing literature given
by the authors of [–, –, , , , , , ].
We also like to bring to the readers’ attention that by using the Baire approach due to

the classical paper of de Blasi and Myjak [], Reich and Zaslavski recently [] gave a
comprehensive study for the so-called genericity in nonlinear analysis, in particular for the
study of genericity for the topics in the approximation of fixed points, existence of fixed
points, and the convergence and stability of iterates of nonexpansive set-valued mappings
in the sense of Baire category, which are different from the ones we have established in
this paper.
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