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Abstract
It is standard practice in metric fixed point theory to reduce fixed point questions for
mappings defined on unbounded sets to the bounded case. Many of these results are
couched in a Banach space framework and involve bounded orbits. We examine
these results in a somewhat broader metric context here.
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1 Introduction
If a closed convex subset has the fixed point property for all nonexpansive self-mappings,
then is it necessarily bounded? This has long been an open question in metric fixed point
theory. The answer is ‘yes’ if X is a Hilbert space (see []). It has been shown recently (see
[]) that the failure of the fixed point property for every unbounded convex closed set is
not a characteristic of Hilbert spaces; more precisely, for every unbounded closed convex
set in c, there exists a fixed point free nonexpansive self-mapping of the set. On the other
hand, it is obvious that nontrivial nonexpansivemappings defined on unbounded setsmay
have fixed points. Consider, for example, simple rotations in the plane. However, in this
case the mapping has bounded orbits. Indeed, the following result is found in the original
 paper of Kirk [].

Theorem . Suppose K is a nonempty closed and convex subset of a reflexive Banach
space, and suppose K has a normal structure. Suppose f : K → K is a nonexpansive map-
ping, and suppose {f n(p)} is bounded for some (hence all) p ∈ K . Then f has a fixed point.

The proof rests on the following fact (also proved in []).

Lemma . Suppose K is a convex subset of a normed linear space and suppose f : K → K
is nonexpansive. If {f n(p)} is bounded for some p ∈ K , then some bounded convex subset of
K is mapped into itself by f .

The above observations served as motivation for the following result.

Theorem . (Theorem . of []) Let C be a closed convex subset of a Banach space X,
let F be a finite commuting family of nonexpansive self-mappings of C, and suppose {f n(p)}
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is bounded for some p ∈ C and all f ∈ F. Then there is a nonempty bounded closed and
convex subset of C which is mapped into itself by each member of F.

This theorem in conjunction with Theorem  of [] assures that in the setting of Theo-
rem . finite commuting families of nonexpansive mappings with bounded orbits always
have a common fixed point.
It is our objective in this paper to examine when analogs of the above results hold in

broader contexts, and whether they hold for more general classes of mappings.

2 The setting
The results in this paper will depend strongly on the notions of metric convexity. The
following definition is discussed in detail by Kohlenbach in [].
(X,ρ,W ) is called a hyperbolic space if (X,ρ) is ametric space andW : X×X×[, ] → X

is a function satisfying
(i) ∀x, y, z ∈ X and ∀λ ∈ [, ],

ρ
(
z,W (x, y,λ)

) ≤ ( – λ)ρ(z,x) + λρ(z, y);

(ii) ∀x, y ∈ X and ∀λ,λ ∈ [, ],

ρ
(
W (x, y,λ),W (x, y,λ)

)
= |λ – λ|ρ(x, y);

(iii) ∀x, y ∈ X and ∀λ ∈ [, ],W (x, y,λ) =W (y,x,  – λ);
(iv) ∀x, y, z,w ∈ X and ∀λ ∈ [, ],

ρ
(
W (x, z,λ),W (y,w,λ)

) ≤ ( – λ)ρ(x, y) + λρ(z,w).

If only condition (i) is satisfied, then (X,ρ,W ) is a convex metric space in the sense of
Takahashi (cf. []). The first three conditions are equivalent to saying (X,ρ,W ) is a space
of hyperbolic type in the sense of []. In this case the set

[x, y] :=
{
W (x, y,λ) : λ ∈ [, ]

}
is called themetric segment joining x and y (condition (iii) ensures that [x, y] is an isometric
image of the real line interval [,ρ(x, y)]). Hyperbolic spaces include all normed linear
spaces and convex subsets thereof, as well as all CAT() spaces in the sense of Gromov
(see []). Another important class of hyperbolic spaces are the so-called Busemann spaces
(see []). These are precisely the hyperbolic spaces that are uniquely geodesic []. (We
will not invoke condition (iv) in this paper.) For fixed point theory in these spaces, we refer
the reader to [–].
We say that a subset K of a Takahashi convex metric space is convex ifW (x, y,λ) ∈ K for

all x, y ∈ K and λ ∈ [, ]. For some of our results discussed below this is all that is needed.
With this convention all closed and open metric balls are convex and the intersection of
any family of convex sets is also convex. We use B(x; r) to denote the closed ball centered
at x ∈ X with radius r > . We adopt the customary notation and write W (x, y,λ) = ( –
λ)x⊕ λy.
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3 Preliminaries
We begin with an abstract version of Lemma ..

Lemma . Suppose K is a convex subset of a Takahashi convex metric space and suppose
f : K → K is nonexpansive. If {f n(p)} is bounded for some p ∈ K , then some bounded convex
subset of K is mapped into itself by f .

Proof Choose r >  so that ρ(p, f n(p)) ≤ r for each n ∈ N, and let Kn = B(f n(p); r) ∩ K .
If u ∈ Kn, then ρ(u, f n(p)) ≤ r; hence ρ(f (u), f n+(p)) ≤ ρ(u, f n(p)) ≤ r, and it follows that
f (u) ∈ Kn+. For each k ∈N, let

Wk =
∞⋂
i=k

Ki.

Then f :Wk → Wk+. Also p ∈ Wk for each k, so Wk is nonempty. Clearly Wk is convex
and bounded (diam(Wk) ≤ r). Therefore {Wk}∞k= is an increasing sequence of uniformly
bounded convex sets in K . It follows that W =

⋃∞
k=Wk is a bounded convex set which is

invariant under f . �

A Takahashi convex metric space X is said to have the FPP if every bounded closed
convex subset of X has the fixed point property for nonexpansive mappings. In view of
Lemma . the following is immediate.

Theorem . Let X be a Takahashi convex metric space which has the FPP, and let K be
a nonempty closed and convex subset of X. Suppose f : K → K is a nonexpansive mapping,
and suppose {f n(p)} is bounded for some p ∈ K . Then f has a fixed point.

Remark  In connection with Theorem . the following example is noteworthy.

Example If K is an admissible subset (i.e., and intersection of closed balls) of a hypercon-
vex metric space X, then the setW in the proof of Lemma . is the union of an increasing
sequence of admissible sets. However, the closure of W need not be admissible, or even
hyperconvex. Stan Prus has given an example of a fixed point free nonexpansive map-
ping (actually an isometry) defined on H = �∞ which has bounded orbits. Indeed define
T :H →H by setting

T
(
(x,x,x, . . .)

)
=

(
 + lim

U
xn,x,x, . . .

)
,

where U is a nontrivial ultrafilter on the set of positive integers. The mapping T is an
isometry and has no fixed point. On the other hand, for n ∈N,

Tn((, , , . . .)) = ( n-times︷ ︸︸ ︷
, , . . . , , , , . . .

)
,

so T has bounded orbits.

4 Eventually nonexpansive maps
In this section we point out that Theorem . extends to a wider class of mappings inmore
restricted settings.
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Definition . Let (X,ρ) be a metric space. A mapping T : X → X is said to be eventually
uniformly Lipschitzian if there exist a sequence {kn} of positive numbers and an integer
N ∈ N such that for all n≥ N ,

ρ
(
Tnx,Tny

) ≤ knρ(x, y)

for all x, y ∈ X. If limn→∞ kn = , T is said to be asymptotically nonexpansive. If kn ≡  for n
sufficiently large, T is said to be eventually nonexpansive (see []). The following lemma
is obtained by slightly adjusting the argument in the proof of Lemma ..

Lemma . Suppose K is a convex subset of a Takahashi convex metric space and suppose
f : K → K is a mapping which is eventually nonexpansive. If {f n(p)} is bounded for some
p ∈ K , then there exist n ∈ N and a bounded convex subset of K which is mapped into
itself by each of the mappings f n, n≥ n.

Proof Choose r >  so that ρ(p, f n(p)) ≤ r for each n ∈ N, let Kn = B(f n(p); r) ∩ K , and for
each k ∈N, let

Wk =
∞⋂
i=k

Ki.

Also p ∈ Wk for each k, so Wk is nonempty. Clearly Wk is convex and bounded
(diam(Wk) ≤ r). Therefore {Wk}∞k= is an increasing sequence of uniformly bounded con-
vex sets in K . It follows thatW =

⋃∞
k=Wk is bounded and convex.

Since f is eventually nonexpansive, there exists n ∈ N such that u ∈ Kn ⇒ ρ(f m(u),
f n+m(p)) ≤ ρ(u, f n(p)) ≤ r for m ≥ n. Thus f m(u) ∈ Kn+m. So, for m sufficiently large, f m :
Kn → Kn+m. In particular, W is a bounded closed convex subset of K which is invariant
under f m. �

Theorem . Let X be a reflexive or separable Banach space which has the FPP, let K be
a closed convex subset of X, and suppose f : K → K is eventually nonexpansive. If f n(p) is
bounded for some p ∈ K , then f has a fixed point.

Proof Let W be as in Lemma .. Then in particular W is a bounded closed convex set
which in invariant under the commuting nonexpansive mappings f m and f m+. One can
now apply a classical result of Bruck [] to conclude that f m and f m+ have a common
fixed point which is necessarily a fixed point of f . �

R-trees (or metric trees) are a class of hyperbolic spaces which have interesting geomet-
ric properties.

Definition . An R-tree is a metric space X such that
(i) there is a unique geodesic (metric) segment denoted by [x, y] joining each pair of

points x and y in X ; and
(ii) [y,x]∩ [x, z] = {x} ⇒ [y,x]∪ [x, z] = [y, z].

Theorem . extends to complete R-trees without any additional assumptions.
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Theorem . Let (X,ρ) be a complete R-tree, let K be a closed convex subset of X, and
suppose f : K → K is a mapping which is eventually nonexpansive and for which f n(p) is
bounded for some p ∈ K . Then f has a fixed point.

Theorem . is an immediate consequence of the following two facts. Proposition .
was first proved in []. For convenience of the reader, we repeat the proof here.

Theorem . ([]) Let (X,ρ) be a complete R-tree, and suppose T : X → X has bounded
orbits and satisfies, for all n ∈N sufficiently large,

ρ
(
Tnx,Tny

) ≤ knρ(x, y)

for all x, y ∈ X, where lim supn→∞ kn < . Then T has a fixed point.

Proposition . Let (X,ρ) be a metric space and suppose T : X → X is eventually
uniformly Lipschitzian for a sequence {kn}, and suppose T has a bounded orbit. If
lim supn→∞ kn < ∞, then all orbits of T are bounded.

Proof Assume there exist x ∈ X and r >  such that {Tn(x)} ⊂ B(x; r). Choose k >  so that
lim supn→∞ kn < k. Then, if y ∈ X, it is possible to choosem ∈N so that for all n ≥ m,

ρ
(
Tn(x),Tn(y)

) ≤ kρ(x, y).

Then, for n≥ m,

ρ
(
x,Tn(y)

) ≤ ρ
(
x,Tn(x)

)
+ ρ

(
Tn(x),Tn(y)

) ≤ r + kρ(x, y).

This proves that {Tn(y)}n≥m ⊂ B(x;d), where d = r + kρ(x, y). Let

d′ =max
{
ρ
(
x,Ti(y)

)
: i = , . . . ,m – 

}
.

Then {Tn(y)} ⊂ B(x;d∗), where d∗ = max{d,d′}. Since y is arbitrary, all orbits of T are
bounded. �

Remark Some form of asymptotic control over the behavior of themapping is needed for
the validity of Proposition ., even if the mapping is continuous and X is the real line. It
is easy to construct continuous mappings of the real line that have exactly one fixed point
and all other orbits are unbounded. However, it is shown in [] that if T is assumed to be
continuous in Theorem ., then the assumption that lim supn→∞ kn <  may be replaced
with the much weaker assumption that lim supn→∞ kn < ∞.

5 Bounded orbits of families of mappings
Our next theorem is an analog of Theorem . in [] which is formulated there in a Banach
space setting. Note that commutativity of F appears (at least in some sense) to be essential
to the proof. As noted in [], this result shows that the assumption of strict convexity is
not needed for Theorem  of []. (As Bula remarks in [], this theorem is not true for
infinite families.)
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Theorem . Let (X,ρ) be a Takahashi convex metric space, and let K be a convex subset
of X, and let F be a finite commutative family of nonexpansive self-mappings of K . Suppose
{f n(p)} is bounded for some (and hence all) p ∈ K and each f ∈ F. Then there is a bounded
convex subset of K which is left invariant by each member of F.

Proof We first prove the theorem when F = {f , g}. The general case is a straightforward
adaptation of this procedure (although the details are rather tedious). By assumption there
exist r, r >  such that {f n(p)} ⊂ B(p; r) and {gn(p)} ⊂ B(p; r). Thus, form,n ∈N,

ρ
(
f n ◦ gm(p),p) ≤ ρ

(
f n ◦ gm(p), f n(p)) + ρ

(
f n(p),p

)
≤ ρ

(
gm(p),p

)
+ ρ

(
f n(p),p

)
≤ r + r := r.

Therefore {f n ◦ gm(p)}∞m,n= ⊂ B(p; r). For eachm,n ∈N, let

Sn,m :=
{
u ∈ K : ρ

(
u, f i ◦ gj(p)) ≤ r ∀i≥ n, j ≥ m

}
=

( ⋂
i≥n,j≥m

B
(
f i ◦ gj(p); r)) ∩K ,

and let S =
⋃∞

n,m= Sn,m. Because balls in X are convex, each of the sets Sm,n is convex.
Moreover, the family {Sm,n}∞m,n= is directed upward by set inclusion, so S is convex. Also,
if u ∈ Sn,m, then

ρ
(
f (u), f i ◦ gj(u)) ≤ ρ

(
u, f i– ◦ gj(u)) ≤ r ∀i –  ≥ n, j ≥ m,

so f (u) ∈ Sn+,m. Similarly,

ρ
(
g(u), f i ◦ gj(u)) = ρ

(
g(u), g ◦ f i ◦ gj–(u))

≤ ρ
(
u, f i ◦ gj–(u)) ≤ r ∀i≥ n, j –  ≥ m

and g(u) ∈ Sn,m+. (Notice that here we use the fact that the mappings f and g commute.) It
follows that S is a bounded convex set which is invariant under both f and g .
We now briefly indicate how to prove Theorem . in its full generality. (The assertion in

[] that the general case follows by induction seems to oversimplify the situation.) Suppose
F = {f, . . . , fk} and let

r = sup
{
ρ
(
p, f nj (p)

)
:  ≤ j ≤ k,n = , , . . .

}
.

Then

ρ
(
p, f i ◦ f i ◦ · · · ◦ f ikk (p)

)
≤ ρ

(
p, f i (p)

)
+ ρ

(
f i (p), f i ◦ f i ◦ · · · ◦ f ikk (p)

)
≤ r + ρ

(
p, f i ◦ · · · ◦ f ikk (p)

)
≤ r + ρ

(
p, f i (p)

)
+ ρ

(
f i (p), f i ◦ · · · ◦ f ikk (p)

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/143
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≤ r + ρ
(
p, f i ◦ · · · ◦ f ikk (p)

)
≤ · · ·
≤ kr := r.

Let

S(i, i, . . . , ik) =
⋂
mj≥ij

B
(
f m
 ◦ f m

 ◦ · · · ◦ f mk
k (p); r

) ∩K .

Then p is in each of the sets S(i, i, . . . , ik). The family

{
S(i, i, . . . , ik)

}
of convex sets is directed upward by set inclusion because any two sets

S(i, i, . . . , ik) and S(j, j, . . . , jk)

are contained in S(n,n, . . . ,nk), where nν =max(iν , jν), ν = , . . . ,k. Let

S =
∞⋃

i,...,ik=

S(i, i, . . . , ik).

Then S is a bounded convex set which is invariant under each of the mappings in F. �

Theorem . has a different proof if the space X is of hyperbolic type. For this we need
the following fact. Recall that a mapping f of a metric space (X,ρ) into itself is said to be
asymptotically regular if for each x ∈ X, limn→∞ ρ(f n(x), f n+(x)) = . The following is a
consequence of results of []; also see [].

Proposition . Let K be a bounded convex subset of a space (X,ρ) of hyperbolic type, and
suppose f : K → K is nonexpansive. Fix α ∈ (, ), and define fα : K → K by setting fα(x) =
αx⊕ ( – α)f (x). Then fα is asymptotically regular. In particular, inf{ρ(x, f (x)) : x ∈ K} = .

Second proof of Theorem . We consider only the case F = {f , g}. If X is of hyperbolic
type, in view of Lemma . some bounded convex subsetH of K is mapped into itself by g .
Consequently, by Proposition .

inf
{
ρ
(
x, g(x)

)
: x ∈H

}
= .

Let δ >  and choose p ∈H such that ρ(p, g(p)) ≤ δ. Let

Fδ(g) :=
{
x ∈ K : ρ

(
x, g(x)

) ≤ δ
}
.

Clearly g : Fδ(g) → Fδ(g). Let x ∈ Fδ(g). Then

ρ
(
g ◦ f (x), f (x)) = ρ

(
f ◦ g(x), f (x)) ≤ ρ

(
g(x),x

) ≤ δ.

http://www.fixedpointtheoryandapplications.com/content/2014/1/143
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Therefore it is also the case that f : Fδ(g) → Fδ(g), and thus f i ◦ gj(p) = g ◦ f i ◦ gj–(p) for all
i, j ≥ .
The proof is now completed as in the first proof. �

Remark  An interesting feature of the second proof is that it is only necessary to assume
that f and g commute on the set Fδ(g) for some δ >  rather than on the entire domain.

6 A condition of Djebali-Hammache
In [] the authors present some new versions of fixed point theorems for nonexpansive
mappings defined on closed, convex subsets of Banach spaces which are not necessarily
bounded. In this section we discuss a result which they compare with Theorem . of []
(see below). The following definition and notation are taken from [].

Definition. LetQ be a nonempty closed convex subset of a Banach spaceX. Amapping
f : Q → X is said to have the property (K) if there exists a nonempty bounded closed
convex subset K ⊂ X such that f (Q∩K) ⊂ K .

(Implicit in the above is the assumption also that Q∩K �= ∅.)

Notation  Define the set

S = S(f ,Q) =
{
{xn} ⊂Q : xn =

(
 –


n

)
f (xn) ∀n ∈N

}
. (.)

By the Banach contraction mapping theorem, this set is always nonempty if f is nonex-
pansive and Q is a nonempty convex subset of X which contains the origin.
Now let A⊂ X be nonempty and bounded, and let α(A) denote the Kuratowski measure

of noncompactness of A. For ε, c >  with  < c < α(A) + ε, set

Nc
ε (A) =

{
(x, y) ∈ A : c≤ ‖x – y‖ ≤ α(A) + ε

}
.

This set is denoted by Nc
ε (f ,A) when A depends explicitly on some function f .

Let S be given by (.), and for any closed bounded convex subset K of X, define

SK = S ∩K .

The following is Theorem . of []. Here

Fδ (f ,SK ) =
{
x ∈ SK :

∥∥x – f (x)
∥∥ ≤ δ

}
.

Theorem . Let X be a Banach space, Q be a convex closed subset of X containing the
origin, and let f :Q →Q be a nonexpansive mapping satisfying property (K). Let K be the
bounded closed convex subset of X whose existence is assured byDefinition ..Assume that
there exist δ, ε >  such that ∀c ∈ (,α(SK ) + ε),

[
Fδ (f ,SK )× Fδ (f ,SK )

] ∩Nc
ε (f ,SK ) = ∅. (.)

Then f has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/143
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This theorem is an immediate consequence of the following lemma (Lemma . in []).

Lemma . Under the assumptions of Theorem ., α(SK ) = .

A Banach spaceX is said to have the FPP if each of its bounded closed convex subsets has
the fixed point property for nonexpansive self-mappings. The following is Theorem .
of [].

Theorem . Let X be a Banach space which has the FPP, let C be a closed convex subset
of X, and suppose f : C → C is a nonexpansive mapping for which Fδ(f ,C) is nonempty and
bounded for some δ > . Then f has a fixed point.

The authors of [] compare Theorem . with Theorem . and remark that in Theo-
rem . the boundedness of Fδ(f ,Q) is relaxed and the assumption that the space has the
FPP is dropped. However, the added condition in Theorem . that the mapping satis-
fies property (K) in conjunction with the fact that f : Q → Q implies f : Q ∩ K → Q ∩ K
immediately reduces Theorem . to the bounded case. Also, the nonexpansiveness of f
is used in the proof of Theorem . only to guarantee the existence of an approximate
fixed point sequence for f and to guarantee that f is continuous. Finally, condition (.)
in Theorem . is deceptively strong and, as the following result shows, Theorem . is
essentially trivial.

Theorem . Let X be a Banach space, Q be a subset of X, let f : Q → Q be a mapping,
and suppose f has a bounded approximate fixed point sequence S in Q. Also assume that
there exist δ, ε >  such that ∀c ∈ (,α(S) + ε),

[
Fδ (f ,S)× Fδ (f ,S)

] ∩Nc
ε (f ,S) = ∅. (.)

Then S is finite. (Thus, f can have no nontrivial approximate fixed point sequence.)

The proof of this theorem hinges on the fact that since c ∈ (,α(S) + ε) is arbitrary,
condition (.) actually implies the following. There exist δ, ε >  such that for x, y ∈ S, if
‖x – f (x)‖ ≤ δ and ‖y – f (y)‖ ≤ δ, then ‖x – y‖ < α(S) + ε ⇒ x = y. Otherwise one could
take c = ‖x – y‖ and conclude that

[
Fδ (f ,S)× Fδ (f ,S)

] ∩Nc
ε (f ,S) �= ∅.

We omit the details since a more general theorem is proved below.
There is a weaker version of condition (.) that is somewhat more realistic. In fact this

appears to be the version the authors of [] actually use in their applications.
In the following (X,ρ) denotes a metric space, Q ⊂ X and f : Q → Q. For δ > , Fδ(f ,S)

and for ε >  and c ∈ (,α(S)+ε),Nc
ε (f ,S) denote their Banach space analogs defined above

with ρ(·) replacing ‖ · ‖.

Theorem . Let Q be a closed subset of a complete metric space (X,ρ), and suppose f :
Q → Q is a mapping which has a bounded approximate fixed point sequence S. Assume

http://www.fixedpointtheoryandapplications.com/content/2014/1/143


Alghamdi et al. Fixed Point Theory and Applications 2014, 2014:143 Page 10 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/143

that there exists ε >  such that ∀c ∈ (,α(S) + ε) there exists δ >  such that

[
Fδ(f ,S)× Fδ(f ,S)

] ∩Nc
ε (f ,S) = ∅. (.)

Then α(S) = . In particular, if f is continuous, then f has a fixed point.

Proof Let S := {xn} and assume α(S) > . Then, by passing to a subsequence if necessary,
we may further assume that there exists c >  such that for x, y ∈ S, x �= y ⇒ ρ(x, y) ≥ c.
Also, by the definition of α, there exist subsets of {	i}mi= of S such that S ⊂ ⋃m

i= 	i and
such that for each i ∈ {, . . . ,m}, diam(	i) ≤ α(S) + ε. Therefore, for x, y ∈ 	i,

x �= y ⇒ c≤ ρ(x, y)≤ α(S) + ε;

thus (x, y) ∈ Nc
ε (S). Now choose i ∈ {, . . . ,m} such that 	i is infinite. Then 	i contains an

infinite number of terms of {xn} which lie in Fδ(f ,S). In particular it is possible to choose
x, y ∈ 	i such that x �= y and such that (x, y) ∈ [Fδ(f ,S)× Fδ(f ,S)]. Therefore

(x, y) ∈ [
Fδ(f ,S)× Fδ(f ,S)

] ∩Nc
ε (S),

which contradicts (.). �

Remark In view of Theorem ., condition (.) reduces to the following assumption.
Given c ∈ (, ε) there exists δ(c) >  such that

ρ(x, f (x))≤ δ(c),
ρ(y, f (y)) ≤ δ(c)

}
⇒ ρ(x, y) < c or ρ(x, y) > ε.

Now suppose u and v are fixed points of f with u �= v. Choose c ∈ (, ε) so that c < ρ(u, v).
Since ρ(u, f (u)) ≤ δ(c) and ρ(v, f (v)) ≤ δ(c), it must be the case that ρ(u, v) > ε. Thus con-
dition (.) implies that the fixed point set of f is always discrete.

We conclude with an application of Theorem . to mappings that are not necessarily
continuous. Recall that the mapping f :Q →Q is said to satisfy Suzuki’s condition (C) on
Q if



ρ
(
x, f (x)

) ≤ ρ(x, y) ⇒ ρ
(
f (x), f (y)

) ≤ ρ(x, y)

for all x, y ∈ Q (see []).

Theorem . Let Q be a bounded closed subset of a complete metric space (X,ρ), and
suppose f :Q →Q is a mapping which has a bounded approximate fixed point sequence S.
Assume that there exists ε >  such that ∀c ∈ (,α(S) + ε) there exists δ >  such that

[
Fδ(f ,S)× Fδ(f ,S)

] ∩Nc
ε (f ,S) = ∅. (.)

If f satisfies Suzuki’s condition (C), then f has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/143
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Proof We follow the argument used in Theorem  of []. It follows from Theorem .
that α(S) = . There exists a subsequence {xn} of S and z ∈Q such that {xn} converges to z.
By Lemma  of [] (which can be formulated for metric spaces), we have

ρ
(
xn, f (z)

) ≤ ρ
(
xn, f (xn)

)
+ ρ(xn, z) (.)

for all n. So {xn} converges to f (z) and hence f (z) = z. �

Remark If Q is a bounded convex subset of a Banach space and f satisfies Suzuki’s con-
dition (C), then f always has a bounded approximate fixed point sequence by Lemma 
of [].

7 Historical comment about bounded orbits
A G-space R in the sense of Busemann [] is a metric space which is (i) finitely compact
(or proper, i.e., bounded closed sets are compact), (ii) metrically convex, and for which
(iii) prolongation is locally possible and unique. Precisely, (iii) means that to every point
p ∈ R there corresponds a number ρp >  such that if x, y ∈ U(p;ρp) (the open ball) with
x �= y, there exists a point z ∈ R for which

d(x, y) + d(y, z) = d(x, z);

and moreover, if d(x, y) + d(y, z) = d(x, z) and d(x, y) + d(y, z) = d(x, z), then d(y, z) =
d(y, z) ⇒ z = z.

Theorem . ([]) If R is a straight G-space (has unique metric segments) which has
convex spheres, and if φ is a motion of R (an isometry of R onto itself ) for which {φn(p)} is
bounded for some p ∈ R, then φ has a fixed point.

It was subsequently shown in Kirk [] that it suffices to assume only that some subse-
quence of {φn(p)} is bounded in Theorem ., an assumption later shown by Całka [] to
be (nontrivially) equivalent to the original.
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