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Abstract
In this article, a mean iterative algorithm is investigated for finding a common
element in the solution set of generalized equilibrium problems and in the fixed
point set of strictly pseudocontractive mappings. Strong convergence of the mean
iterative algorithm is obtained in the framework of Hilbert spaces.
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1 Introduction-preliminaries
Many important problems have reformulations which require finding solutions of clas-
sical variational inequalities, for instance, image recovery, inverse problems, transporta-
tion problems, fixed point problems and optimization problems; see [–] and the refer-
ences therein. Equilibriumproblems, which include the classical variational inequalities as
special cases, have been recently extensively investigated; see [–] and the references
therein. In this paper, we study an equilibrium problem via fixed point methods. Global
convergence of the fixed point algorithm is obtained. Throughout this paper, we always
assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let
C be a nonempty closed convex subset of H , and let PC be a metric projection from H
onto C.
Let S : C → C be a mapping. In this paper, we use F(S) to denote the fixed point set of S.

Recall that the mapping S is said to be nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖ ∀x, y ∈ C.

S is said to be k-strictly pseudocontractive if there exists a constant k ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + k
∥∥(x – Sx) – (y – Sy)

∥∥ ∀x, y ∈ C.

The class of strictly pseudocontractive mappings was introduced by Browder and Petry-
shyn [] in . It is easy to see that the class of strictly pseudocontractive mappings
includes the class of nonexpansive mappings as a special case. If k = , then it is called a
pseudocontractive mapping.
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Recall that a set-valued mapping T : H → H is said to be monotone if for all x, y ∈ H ,
f ∈ Tx and g ∈ Ty imply 〈x – y, f – g〉 > . A monotone mapping T : H → H is maximal
if the graph Graph(T) of R is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if, for any (x, f ) ∈
H × H , 〈x – y, f – g〉 ≥  for all (y, g) ∈ Graph(T) implies f ∈ Tx. Let A be a monotone
mapping of C into H , and let NCv be a normal cone to C at v ∈ C, i.e.,

NCv =
{
w ∈H : 〈v – u,w〉 ≥  ∀u ∈ C

}
,

and define a mapping R on C by

Tv =

⎧⎨
⎩Av +NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and  ∈ Rv if and only if 〈Av,u – v〉 ≥  for all u ∈ C; see
[] and the references therein.
Let A : C →H be a mapping. Recall that A is said to be monotone if

〈Ax –Ay,x – y〉 ≥  ∀x, y ∈ C.

A is said to be inverse-strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖ ∀x, y ∈ C.

For such a case, A is also called an α-inverse-strongly monotone mapping. It is easy to see
that if A is an inverse-strongly monotone mapping, then the mapping I – A is a strictly
pseudocontractive mapping.
Let T : C → H be an inverse-strongly monotone mapping, and let F be a bifunction of

C × C into R, where R denotes the set of real numbers. In this paper, we consider the
following generalized equilibrium problem:

Find x ∈ C such that F(x, y) + 〈Tx, y – x〉 ≥  ∀y ∈ C. (.)

In this paper, we use EP(F ,T) to denote the solution set of problem (.).
Next, we give two special cases of problem (.).
(a) If T ≡ , then the generalized equilibrium problem (.) is reduced to the following

equilibrium problem:

Find x ∈ C such that F(x, y)≥  ∀y ∈ C. (.)

In this paper, we use EP(F) to denote the solution set of problem (.). We remark
here that problem (.) was first introduced by Fan [].

(b) If F ≡ , then problem (.) is reduced to the classical variational inequality: Find
x ∈ C such that

〈Tx, y – x〉 ≥  ∀y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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In this paper, we use VI(C,T) to denote the solution set of variational inequality
(.). It is well know that x ∈ C is a solution to (.) if and only if x is a fixed point of
the mapping PC(I – rT), where r >  is a constant and I is the identity mapping.

To study the generalized equilibrium problem (.), we may assume that F satisfies the
following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y → F(x, y) is convex and weakly lower semicontinuous.
Recently, many authors investigated problems (.), (.) and (.) based on iterative

methods. In , Takahashi and Toyoda [] investigated fixed points of nonexpansive
mappings and solutions of variational inequality (.). They obtained the following results.
Let A be an α-inverse-strongly monotone mapping of C into H , and let S be a nonexpan-
sivemapping ofC into itself such that F(S)∩VI(C,A) �= ∅. Let {xn} be a sequence generated
by

x ∈ C, xn+ = αnxn + ( – αn)SPC(xn – λnAxn) ∀n≥ ,

where λn ∈ [a,b] for some a,b ∈ (, α) and αn ∈ [c,d] for some c,d ∈ (, ). Then {xn}
converges weakly to z ∈ F(S)∩VI(C,A), where z = limn→∞ PF(S)∩VI(C,A)xn.
Recently, Tada and Takahashi [] investigated fixed points of nonexpansive mappings

and solutions of equilibrium problem (.). They obtained the following result. Let F be a
bifunction fromC×C toR satisfying (A)-(A), and let S be a nonexpansivemapping ofC
intoH such that F(S)∩EP(F) �= ∅. Let {xn} and {un} be sequences generated by x = x ∈H ,
and let⎧⎨

⎩un ∈ C such that F(un,u) + 
rn 〈u – un,un – xn〉 ≥  ∀u ∈ C,

xn+ = αnxn + ( – αn)Sun,

where {αn} ⊂ [a,b] for some a,b ∈ (, ) and {rn} ⊂ (,∞) satisfies lim infn→∞ rn > . Then
{xn} converges weakly to w ∈ F(S)∩ EP(F), where w = limn→∞ PF(S)∩EP(F)xn.
In this paper, motivated by the above results, we investigate fixed points of strictly pseu-

docontractive mappings and solutions of equilibrium problem (.). Weak convergence
theorems for common solutions are established inHilbert spaces. Applications of themain
results are also provided. In order to prove our main results, we also need the following
lemmas.

Lemma . [, ] Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let S : C → C be a k-strict pseudocontraction with a fixed point. Define S : C → C by
Sax = ax + ( – a)Sx for each x ∈ C. If a ∈ [k, ), then Sa is nonexpansive with F(Sa) = F(S).

Lemma . [] Let C be a nonempty closed convex subset of H , and let F : C×C →R be a
bifunction satisfying (A)-(A). Then, for any r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥  ∀y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥  ∀y ∈ C

}

for all r >  and x ∈H . Then the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let H be a Hilbert space and  < p≤ tn ≤ q <  for all n ≥ . Suppose that
{xn} and {yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and

lim
n→∞

∥∥tnxn + ( – tn)yn
∥∥ = r

hold for some r ≥ . Then limn→∞ ‖xn – yn‖ = .

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H , and let
S : C → C be a k-strict pseudocontraction. Then
(a) S is +k

–k -Lipschitz;
(b) I – S is demi-closed, i.e., if {xn} is a sequence in C with xn ⇀ x and xn – Sxn → ,

then x ∈ F(S).

2 Main results
Now, we are in a position to show the main results of the article.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a λ-inverse-stronglymonotonemapping, and let F be a bifunction fromC×C
to R which satisfies (A)-(A). Let S : C → C be a k-strict pseudocontraction. Assume that
F := EP(F ,T) ∩ F(S) is not empty. Let {αn}, {βn}, {γn} and {δn} be sequences in (, ). Let
{rn} be a sequence in (, λ), and let {en} be a bounded sequence in C. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

F(un,u) + 〈Txn,u – un〉 + 
rn 〈u – un,un – xn〉 ≥  ∀u ∈ C,

xn+ = αnxn + βn(δnun + ( – δn)Sun) + γnen ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn}, {δn} and {rn} satisfy the following restrictions:
 < a ≤ αn ≤ a′ < ,  ≤ k ≤ δn ≤ b < ,  < c ≤ rn ≤ d < λ and

∑∞
n= γn < ∞. Then the

sequence {xn} converges weakly to some point x̄ ∈F , where x̄ = limn→∞ PFxn.

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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Proof First, we show that the sequences {xn} and {un} are bounded. Putting Sn = δnI + ( –
δn)S, we see from Lemma . that Sn is nonexpansive and F(Sn) = F(S). Note that

∥∥(I – rnT)x – (I – rnT)y
∥∥ =

∥∥(x – y) – rn(Tx – Ty)
∥∥

= ‖x – y‖ – rn〈x – y,Tx – Ty〉 + rn‖Tx – Ty‖

≤ ‖x – y‖ – rn(λ – rn)‖Tx – Ty‖

≤ ‖x – y‖ ∀x, y ∈ C.

This proves that the mapping I – rnT is also nonexpansive. Fixing p ∈ F , we find from
Lemma . that p = Sp = Trn (I – rnT)p. Since

‖un – p‖ ≤ ∥∥Trn (I – rnT)xn – Trn (I – rnT)p
∥∥ ≤ ‖xn – p‖,

we find that

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖Snun – p‖ + γn‖en – p‖
≤ αn‖xn – p‖ + βn‖un – p‖ + γn‖en – p‖
≤ ( – γn)‖xn – p‖ + γn‖en – p‖. (.)

This implies that limn→∞ ‖xn –p‖ exists. This shows that {xn} is bounded, so is {un}. Since
‖ · ‖ is convex, we find that

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖Snun – p‖ + γn‖en – p‖

≤ αn‖xn – p‖ + βn‖un – p‖ + γn‖en – p‖

≤ αn‖xn – p‖ + βn
∥∥(I – rnT)xn – p

∥∥ + γn‖en – p‖

≤ ( – γn)‖xn – p‖ – rn(λ – rn)βn‖Txn – Tp‖ + γn‖en – p‖.

It follows that

rn(λ – rn)βn‖Txn – Tp‖ ≤ ( – γn)‖xn – p‖ – ‖xn+ – p‖ + γn‖en – p‖.

This yields that

lim
n→∞‖Txn – Tp‖ = . (.)

Using Lemma ., we see that

‖un – p‖ ≤ 〈
(I – rnT)xn – (I – rnT)p,un – p

〉
=



(∥∥(I – rnT)xn – (I – rnT)p

∥∥ + ‖un – p‖

–
∥∥(I – rnT)xn – (I – rnT)p – (un – p)

∥∥)
≤ 


(‖xn – p‖ + ‖un – p‖ – ∥∥xn – un – rn(Txn – Tp)

∥∥)

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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=


(‖xn – p‖ + ‖un – p‖ – (‖xn – un‖

– rn〈xn – un,Txn – Tp〉 + rn‖Txn – Tp‖)).
This implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖ + rn‖xn – un‖‖Txn – Tp‖.

Since ‖ · ‖ is convex, we find that

‖xn+ – p‖ ≤ αn‖xn – p‖ + βn‖Snun – p‖ + γn‖en – p‖

≤ αn‖xn – p‖ + βn‖un – p‖ + γn‖en – p‖

≤ ‖xn – p‖ – βn‖xn – un‖ + rnβn‖xn – un‖‖Txn – Tp‖ + γn‖en – p‖.

It follows that

βn‖xn – un‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + rn‖xn – un‖‖Txn – Tp‖ + γn‖en – p‖.

Using the restrictions imposed on the sequences, we obtain from (.) that

lim
n→∞‖xn – un‖ = . (.)

Since {xn} is bounded, we see that there exits a subsequence {xni} of {xn} which converges
weakly to x̄. Using (.), we also find that {uni} converges weakly to x̄. Note that

F(un,u) + 〈Txn,u – un〉 + 
rn

〈u – un,un – xn〉 ≥  ∀u ∈ C.

From (A), we see that

〈Txn,u – un〉 + 
rn

〈u – un,un – xn〉 ≥ F(u,un) ∀u ∈ C.

Replacing n by ni, we arrive at

〈Txni ,u – uni〉 +

rni

〈u – uni ,uni – xni〉 ≥ F(u,uni ) ∀u ∈ C. (.)

For t with  < t ≤  and u ∈ C, let ut = tu+ ( – t)x̄. Since u ∈ C and x̄ ∈ C, we have ut ∈ C.
It follows from (.) that

〈ut – uni ,Tut〉 ≥ 〈ut – uni ,Tut〉 – 〈Txni ,ut – uni〉

–
〈
ut – uni ,

uni – xni
rni

〉
+ F(ut ,uni )

= 〈ut – uni ,Tut – Tuni〉 + 〈ut – uni ,Tuni – Txni〉

–
〈
ut – uni ,

uni – xni
rni

〉
+ F(ut ,uni ). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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Using (.), we have Tuni – Txni →  as i → ∞. Using the monotonicity of T , we see that
〈ut – uni ,Tut – Tuni〉 ≥ . It follows from (A) that

〈ut – x̄,Tut〉 ≥ F(ut , x̄). (.)

Using (A) and (A), we see from (.) that

 = F(ut ,ut) ≤ tF(ut ,u) + ( – t)F(ut , x̄)

≤ tF(ut ,u) + ( – t)〈ut – x̄,Tut〉
= tF(ut ,u) + ( – t)t〈u – x̄,Tut〉.

It follows that F(ut ,u) + ( – t)〈u – x̄,Tut〉 ≥ . Letting t →  in the above inequality, we
arrive at F(x̄,u) + 〈u – x̄,Tx̄〉 ≥ . Hence, x̄ ∈ EP(F ,T).
Next, we are in a position to show that x̄ ∈ F(S). Note that limn→∞ ‖xn – p‖ exists. We

may assume that limn→∞ ‖xn – p‖ = d > . Note that

lim
n→∞‖xn+ – p‖ = lim

n→∞
∥∥βn

(
Snun – p + γn(en – xn)

)
+ ( – βn)

(
xn – p + γn(en – xn)

)∥∥ = d.

Since

∥∥Snun – p + γn(en – xn)
∥∥ ≤ ‖Snun – p‖ + γn‖en – xn‖

≤ ‖un – p‖ + γn‖en – xn‖
≤ ‖xn – p‖ + γn‖en – xn‖,

we find that limn→∞ ‖Snxn – p + γn(en – xn)‖ ≤ d. Since ‖xn – p + γn(en – xn)‖ ≤ ‖xn – p‖ +
γn‖en – xn‖, we find that limn→∞ ‖xn – p + γn(en – xn)‖ ≤ d. Using Lemma ., we obtain
that limn→∞ ‖Snun – xn‖ = . In view of

Sun – xn =
Snun – xn
 – δn

+
δn(xn – un)

 – δn
,

it follows that limn→∞ ‖Sun – xn‖ = . Note that ‖Sxn – xn‖ ≤ ‖Sxn – Sun‖ + ‖Sun – xn‖.
Using Lemma ., we find that limn→∞ ‖Sxn – xn‖ = . It follows from Lemma . that
x̄ ∈ F(S). This proves that x̄ ∈ F . Assume that there exits another subsequence {xnj} of
{xn} such that {xnj} converges weakly to x′. We can find that x′ ∈ F . If x̄ �= x′, we get from
the Opial condition [] that

lim
n→∞‖xn – x̄‖ = lim inf

i→∞ ‖xni – x̄‖ < lim inf
i→∞

∥∥xni – x′∥∥
= lim

n→∞
∥∥xn – x′∥∥ = lim inf

j→∞
∥∥xnj – x′∥∥

< lim inf
j→∞ ‖xnj – x̄‖ = lim

n→∞‖xn – x̄‖.

This derives a contradiction. Hence, we have x̄ = x′. This implies that xn ⇀ x̄ ∈ F . The
proof is completed. �

From Theorem ., the following result is not hard to derive.

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F be a bifunction from C × C to R which satisfies (A)-(A). Let S : C → C be a k-strict
pseudocontraction. Assume that F := EP(F) ∩ F(S) is not empty. Let {αn}, {βn}, {γn} and
{δn} be sequences in (, ). Let {rn} be a positive number sequence, and let {en} be a bounded
sequence in C. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

F(un,u) + 
rn 〈u – un,un – xn〉 ≥  ∀u ∈ C,

xn+ = αnxn + βn(δnun + ( – δn)Sun) + γnen ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn}, {δn} and {rn} satisfy the following restrictions:
 < a ≤ αn ≤ a′ < ,  ≤ k ≤ δn ≤ b < ,  < c ≤ rn ≤ d < +∞ and

∑∞
n= γn < ∞. Then the

sequence {xn} converges weakly to some point x̄ ∈F , where x̄ = limn→∞ PFxn.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a λ-inverse-stronglymonotonemapping, and let F be a bifunction fromC×C
to R which satisfies (A)-(A). Let S : C → C be a nonexpansive mapping. Assume that
F := EP(F ,T) ∩ F(S) is not empty. Let {αn}, {βn} and {γn} be sequences in (, ). Let {rn}
be a positive real number sequence, and let {en} be a bounded sequence in C. Let {xn} be a
sequence generated in the following manner:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

F(un,u) + 〈Txn,u – un〉 + 
rn 〈u – un,un – xn〉 ≥  ∀u ∈ C,

xn+ = αnxn + βnSun + γnen ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn} and {rn} satisfy the following restrictions:  <
a ≤ αn ≤ a′ < ,  < c ≤ rn ≤ d < λ and

∑∞
n= γn < ∞. Then the sequence {xn} converges

weakly to some point x̄ ∈F , where x̄ = limn→∞ PFxn.

3 Applications
The computation of common fixed points is important in the study of many real world
problems, including inverse problems; for instance, it is not hard to show that the split
feasibility problem and the convex feasibility problem in signal processing and image re-
construction can both be formulated as a problem of finding fixed points of certain oper-
ators, respectively; for more details, see [, ] and the references therein.
First, we consider the following common fixed point problem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Sm : C → C be a km-strict pseudocontraction for each  ≤ m ≤ N , where N is some positive
integer. Assume that F :=

⋂∞
m= F(S) is not empty. Let {αn}, {βn} and {γn} be sequences in

(, ). Let {en} be a bounded sequence in C. Let {xn} be a sequence generated in the following
manner:

x ∈ C, xn+ = αnxn + βn

(
δnxn + ( – δn)

N∑
i=

μiSixn

)
+ γnen ∀n≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/145
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Assume that the sequences {αn}, {βn}, {γn}, {δn} and {rn} satisfy the following restrictions:
 < a ≤ αn ≤ a′ < ,  ≤ k ≤ δn ≤ b < ,  < c ≤ rn ≤ d < λ and

∑∞
n= γn < ∞. Then the

sequence {xn} converges weakly to some point x̄ ∈F , where x̄ = limn→∞ PFxn.

Proof Using the definition of strict pseudocontractions, we see that a mapping T is said
to be a k-strict pseudocontraction iff

〈
x – y, (I – T)x – (I – T)y

〉 ≥  – k


∥∥(I – T)x – (I – T)y
∥∥.

Define a mapping S : C → C by S =
∑N

m= μmSm. Next, we prove that F(S) =
⋂N

m= F(Sm)
and S is a k-strict pseudocontraction, where k =max{km :  ≤ m ≤ N}. Note that

〈
x – y, (I – S)x – (I – S)y

〉
=

N∑
m=

μm
〈
x – y, (I – Sm)x – (I – Sm)y

〉

≥
N∑

m=

μm
 – km


∥∥(I – Sm)x – (I – Sm)y
∥∥

≥
N∑

m=

μm
 – k


∥∥(I – Sm)x – (I – Sm)y
∥∥

≥  – k


∥∥(I – S)x – (I – S)y
∥∥.

This proves that S is a k-strict pseudocontraction, where k =max{km :  ≤ m ≤ N}. Next,
we show that F(S) =

⋂N
m= F(Sm). It is clear to see that F(S) ⊇ ⋂N

m= F(Sm). It suffices to
prove that

⋂N
m= F(Sm)⊇ F(S). Let x ∈ F(S) and write Tm = I – Sm. Let y ∈ ⋂N

m= F(Sm). For
any i, j ∈ {, , . . . ,N} and i �= j, we have

‖x – y‖ =
∥∥∥∥∥

N∑
m=

μm(y – Smx)

∥∥∥∥∥


≤
N∑

m=

μm‖y – Smx‖ –μiμj‖Six – Sjx‖

≤
N∑

m=

μm
(‖y – x‖ + km‖Tmx‖

)
–μiμj‖Six – Sjx‖

≤ ‖y – x‖ + k
N∑
i=

μm‖Tmx‖ –μiμj‖Six – Sjx‖.

This shows that

μiμj‖Six – Sjx‖ ≤ k
N∑

m=

μm‖Tmx‖.

Since
∑N

i= μmTmx = , we find that ‖Six – Sjx‖ = . This proves that Six = Sjx. Since x is a
fixed point of S, we obtain

⋂N
m= F(Sm) ⊇ F(S). This proves that F(S) =

⋂N
m= F(Sm). Putting

T = , F =  and rn = , we find from Theorem . the desired conclusion immediately.
�
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Next, we study an optimization problem: Find a minimizer of a convex and lower semi-
continuous functional h(x) defined on a closed convex subset C of a Hilbert space H .
We denote by � the set of solutions of the optimization problem. Let R be a bifunction

from C × C to R defined by R(x, y) = h(y) – h(x). We consider the following equilibrium
problem:

Find x ∈ C such that R(x, y)≥  ∀y ∈ C.

It is obvious that EP(R) = �. In addition, we also find that R(x, y) satisfies the conditions
(A)-(A).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let h(x)
be a convex and lower semicontinuous functional defined on C with a nonempty minimizer
set. Let {αn}, {βn} and {γn} be sequences in (, ). Let {rn} be a positive real number sequence,
and let {en} be a bounded sequence in C. Let {xn} be a sequence generated in the following
manner:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

h(u) – h(un) + 
rn 〈u – un,un – xn〉 ≥  ∀u ∈ C,

xn+ = αnxn + βnun + γnen ∀n≥ .

Assume that the sequences {αn}, {βn}, {γn} and {rn} satisfy the following restrictions:  < a ≤
αn ≤ a′ < ,  ≤ k ≤ δn ≤ b < ,  < c ≤ rn ≤ d < +∞ and

∑∞
n= γn < ∞. Then the sequence

{xn} converges weakly to some point x̄ ∈ �, where x̄ = limn→∞ P�xn.

Remark . A special form of the optimization problem is to take h(x) = ‖x‖, which is
known as the minimum norm point problem. We also remark here that if we take F = 
and S = I , then we easily obtain convergence theorems of solutions of variational inequal-
ity (.).
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