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Abstract
In this paper, we prove a fixed point theorem for a contraction in generalized
complete metric spaces endowed with partial order. As an application, we use the
fixed point theorem to prove the Hyers-Ulam stability of the Cauchy functional
equation in Banach spaces endowed with a partial order.
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1 Introduction
In , Ulam gave a wide ranging talk in front of the mathematics club of University of
Wisconsin in which he discussed a number of important unsolved problems (see []). One
of the problems was the question concerning the stability of homomorphisms:
Let G be a group and G be a metric group with a metric d(·, ·). Given ε > , does there

exist δ >  such that, if a mapping h :G →G satisfies the inequality d(h(xy),h(x)h(y)) < δ

for all x, y ∈G, then there exists a homomorphism H :G →G with d(h(x),H(x)) < ε for
all x ∈G?
In , Hyers [] affirmatively answered the question of Ulam for the case where G

and G are Banach spaces. Taking this fact into account, the additive Cauchy functional
equation f (x + y) = f (x) + f (y) is said to satisfy the Hyers-Ulam stability.
On the other hand, Banach’s contraction principle is one of the pivotal results of analy-

sis. It is widely considered as the source of metric fixed point theory. Also, its significance
lies in its vast applicability in a number of branches of mathematics. Many kinds of gen-
eralizations of the above principle have been a heavily investigated branch of research. In
particular, Diaz and Margolis [] presented the following definition and fixed point theo-
rem in a ‘generalized complete metric space’.

Definition . Let X be an abstract (nonempty) set and assume that, in the Cartesian
product X × X, a distance function d(x, y) ( ≤ d(x, y) ≤ ∞ for all x, y ∈ X) is defined and
satisfies the following conditions:
(D) d(x, y) =  if and only if x = y;
(D) d(x, y) = d(y,x) (symmetry);
(D) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality);
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(D) every d-Cauchy sequence in X is d-convergent, i.e., limm,n→∞ d(xn,xm) =  for a
sequence {xn} in X implies the existence of an element x ∈ X with
limn→∞ d(x,xn) =  (the point x is unique by (D) and (D)).

Then we call (X,d) a generalized complete metric space.

Theorem . Suppose that (X,d) is a generalized complete metric space and the function
T : X → X is a contraction, that is, T satisfies the following condition:
(CI) There exists a constant q with  < q <  such that, whenever d(x, y) < ∞,

d(Tx,Ty) ≤ qd(x, y).

Let x ∈ X and consider a sequence {Tlx} of successive approximations with initial ele-
ment x. Then the following alternative holds: either
(A) for all l ≥ , one has d(Tl(x),Tl+(x)) = ∞

or
(B) the sequence {Tlx} is d-convergent to a fixed point of T.

Recently, Nieto and Rodriguez-Lopez [] proved a fixed point theorem in partially or-
dered sets as follows.

Theorem . Let (X,≤) be a partially ordered set. Suppose that there exists a metric d in
X such that (X,d) is a complete metric space. Let f : X −→ X be a continuous and nonde-
creasing mapping such that there exists k ∈ [, ) with

d
(
f (x), f (y)

) ≤ kd(x, y)

for all x, y ∈ X. If there exists x ∈ X with x ≤ f (x), then f has a fixed point.

In , Cǎdariu and Radu [] applied the fixed point method to investigate the Jensen
functional equation (see also [–]) and presented a short and simple proof (different
from the direct method initiated by Hyers in ) for the Hyers-Ulam stability of the
Jensen functional equation [] for proving properties of generalized Hyers-Ulam stability
for some functional equations in a single variable [] for the stability of some nonlinear
equations []. Recently, Brzdek [], Brzdek and Cieplinski [, ] reported some inter-
esting results in this direction (see also [–]).
In this paper, we prove a fixed point theorem for self-mappings on a partially ordered

set X which has a generalized metric d. Moreover, we give a generalization of the Hyers-
Ulam stability of the conditional Cauchy equation as an important result of our fixed point
theorem.

2 Main results
We start our work by the following fixed point theorem in generalized complete metric
spaces.

Theorem . Let (X,d) be a generalized complete metric space and ≤ be a partial order
on X. Let f : X → X be a continuous and nondecreasing mapping such that there exists
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k ∈ [, ) with

d
(
f (x), f (y)

) ≤ kd(x, y)

for all x, y ∈ X with x ≥ y. If there exists x ≤ f (x), then the following alternative holds:
either
(A) for all l ≥ , one has

d
(
f l(x), f l+(x)

)
=∞

or
(B) the sequence of {f n(x)} is d-convergent to a fixed point of f .

Proof Consider the sequence {d(f l(x), f l+(x))} of real numbers. Then we consider two
cases as follows:
(a) If, for all l ≥ , d(f l(x), f l+(x)) = +∞, then (A) holds;
(b) If, for some integer l, d(f l(x), f l+(x)) < +∞, then N =N(x) denotes the smallest

nonnegative integer such that d(f N (x), f N+(x)) < +∞.
We see that d(f N+(x), f N+(x)) < d(f N (x), f N+(x)) < +∞ and, by induction, we have

d
(
f N+l(x), f N+l+(x)

)
< +∞

for all l ≥ .
Note that f is nondecreasing. Then we have

x ≤ f (x) ≤ f (x) ≤ · · · ≤ f n(x) ≤ · · ·

and we can write d(f n(x), f n+(x))≤ kd(f n(x), f n–(x)) for all n≥ .
Now, by induction, we show that

d
(
f n+(x), f N (x)

) ≤ knd
(
f (x),x

)
(�)

for all n >N(x). For n = , since x ≤ f (x), we have

d
(
f (x), f (x)

) ≤ kd
(
f (x),x

)
.

Supposing that (�) holds for some n and using that f n(x)≤ f n+(x), we obtain

d
(
f n+(x), f n+(x)

) ≤ kd(f n+(x), f n(x)≤ kknd
(
f (x),x

)
= kn+d

(
f (x),x

)
.

Thus it follows that {f n(x)} is a Cauchy sequence in X. Indeed, let m > n > N(x). Then
we have

d
(
f m(x), f n(x)

) ≤ d
(
f m(x), f m–(x)

)
+ · · · + d

(
f n+(x), f n(x)

)
≤ (

km– + km– + · · · + kn
)
d
(
f (x),x

)

=
kn – km

 – k
d
(
f (x),x

)
.
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On the other hand, since X is a complete generalized metric space, there exists y ∈ X
such that limn→∞ f n(x) = y.
Finally, we prove that y ∈ X is a fixed point of f , that is, f (y) = y. Let ε >  be a positive real

number. Using the continuity of f at y, for ε/, there exists δ >  such that d(z, y) < δ implies
that d(f (z), f (y)) < ε/. Now, by the convergence of {f n(x)} to y and η = min{ε/, δ} > ,
there exists n ∈ N such that n > N(x) and, for all n≥ n, d(f n+(x), y) < η. Therefore,
for all n > n, we have

d
(
f (y), y

) ≤ d
(
f (y), f

(
f n(x)

))
+ d

(
f n+(x), y

)
< ε/ + η ≤ ε,

and hence f (y) = y. This completes the proof. �

Theorem . In Theorem ., we can replace the following condition with the continuity
of f :
If {xn} is a nondecreasing sequence and xn → x in X, then xn ≤ x for all n ∈N.
Then f has a fixed point.

Proof In Theorem ., we just showed that y is a fixed point of f . Let ε >  be given. Since
f n(x) → y and {f n(x)} is a nondecreasing sequence, we have f n(x) ≤ y. For any ε/ > ,
there exists n ∈ N such that n ≥ l and, for all n ≥ n, d(f n (x), y) < ε/. Therefore, we
have

d
(
f (y), y

) ≤ d
(
f (y), f n+(x)

)
+ d

(
f n+(x), y

)
≤ kd

(
y, f n (x)

)
+ d

(
f n+(x), y

)
< kε/ + ε/

< ε.

This shows that f (y) = y. This completes the proof. �

Remark . In Theorem ., since f n(x) → y and {f n(x)} is nondecreasing, we have
x ≤ y and

d(x, y) ≤ d
(
x, f (x)

)
+ d

(
f (x), f (y)

)
.

Therefore, we have

d(x, y) ≤ d
(
x, f (x)

)
+ kd(x, y).

Thus it follows that

d(x, y) ≤ 
 – k

d
(
x, f (x)

)
.

Theorem . If, for all x, y ∈ X, there exists z which is comparable to x and y and d(z,x) <
∞, d(z, y) < ∞, then, in Theorems . and ., the uniqueness of the fixed point of f follows.
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Proof If x ∈ X is another fixed point of f , then we prove that d(x, y) = , where y =
limn→∞ f n(x). Since there exists z ∈ X which is comparable to x and y, f n(z) is compa-
rable to f n(x) = x and f n(y) = y for all n ∈N∪ {} and

d(x, y) ≤ d
(
f n(x), f n(z)

)
+ d

(
f n(z) + f n(y)

) ≤ knd(x, z) + knd(z, y)→ 

whenever n→ ∞ and so we have d(x, z) = . This completes the proof. �

3 Application
In this section, we suppose that (E,‖ · ‖,≤) is a partially ordered normed space with the
following conditions:
(a) for all x, y ∈ E, x ≤ y 	⇒ rx ≤ ry for all r ∈R

+;
(b) for all x, y ∈ E, there exists z ∈ E such that z is comparable to x and y.

Also, we suppose that (E,‖ · ‖,≤) is a partially ordered Banach space with the condition
(i) and satisfies the following:
(c) for all x, y ∈ E, there exists z ∈ E such that z is an upper bound of {x, y};
(d) if {xn} is a nondecreasing sequence in E and xn → x, then x ≥ xn for all n ∈N.

As a simple example, we can show that R satisfies the conditions (a), (b), (c) and (d). Also,
in this section, we consider × ∞ = .
Now, we prove the main result of this section as follows.

Theorem . Suppose that f : E → E is a mapping satisfying

f (x)≤ f (x) (.)

and

∥∥f (x + y + z –w) – f (x) – f (y) – f (z) + f (w)
∥∥
 ≤ φ(x, z) + φ(y,w) (.)

for all x, y, z,w ∈ E, where x is comparable to z, y is comparable to w, where φ : E × E →
[,∞) is a function satisfying φ(, ) =  and the following condition:

φ(x, y) ≤ Lφ

(
x

,
y


)
(.)

for all x, y ∈ E, where x is comparable to y and L ∈ (, ) is a constant. Then there exists a
unique additive mapping T : E → E such that

∥∥T(x) – f (x)
∥∥
 ≤ 

 – L
φ(x,x) (.)

for all x ∈ E.

Proof It is clear that f () = . Putting z := x and y = w :=  in (.), we get

∥∥f (x) – f (x)
∥∥
 ≤ φ(x,x)

http://www.fixedpointtheoryandapplications.com/content/2014/1/15
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for all x ∈ E. Hence we have

∥∥∥∥ f (x)
– f (x)

∥∥∥∥

≤ 


φ(x,x)≤ φ(x,x) (.)

for all x ∈ E. Consider X := {g : g : E → E} and introduce the generalized metric d on X
by

d(h, g) := inf
{
C ∈R

+ :
∥∥h(x) – g(x)

∥∥
 ≤ Cφ(x,x),∀x ∈ E

}

for all h, g ∈ X. It is easy to show that (X,d) is a complete generalized metric space.
Now, we put the partial order ≤ on X as follows: for all h, g ∈ X,

h≤ g ⇐⇒ h(x) ≤ g(x)

for all x ∈ E. Now, we define a mapping J : X → X by

J(h)(x) :=


h(x)

for all x ∈ E. For any g,h ∈ X with g ≤ h, it follows that, for all x ∈ E,

d(g,h) < C 	⇒ ∥∥g(x) – h(x)
∥∥
 ≤ Cφ(x,x)

	⇒
∥∥∥∥g(x)

–
h(x)


∥∥∥∥

≤ C

φ(x, x)


	⇒ ∥∥J(g)(x) – J(h)(x)
∥∥
 ≤ LCφ(x,x).

It follows that

d
(
J(g), J(h)

) ≤ Ld(g,h).

It is easy to show that J is a nondecreasing mapping.
Now, we show that J is a continuous function. To this end, let {hn} be a sequence in (X,d)

which converges to h ∈ X and let ε >  be given. Then there exist N ∈ N and C ∈ R
+ with

C ≤ ε such that

∥∥hn(x) – h(x)
∥∥
 ≤ Cφ(x,x)

for all x ∈ E and n≥N and so

∥∥hn(x) – h(x)
∥∥
 ≤ Cφ(x, x)

for all x ∈ E and n≥N . By inequality (.) and the definition of J , we get

∥∥J(hn)(x) – J(h)(x)
∥∥
 ≤ LCφ(x,x)

http://www.fixedpointtheoryandapplications.com/content/2014/1/15
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for all x ∈ E and n≥N . Hence

d
(
J(hn), J(h)

) ≤ LC < ε

for all n ≥ N . It follows that J is continuous. On the other hand, by (.), we have f ≤ J(f )
and, by applying inequality (.), we see that d(J(f ), f ) ≤ . ApplyingTheorem., it follows
that J has a fixed point T ∈ X such that limn→∞ d(Jn(f ),T) = . It follows that

T(x) = lim
n→∞

f (nx)
n

(.)

for all x ∈ E. For any x ∈ E, it follows from (.) that the sequence { f (nx)n } is a nonde-
creasing sequence in E and so, by (.), we have f (nx)

n ≤ T(x) for all n ≥ . In particular,
f (x)≤ T(x). This shows that f ≤ T . Now, we can see that

d
(
J(f ), J(T)

) ≤ Ld(f ,T)

and hence

d(f ,T)≤ 
 – L

.

This implies inequality (.).
On the other hand, by using inequality (.), we have

φ
(
nx, ny

) ≤ Lnφ(x, y) (.)

for all x, y ∈ E and n ∈ N, where x is comparable to y. Let x, y ∈ E be arbitrary elements.
Then there exists z ∈ E such that z is comparable to x and y. This implies that nz is
comparable to nx and ny for all n ∈N. It follows from (.) that

∥∥f (n(x + y)
)
– f

(
nx

)
– f

(
ny

)∥∥


=
∥∥f (nx + ny + nz – nz

)
– f

(
nx

)
– f

(
ny

)
– f

(
nz

)
+ f

(
nz

)∥∥


≤ φ
(
nx, nz

)
+ φ

(
ny, nz

)

for all n ∈N. By using (.) and (.), it follows that T is a Cauchy mapping.
To prove the uniqueness property of T , suppose that T is another additive function

satisfying (.). It is clear that J(T) = T. Then, for any x ∈ E, there exists g(x) ∈ E such
that g(x) is an upper bound of {T(x),T(x)}. This shows that g : E → E is amappingwhich
is comparable to T and T. Hence we have

d(T ,T)≤ d
(
T , Jn(g)

)
+ d

(
Jn(g),T

)
= d

(
Jn(T), Jn(g)

)
+ d

(
Jn(g), Jn(T)

)
≤ Lnd(T , g) + Lnd(g,T)

for all n ∈N. Since L < , T = T. This completes the proof. �
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Corollary . Let ε ∈ [,∞) and f : E → E be a function such that f () =  and

f (x)≤ f (x)

and

∥∥f (x + y + z –w) – f (x) – f (y) – f (z) + f (w)
∥∥
 ≤ ε

for all x, y, z,w ∈ E, where x is comparable to z and y is comparable to w. Then there exists
a unique additive mapping T : E → E such that

∥∥T(x) – f (x)
∥∥
 ≤ ε

for all x ∈ E.

Proof Set φ(x, y) = ε
 for all x, y ∈ E with x, y = , φ(, ) = , and let L = 

 in Theorem ..
Then we get the desired result. �

Corollary . Let p ∈ (, ) and ε ∈ [,∞). Suppose that f : E → E is a mapping such
that

f (x)≤ f (x)

and

∥∥f (x + y + z –w) – f (x) – f (y) – f (z) + f (w)
∥∥
 ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all x, y, z,w ∈ E, where x is comparable to z and y is comparable to w. Then there exists
a unique additive mapping T : E → E such that

∥∥T(x) – f (x)
∥∥
 ≤ –p

–p – 
ε‖x‖p

for all x ∈ E.

Proof Set φ(x, y) = ε(‖x‖p +‖y‖p) for all x, y ∈ E, and let L = p– in Theorem .. Then we
get the desired result. �
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5. Cădariu, L, Radu, V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1),

Article ID 4 (2003)
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