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1 Introduction
Let E be a reflexive real Banach space E, and E∗ its dual. Let f : E → (–∞,∞] be a proper
convex and lower semicontinuous function. The subdifferential of f at x ∈ E is the convex
set defined by

∂f (x) =
{
x∗ ∈ E∗ : f (x) +

〈
x∗, y – x

〉 ≤ f (y),∀y ∈ E
}
. (.)

The Fenchel conjugate of f is the function f ∗ : E∗ → (–∞, +∞] defined by f ∗(y) =
sup{〈y,x〉 – f (x) : x ∈ E}. It is not difficult to check that when f is proper and lower semi-
continuous, so is f ∗.
The function f is said to be essentially smooth if ∂f is both locally bounded and single-

valued on its domain. It is called essentially strictly convex, if (∂f )– is locally bounded
on its domain and f is strictly convex on every convex subset of dom ∂f . f is said to be
Legendre, if it is both essentially smooth and essentially strictly convex.
Let dom f = {x ∈ E : f (x) < ∞}. Then for any x ∈ int(dom f ) and y ∈ E, the right-hand

derivative of f at x in the direction of y is defined by

f ◦(x, y) := lim
t→+

f (x + ty) – f (x)
t

. (.)

If the limit in (.) exists then f is called Gâteaux differentiable at x. In this case, f ◦(x, y)
coincideswith∇f (x), the value of the gradient∇f of f at x. The function f is calledGâteaux
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differentiable if it is Gâteaux differentiable for any x ∈ int(dom f ). The function f called
Fréchet differentiable at x if the limit in (.) is attained uniformly for all y ∈ E such that
‖y‖ =  and f is said to be uniformly Fréchet differentiable on a subset C of E if the limit is
attained uniformly for x ∈ C and ‖y‖ = . When the subdifferential of f is single-valued, it
coincides with the gradient ∂f =∇f (see []).
We remark that if E is a reflexive Banach space. Then we have
() f is essentially smooth if and only if f ∗ is essentially strictly convex (see [],

Theorem .).
() (∂f )– = ∂f ∗ (see []).
() f is Legendre if and only if f ∗ is Legendre (see [], Corollary .).
() If f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f ∗)–,

ran∇f = dom∇f ∗ = int(dom f ∗) and ran∇f ∗ = dom∇f = int(dom f ) (see [],
Theorem .).

When E is a smooth and strictly convex Banach space, one important and interesting
example of Legendre function is f (x) := ‖x‖p ( < p < ∞). In this case the gradient ∇f = pJp
( < p < ∞), where Jp is the generalized duality mapping from E into E∗ defined by

Jp(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖p,∥∥f ∗∥∥ = ‖x‖p–}.

In particular, J = J is called the normalized duality mapping. It is well known that if E∗ is
strictly convex, then Jp is single-valued and that

Jp(x) = ‖x‖p–J(x), x = .

If E =H , a Hilbert space, then J is the identity mapping and hence ∇f = I , where I is the
identity mapping in H .
In this paper, E is a reflexive real Banach space, f : E → (–∞, +∞] is a proper, lower

semicontinuous, and convex function, and f ∗ : E∗ → (–∞, +∞] is the Fenchel conjugate
of f .
Let f : E → (–∞, +∞] be a Gâteaux differentiable function. The function Df : dom f ×

int(dom f ) → [, +∞) defined by

Df (x, y) := f (x) – f (y) –
〈∇f (y),x – y

〉
is called the Bregman distance with respect to f []. Since (∇f )– = ∇f ∗ and f ∗(∇f ) =
〈x,∇f (x)〉 – f (x), it is easy to check that

Df ∗
(∇f (y),∇f (x)

)
=Df (x, y). (.)

A Bregman projection [] of x ∈ int(dom f ) onto the nonempty closed and convex set
C ⊂ int(dom f ) is the unique vector Pf

C(x) ∈ C satisfying

Df
(
Pf
C(x),x

)
= inf

{
Df (y,x) : y ∈ C

}
.

Remark . If E is a smooth and strictly convex Banach space and f (x) = ‖x‖ for all x ∈ E,
then we have ∇f (x) = Jx, for all x ∈ E, where J the normalized duality mapping and hence

http://www.fixedpointtheoryandapplications.com/content/2014/1/152


Shahzad and Zegeye Fixed Point Theory and Applications 2014, 2014:152 Page 3 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/152

the function Df (x, y) reduces to φ(x, y) which is defined by φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖
for all x, y ∈ E, which is the Lyapunov function introduced by Alber [], and Pf

C(x) reduces
to the generalized projection �C(x) (see, e.g., []), which is defined by

φ
(
�C(x),x

)
=min

y∈C φ(y,x).

If E =H , a Hilbert space, then J is the identity mapping and hence the Bregman distance
becomes Df (x, y) = ‖x– y‖, for x, y ∈H , and the Bregman projection Pf

C(x) reduces to the
metric projection PC of H on to C.

Let C be a nonempty closed and convex subset of int(dom(f )). Let T : C → int(dom(f ))
be a mapping. An element p ∈ C is called a fixed point of T if T(p) = p. The set of fixed
points of T is denoted by F(T). A point p in C is said to be an asymptotic fixed point of T
(see []) if C contains a sequence {xn}which converges weakly to p such that limn→∞ ‖xn –
Txn‖ = . The set of asymptotic fixed points of T will be denoted by F̂(T). T is said to be
nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for each x, y ∈ C, and is called quasi-nonexpansive
if F(T) = ∅ and ‖Tx – p‖ ≤ ‖x – p‖ for all x ∈ C and p ∈ F(T). The mapping T is called
relatively nonexpansive if (A) F(T) = ∅; (A) φ(p,Tx) ≤ φ(p,x) for x ∈ C and p ∈ F(T),
and (A) F(T) = F̂(T) and is said to be Bregman relatively nonexpansive with respect to
f if (B) F(T) = ∅; (B) Df (p,Tx) ≤ Df (p,x) for x ∈ C, p ∈ F(T) and (B) F(T) = F̂(T).
We remark that the class of relatively nonexpansive mappings is contained in a class of
Bregman relatively nonexpansive mappings with respect to f (x) = ‖x‖.
Let N(C) and CB(C) denote the family of nonempty subsets and nonempty closed

bounded subsets of C, respectively. Let H be the Hausdorff metric on CB(C) defined by

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

for all A,B ∈ CB(C), where d(a,B) = inf{‖a– b‖ : b ∈ B} is the distance from the point a to
the subset B.
Let T : C → CB(C) be a mapping. T is said to be nonexpansive if H(Tx,Ty) ≤ ‖x – y‖,

for all x, y ∈ C. An element p ∈ C is called a fixed point of T , if p ∈ F(T), where F(T) :=
{p ∈ C : p ∈ T(p)}. A point p ∈ C is called an asymptotic fixed point of T , if there exists
a sequence {xn} in C which converges weakly to p such that limn→∞ d(xn,Txn) = . T is
called relatively nonexpansive if (A)′ F(T) = ∅; (A)′ φ(p,u) ≤ φ(p,x) for all u ∈ Tx, x ∈ C,
and (A)′ F(T) = F̂(T). AmappingT is called quasi-Bregmannonexpansivewith respect to
f if F(T) = ∅ and Df (p,u) ≤ Df (p,x) for all u ∈ Tx, x ∈ C, p ∈ F(T) and is called Bregman
relatively nonexpansive with respect to f if (B)′ F(T) = ∅; (B)′ Df (p,u) ≤ Df (p,x) for
u ∈ Tx, x ∈ C, p ∈ F(T), and (B)′ F(T) = F̂(T).
We note that the class of multi-valued relatively nonexpansive mappings is contained

in a class of multi-valued Bregman relatively nonexpansive mappings which includes the
class of single-valued Bregman relatively nonexpansive mappings. Hence, the class of
multi-valued Bregman relatively nonexpansive mappings is a more general class of map-
pings. An example of a multi-valued Bregman relatively nonexpansive mapping is given
now.
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Example . Let I = [, ], X = Lp(I),  < p < ∞ and C = {f ∈ X : f (x) ≥ ,∀x ∈ I}. Let
T : C → CB(C) be defined by

T(f ) =

{
{h ∈ C : f (x) – 

 ≤ h(x) ≤ f (x) – 
 ,∀x ∈ I}, if f (x) > ,∀x ∈ I;

{}, otherwise.

Let g : E → R be defined by g(x) = 
p‖x‖p,  < p < ∞, x ∈ E. Clearly, we have ∇g(x) = Jp(x)

for all x ∈ E, and g∗(x∗) = 
q‖x∗‖q, where  < q <∞ satisfies 

p +

q = . It is clear that F(T) =

{}. Let f ∈ C and h ∈ T(f ) such that f (x) >  for all x ∈ [, ]. Then, using (.), we get

Dg(,h) = Dg∗
(∇g(h),∇g()

)
=Dg∗

(
Jp(h), 

)
= g∗(Jp(h)) – g∗() –

〈∇g∗(), Jp(h) – 
〉

=

q
∥∥Jp(h)∥∥q ≤ 

q
∥∥Jp(f )∥∥q

= Dg∗
(
Jp(f ), 

)
=Dg(, f ).

Next, let f ∈ C such that there exists x ∈ I such that f (x) ≤ , then

Dg(, ) =Dg∗ (, )≤Dg∗
(
Jp(f ), 

)
=Dg(, f ).

Hence, T is a multi-valued quasi-Bregman nonexpansive mapping. Now, we show
that F̂(T) = F(T). Let {fn} ⊂ C be a sequence which converges weakly to h, and zn =
d(fn,T(fn)) → . Let n ∈N, then we have

zn =

{

 , if fn(x) > ,∀x ∈ [, ];
‖fn‖p, otherwise.

Since zn → , we have ‖fn‖p →  and hence h = . Therefore, T is a multi-valued Bregman
relatively nonexpansive mapping.

The approximations of fixed points of nonexpansive, quasi-nonexpansive, relatively
nonexpansive, and relatively quasi-nonexpansive mappings when they exist have been in-
tensively studied for almost  years or so by various authors (see, e.g., [–] and the
references therein) in Banach spaces.
In , Bregman [] discovered an effective technique using the so-called Bregman dis-

tance function Df in the process of designing and analyzing feasibility and optimization
algorithms. This opened a growing area of research in which Bregman’s technique is ap-
plied in various ways in order to design and analyze iterative algorithms for solving not
only feasibility and optimization problems, but also algorithms for solving variational in-
equality problems, equilibrium problems, fixed point problems for nonlinear mappings,
and so on (see, e.g., [, , ], and the references therein).
In [], Reich and Sabach proposed the following algorithms for finding common fixed

points of finitely many Bregman firmly nonexpansive operators defined on a nonempty,
closed and convex subset C of a reflexive Banach space E (see also [, ]). The construc-
tion of fixed points for Bregman-type single-valued mappings via iterative processes has
been investigated in, for example, [, –]. This now leads to the following important
question.
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Question Is it possible to obtain the results of Reich and Sabach [] for the class ofmulti-
valued Bregman relatively nonexpansive mappings?

The study of fixed points for multi-valued nonexpansive mappings using the Hausdorff
metric was introduced by Markin [] (see also []). Later, an interesting and rich fixed
point theory for such mappings was developed which has applications in control theory,
convex optimization, differential inclusion, and economics (see, for example, [] and ref-
erences therein). Moreover, the existence of fixed points for multi-valued nonexpansive
mappings in uniformly convex Banach spaces was proved by Lim [] (see also []).
Recently, Homaeipour and Razani [] studied the following iterative scheme for a fixed

point of relatively nonexpansivemulti-valuedmapping in uniformly convex and uniformly
smooth Banach space E:{

x ∈ C, chosen arbitrary,
xn+ =�CJ–(αnJxn + ( – αn)Jzn), zn ∈ Txn,n≥ ,

(.)

where {αn} ⊂ (, ) for all n ≥  and lim infn→∞ αn( – αn) > . They proved that if J is
weakly sequentially continuous then the sequence {xn} converges weakly to a fixed point
of T . Furthermore, it is shown that the scheme converges strongly to a fixed point of T if
the interior of F(T) is nonempty.
More recently, Zegeye and Shahzad [], extended the above result to a finite family of

multi-valued relatively nonexpansivemappingswithout the assumption that the interior of
F(T) is nonempty. In fact, they proved that if C is a nonempty, closed, and convex subset
of a uniformly smooth and uniformly convex real Banach space E and Ti : C → CB(C),
for i = , , . . . ,N , are relatively nonexpansive multi-valued mappings with F :=

⋂N
i= F(Ti)

nonempty, then the sequence {xn} generated by⎧⎪⎨⎪⎩
x = w ∈ C, chosen arbitrarily,
yn =�CJ–(αnJw + ( – αn)Jxn),
xn+ = J–(βn,Jxn +

∑N
i= βn,iJun,i), un,i ∈ Tiyn,n≥ ,

where αn ∈ (, ) and {βn,i} ⊂ [a,b] ⊂ (, ), for i = , , . . . ,N , satisfy certain conditions,
converges strongly to an element of F .
In this paper, it is our purpose to introduce an iterative schemewhich converges strongly

to a common fixed point of a finite family of multi-valued Bregman relatively nonexpan-
sive mappings.We prove strong convergence theorems for the sequences produced by the
method. Our results improve and generalize many known results in the current literature
(see, for example, [, ]).

2 Preliminaries
Let E be a reflexive real Banach space and E∗ as its dual. Let f : E → (–∞, +∞] be aGâteaux
differentiable function. Themodulus of the total convexity of f at x ∈ dom f is the function
νf (x, ·) : [, +∞)→ [, +∞] defined by

νf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
.

The function f is called totally convex at x if νf (x, t) > , whenever t > . The function
f is called totally convex if it is totally convex at any point x ∈ int(dom f ) and is said to be

http://www.fixedpointtheoryandapplications.com/content/2014/1/152
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totally convex on bounded sets if νf (B, t) >  for any nonempty bounded subset B of E and
t > , where the modulus of total convexity of the function f on the set B is the function
νf : int dom f × [, +∞)→ [, +∞] defined by

νf (B, t) := inf
{
Vf (x, t) : x ∈ B∩ dom f

}
.

Let E be a Banach space and let Br := {z ∈ E : ‖z‖ ≤ r} for all r >  and SE = {x ∈ E : ‖x‖ =
}. Then a function f : E →R is said to be uniformly convex on bounded subsets of E [,
pp.] if ρr(t) >  for all r, t > , where ρr : [,∞)→ [,∞] is defined by

ρr(t) := inf
x,y∈Br ,‖x–y‖=t,α∈(,)

αf (x) + ( – α)f (y) – f (αx + ( – α)y)
α( – α)

,

for all t ≥ . The function ρr is called the gauge of the uniform convexity of f . We know
that f is totally convex on bounded sets if and only if f is uniformly convex on bounded
sets (see [], Theorem .).
If f is uniformly convex, then the following lemma is known.

Lemma . [] Let E be a Banach space, let r >  be a constant, and let f : E → R be a
uniformly convex function on bounded subsets of E. Then

f

( n∑
k=

αkxk

)
≤

n∑
k=

αkf (xk) – αiαjρr
(‖xi – yj‖

)
,

for all i, j ∈ {, , , . . . ,n}, xk ∈ Br, αk ∈ (, ), and k = , , , . . . ,n with
∑n

k= αk = , where
ρr is the gauge of uniform convexity of f .

A function f on E is coercive [] if the sublevel set of f is bounded; equivalently,
lim‖x‖→∞ f (x) = ∞. A function f on E is said to be strongly coercive [] if lim‖x‖→∞ f (x)/
‖x‖ =∞.
In the sequel, we shall need the following lemmas.

Lemma . [] The function f : E → (–∞, +∞) is totally convex on bounded subsets of E
if and only if for any two sequences {xn} and {yn} in int(dom f ) and dom f , respectively, such
that the first one is bounded, we have

lim
n→∞Df (yn,xn) =  �⇒ lim

n→∞‖yn – xn‖ = .

Lemma . [] Let f : E → R be a strongly coercive and uniformly convex on bounded
subsets of E, then f ∗ is bounded and uniformly Fréchet differentiable on bounded subsets
of E∗.

Lemma . [] Let f : E → (–∞, +∞] be a uniformly Fréchet differentiable and bounded
on bounded sets of E, then ∇f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/152
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Lemma . [] Let f : E → (–∞, +∞] be a proper, lower semicontinuous and convex func-
tion, then f ∗ : E∗ → (–∞, +∞] is a proper, weak∗ lower semicontinuous and convex func-
tion. Thus, for all z ∈ E, we have

Df

(
z,∇f ∗

( N∑
i=

ti∇f (xi)

))
≤

N∑
i=

tiDf (z,xi). (.)

Lemma . [] Let f : E →R be a Gâteaux differentiable on int(dom f ) such that ∇f ∗ is
bounded on bounded subsets of dom f ∗. Let x ∈ E and {xn} ⊂ E. If {Df (x,xn)} is bounded, so
is the sequence {xn}.

Lemma . [] Let C be a nonempty, closed, and convex subset of E. Let f : E → R be a
Gâteaux differentiable and totally convex function and let x ∈ E. Then

(i) z = Pf
C(x) if and only if 〈∇f (x) –∇f (z), y – z〉 ≤ , ∀y ∈ C.

(ii) Df (y,P
f
C(x)) +Df (P

f
C(x),x)≤Df (y,x), ∀y ∈ C.

Let f : E →R be a Legendre and Gâteaux differentiable function. Following [] and [],
we make use of the function Vf : E × E∗ → [, +∞) associated with f , which is defined by

Vf
(
x,x∗) = f (x) –

〈
x,x∗〉 + f ∗(x∗), ∀x ∈ E,x∗ ∈ E∗. (.)

Then we observe that Vf is nonnegative and

Vf
(
x,x∗) =Df

(
x,∇f ∗(x∗)) for all x ∈ E and x∗ ∈ E∗. (.)

Moreover, by the subdifferential inequality,

Vf
(
x,x∗) + 〈

y∗,∇f ∗(x∗) – x
〉 ≤ Vf

(
x,x∗ + y∗), (.)

∀x ∈ E and x∗, y∗ ∈ E∗ (see []).

Lemma . [] Let {an} be a sequence of nonnegative real numbers satisfying the follow-
ing relation:

an+ ≤ ( – αn)an + αnδn, n≥ n,

where {αn} ⊂ (, ) and {δn} ⊂ R satisfy the following conditions: limn→∞ αn = ,
∑∞

n= αn =
∞, and lim supn→∞ δn ≤ . Then limn→∞ an = .

Lemma. [] Let {an} be sequences of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+ for all i ∈N.Then there exists an increasing sequence {mk} ⊂
N such that mk → ∞ and the following properties are satisfied by all (sufficiently large)
numbers k ∈N:

amk ≤ amk+ and ak ≤ amk+.

In fact, mk is the largest number n in the set {, , . . . ,k} such that the condition an ≤ an+
holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/152
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3 Main result
In the sequel we shall use the following proposition.

Proposition . Let f : E → R be a uniformly Fréchet differentiable and totally convex
on bounded subsets of E. Let C be a nonempty, closed, and convex subset of int(dom f ) and
T : C → CB(C) be a Bregman relatively nonexpansive mapping. Then F(T) is closed and
convex.

Proof First, we show that F(T) is closed. Let {xn} be a sequence in F(T) such that xn → x∗.
Since T is Bregman relatively nonexpansive mapping, we have Df (xn,u) ≤ Df (xn,x∗), for
all u ∈ Tx∗ for all n ∈ N. Therefore,

Df
(
x∗,u

)
= lim

n→∞Df (xn,u)

≤ lim
n→∞Df

(
xn,x∗)

= Df
(
x∗,x∗) = . (.)

Thus, by Lemma . we obtain x∗ = u. Hence, x∗ ∈ F(T) and F(T) is closed. Next, we show
that F(T) is convex. Let x, y ∈ F(T) and p = tx+(– t)y for t ∈ (, ).We show that p ∈ F(T).
Let w ∈ T(p), then we have

Df (p,w) = f (p) – f (w) –
〈∇f (w),p –w

〉
= f (p) – f (w) –

〈∇f (w), tx + ( – t)y –w
〉

= f (p) + tDf (x,w) + ( – t)Df (y,w) – tf (x) – ( – t)f (y)

≤ f (p) + tDf (x,p) + ( – t)Df (y,p) – tf (x) – ( – t)f (y)

≤ f (p) + t
[
f (x) – f (p) –

〈∇f (p),x – p
〉]

+ ( – t)
[
f (y) – f (p) –

〈∇f (p), y – p
〉]
– tf (x) – ( – t)f (y)

=
〈∇f (p), tx + ( – t)y – p

〉
= .

Thus, by Lemma . we get p ∈ T(p). Hence, p ∈ F(T) and F(T) is convex. Therefore, F(T)
is closed and convex. �

Theorem . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ) and Ti : C → CB(C), for i = , , . . . ,N , be
a finite family of Bregman relatively nonexpansive mappings such that F :=

⋂N
i= F(Ti) is

nonempty. For u,x ∈ C let {xn} be a sequence generated by

{
wn = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (xn)),
xn+ =∇f ∗(β∇f (wn) +

∑N
i= βi∇f (ui,n)), ui,n ∈ Tiwn,∀n≥ ,

(.)

where {αn} ⊂ (, ) and {βi}Ni= ⊂ [c,d] ⊂ (, ) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞ and∑N
i= βi = . Then {xn} converges strongly to p = Pf

F (u).

http://www.fixedpointtheoryandapplications.com/content/2014/1/152
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Proof Proposition . ensures that each F(Ti), for i ∈ {, , . . . ,N}, and hence F , is closed
and convex. Thus, Pf

F is well defined. Let p = Pf
F (u). Then, from (.), Lemmas ., .,

and the property of Df , we get

Df (p,wn) = Df
(
p,Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (xn)
))

≤ Df
(
p,∇f ∗(αn∇f (u) + ( – αn)∇f (xn)

))
= αnDf (p,u) + ( – αn)Df (p,xn). (.)

Moreover, from (.), (.), and (.) we get

Df (p,xn+) = Df

(
p,∇f ∗

(
β∇f (wn) +

N∑
i=

βi∇f (ui,n)

))

= Vf

(
p,β∇f (wn) +

N∑
i=

βi∇f (ui,n)

)

= f (p) –

〈
p,β∇f (wn) +

N∑
i=

βi∇f (ui,n)

〉

+ f ∗
(

β∇f (wn) +
N∑
i=

βi∇f (ui,n)

)
.

Since f is uniformly Fréchet differentiable function we find that f is uniformly smooth and
hence by Theorem .. of [] we find that f ∗ is uniformly convex. This, with Lemma .
and (.), gives

Df (p,xn+) ≤ f (p) – β
〈
p,∇f (wn)

〉
–

N∑
i=

βi
〈
p,∇f (ui,n)

〉

+ βf ∗(∇f (wn)
)
+

N∑
i=

βif ∗(∇f (ui,n)
)

– ββiρ
∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥)
= βV

(
p,∇f (wn)

)
+

N∑
i=

βiV
(
p,∇f (ui,n)

)
– ββiρ

∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥)
= βDf (p,wn) +

N∑
i=

βiDf (p,ui,n)

– ββiρ
∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥)
≤ βDf (p,wn) +

N∑
i=

βiDf (p,wn) – ββiρ
∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥)
≤ Df (p,wn) – ββiρ

∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥) ≤Df (p,wn) (.)

≤ αnDf (p,u) + ( – αn)Df (p,xn), (.)
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for each i ∈ {, , . . . ,N}. Thus, by induction,

Df (p,xn+) ≤max
{
Df (p,u),Df (p,x)

}
, ∀n≥ ,

which implies that {xn} is bounded. Furthermore, from (.), (.), (.), and Lemma .
we obtain

Df (p,wn) = Df
(
p,Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (xn)
))

≤ Df
(
p,∇f ∗(αn∇f (u) + ( – αn)∇f (xn)

))
= Vf

(
p,αn∇f (u) + ( – αn)∇f (xn)

)
≤ Vf

(
p,αn∇f (u) + ( – αn)∇f (xn) – αn

(∇f (u) –∇f (p)
))

+ αn
〈∇f (u) –∇f (p),wn – p

〉
= Vf

(
p,αn∇f (p) + ( – αn)∇f (xn)

)
+ αn

〈∇f (u) –∇f (p),wn – p
〉

= Df
(
p,∇f ∗(αn∇f (p) + ( – αn)∇f (xn)

))
+ αn

〈∇f (u) –∇f (p),wn – p
〉

≤ αnDf (p,p) + ( – αn)Df (p,xn)

+ αn
〈∇f (u) –∇f (p),wn – p

〉
= ( – αn)Df (p,xn) + αn

〈∇f (u) –∇f (p),wn – p
〉
. (.)

Furthermore, from (.) and (.) we have

Df (p,xn+) ≤ ( – αn)Df (p,xn) + αn
〈∇f (u) –∇f (p),wn – p

〉
– ββiρ

∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥)
(.)

≤ ( – αn)Df (p,xn) + αn
〈∇f (u) –∇f (p),wn – p

〉
. (.)

Now, we consider two cases.
Case . Suppose that there exists n ∈ N such that {Df (p,xn)} is non-increasing for all

n≥ n. In this situation, {Df (p,xn)} is convergent. Then, from (.), we have

ββiρ
∗
r
(∥∥∇f (wn) –∇f (ui,n)

∥∥) → , (.)

which implies, by the property of ρ∗
r that

∇f (wn) –∇f (ui,n) →  as n→ ∞. (.)

Now, since f is strongly coercive and uniformly convex on bounded subsets of E by
Lemma . we see that f ∗ is uniformly Fréchet differentiable on bounded subsets of E∗ and
since f is Legendre by Lemma . we find that ∇f ∗ is uniformly continuous on bounded
subsets of E∗ and hence from (.) we get

wn – ui,n →  as n→ ∞. (.)
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In addition, since d(wn,Tiwn) ≤ ‖wn – ui,n‖ we have

d(wn,Tiwn) →  as n→ ∞, (.)

for each i ∈ {, , . . . ,N}. Since {wn} is bounded and E is reflexive, we choose a subsequence
{wnj} of {wn} such that wnj ⇀ w and lim supn→∞〈∇f (u) –∇f (p),wn – p〉 = limj→∞〈∇f (u) –
∇f (p),wnj – p〉. Thus, from (.) and the fact that each Ti is Bregman relatively nonex-
pansive mapping we obtain w ∈ F(Ti), for each i ∈ {, , . . . ,N} and hence w ∈ ⋂N

i= F(Ti).
Therefore, by Lemma ., we immediately obtain

lim sup
n→∞

〈∇f (u) –∇f (p),wn – p
〉
= lim

j→∞
〈∇f (u) –∇f (p),wnj – p

〉
=

〈∇f (u) –∇f (p),w – p
〉 ≤ .

It follows from Lemma . and (.) that Df (p,xn) →  as n → ∞. Consequently, by
Lemma . we obtain xn → p ∈F .
Case . Suppose that there exists a subsequence {nl} of {n} such that

Df (p,xnl ) <Df (p,xnl+),

for all l ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞, Df (p,xmk ) ≤ Df (p,xmk+), and Df (p,xk) ≤ Df (p,xmk+), for all k ∈ N. Then,
from (.) and the fact that αn → , we obtain

ρ∗
r
(∥∥∇f (wmk ) –∇f (ui,nk )

∥∥) →  as k → ∞,

for each i ∈ {, , . . . ,N}. Thus, following the method of proof of Case , we obtain
d(wmk ,Tiwmk )→  as k → ∞, and hence we obtain

lim sup
k→∞

〈∇f (u) –∇f (p),wmk – p
〉 ≤ . (.)

Then, from (.), we get

Df (p,xmk+) ≤ ( – αmk )Df (p,xmk ) + αmk

〈∇f (u) –∇f (p),wmk – p
〉
. (.)

Now, since Df (p,xmk ) ≤Df (p,xmk+), inequality (.) implies that

αmkDf (p,xmk ) ≤ Df (p,xmk ) –Df (p,xmk+)

+ αmk

〈∇f (u) –∇f (p),wmk – p
〉

≤ αmk

〈∇f (u) –∇f (p),wmk – p
〉
.

Thus, we get

Df (p,xmk ) ≤ 〈∇f (u) –∇f (p),wmk – p
〉
. (.)
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Then, from (.) and (.), we obtain Df (p,xmk ) →  as k → ∞. This, together with
(.), gives Df (p,xmk+) →  as k → ∞. But Df (p,xk) ≤ Df (p,xmk+) for all k ∈ N, and
hence we obtain xk → p ∈ F . Therefore, from the above two cases, we can conclude that
{xn} converges strongly to p = Pf

F (u) and the proof is complete. �

If in Theorem ., we assume that N = , then we get the following corollary.

Corollary . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed, and convex subset of int(dom f ) and T : C → CB(C) be a Bregman rel-
atively nonexpansive mapping such that F(T) is nonempty. For u,x ∈ C let {xn} be a se-
quence generated by

{
wn = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (xn)),
xn+ =∇f ∗(β∇f (wn) + ( – β)∇f (un)), un ∈ Twn,∀n≥ ,

(.)

where {αn} ⊂ (, ) and β ∈ (, ) satisfy limn→∞ αn = ,
∑∞

n= αn =∞. Then {xn} converges
strongly to p = Pf

F (u).

If, in Theorem ., we assume that each Ti, i = , , . . . ,N is a single-valued Bregman
relatively nonexpansive mapping, we get the following corollary.

Corollary . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ) and Ti : C → C, for i = , , . . . ,N , be a
finite family of Bregman relatively nonexpansive mappings such that F :=

⋂N
i= F(Ti) is

nonempty. For u,x ∈ C let {xn} be a sequence generated by

{
wn = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (xn)),
xn+ =∇f ∗(β∇f (wn) +

∑N
i= βi∇f (Tiwn)), ∀n≥ ,

(.)

where {αn} ⊂ (, ) and {βi}Ni= ⊂ [c,d] ⊂ (, ) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞ and∑N
i= βi = . Then {xn} converges strongly to p = Pf

F (u).

If, in Theorem ., we assume that each Ti, i = , , . . . ,N , is a multi-valued quasi-
Bregman relatively nonexpansive mapping, we get the following corollary.

Corollary . Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable, and totally convex on bounded subsets of E. Let C be a
nonempty, closed, and convex subset of int(dom f ) and Ti : C → CB(C), for i = , , . . . ,N , be
a finite family of quasi-Bregman nonexpansive mappings with F(Ti) = F̂(Ti), for each i ∈
{, , . . . ,N}. Suppose that F :=

⋂N
i= F(Ti) is nonempty. For u,x ∈ C let {xn} be a sequence

generated by

{
wn = Pf

C∇f ∗(αn∇f (u) + ( – αn)∇f (xn)),
xn+ =∇f ∗(β∇f (wn) +

∑N
i= βi∇f (ui,n)),ui,n ∈ Tiwn, ∀n≥ ,

(.)
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where {αn} ⊂ (, ) and {βi}Ni= ⊂ [c,d] ⊂ (, ) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞ and∑N
i= βi = . Then {xn} converges strongly to p =Df

F (u).

Remark . (i) Theorem . improves and extends the corresponding results of Homaei-
pour and Razani [] and Zegeye and Shahzad [] to the class of multi-valued Bregman
relatively nonexpansive mappings in a reflexive real Banach spaces. (ii) The requirement
that the interior of F is nonempty is dispensed with.
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