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1 Introduction
Fixed point theory is an important branch of nonlinear analysis and has been applied in
numerous studies of nonlinear phenomena. Many problems in nonlinear functional anal-
ysis is related to finding fixed points of nonlinear mappings of nonexpansive type. From
the standpoint of real world applications, we want to construct an iterative process to ap-
proximate fixed points of mappings of nonexpansive type. Many authors have considered
the problem of iterative algorithms for mappings of nonexpansive type which converge to
some fixed points.
Let C be a nonempty subset of a real Banach space and T a nonlinear mapping from

C into itself. We denote by F(T) the set of fixed points of T . Recall that T is said to be
nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.

More generally, T is said to be asymptotically nonexpansive (cf. []) if there exists a se-
quence {kn} ⊂ [,∞) with limn→∞ kn =  such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ for all x, y ∈ C and n≥ .

In the framework ofHilbert spaces, Takahashi, Takeuchi andKubota [] have introduced a
new hybrid iterative scheme called a shrinking projection method for nonexpansive map-
pings. It is an advantage of projection methods that the strong convergence of iterative
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sequences is guaranteed without any compact assumptions. Moreover, Schu [] has in-
troduced a modifiedMann iteration to approximate fixed points of asymptotically nonex-
pansive mappings in uniformly convex Banach spaces. Motivated by [, ], Inchan [] has
introduced a new hybrid iterative scheme by using the shrinking projection method with
the modified Mann iteration for asymptotically nonexpansive mappings. The mapping T
is said to be asymptotically nonexpansive in the intermediate sense (cf. []) if

lim sup
n→∞

sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ≤ . (.)

If F(T) is nonempty and (.) holds for all x ∈ C and y ∈ F(T), thenT is said to be asymptot-
ically quasi-nonexpansive in the intermediate sense. It is worth mentioning that the class
of asymptotically nonexpansive mappings in the intermediate sense contains properly the
class of asymptotically nonexpansive mappings, since the mappings in the intermediate
sense are not Lipschitz continuous in general.
Recently, many authors have studied further new hybrid iterative schemes in the frame-

work of real Banach spaces; for instance, see [–]. Qin and Wang [] have introduced a
new class of mappings which are asymptotically quasi-nonexpansive with respect to the
Lyapunov functional (cf. []) in the intermediate sense. By using the shrinking projec-
tion method, Hao [] has proved a strong convergence theorem for an asymptotically
quasi-nonexpansive mapping with respect to the Lyapunov functional in the intermediate
sense.
In , Bregman [] has discovered an elegant and effective technique for the using of

the so-called Bregman distance function (see Section ) in the process of designing and
analyzing feasibility and optimization algorithms. This opened a growing area of research
in which Bregman’s technique is applied in various ways in order to design and analyze not
only iterative algorithms for solving feasibility and optimization problems, but also algo-
rithms for solving variational inequalities, for approximating equilibria and for computing
fixed points of nonlinear mappings.
The purpose of this paper is to prove strong convergence theorems for asymptoti-

cally quasi-nonexpansive mappings with respect to Bregman distances in the intermedi-
ate sense by using the shrinking projection method. Many authors have studied iterative
methods for approximating fixed points of mappings of nonexpansive type with respect to
the Bregman distance; see [–]. However, nonlinear mappings which are not Lipschitz
continuous with respect to the Bregman distance have not been studied yet. Against this
background, we introduce a new class of asymptotically quasi-nonexpansive mappings
which is an extension of with respect to the Bregman distance in the intermediate sense.
Motivated by the results above, we design a new hybrid iterative scheme for finding fixed
points of the mapping in reflexive Banach spaces. This iterative method is expected to be
applicable to many other problems in nonlinear functional analysis relating to Bregman
distances.
In this paper, we introduce a new class of nonlinear mappings which is an extension of

asymptotically quasi-nonexpansive mappings with respect to the Bregman distance in the
intermediate sense.Motivated by [, ], we design a new hybrid iterative scheme for find-
ing a fixed point of mappings in the new class by using the shrinking projection method
with respect to Bregman distances in reflexive Banach spaces.We prove a new strong con-
vergence theorem for the mappings, which is an extension of results of []. In Section ,
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we present several preliminary definitions and results. In Section , we introduce the new
class of mappings with respect to the Bregman distance and prove closedness and convex-
ity of the set of fixed points of the mappings. In Section , we prove a strong convergence
theorem for finding a fixed point of mappings in the new class by using the shrinking pro-
jection method.

2 Preliminaries
Throughout this paper, we denote byN and R the sets of all nonnegative integers and real
numbers, respectively, andwe assume that E is a real reflexive Banach space with the norm
‖ ·‖, E∗ the dual space of E and 〈·, ·〉 the pairing between E and E∗.When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x by xn → x and the weak convergence
by xn ⇀ x.
Let f : E → (–∞, +∞] be a function. The effective domain of f is defined by

dom f :=
{
x ∈ E : f (x) < +∞}

.

When dom f �= ∅ we say that f is proper. We denote by int dom f the interior of the effective
domain of f . We denote by ran f the range of f .
The function f is said to be strongly coercive if lim‖x‖→∞ f (x)/‖x‖ = +∞. Given a proper

and convex function f : E → (–∞, +∞], the subdifferential of f is a mapping ∂f : E → E∗

defined by

∂f (x) :=
{
x∗ ∈ E∗ : f (y) ≥ f (x) +

〈
x∗, y – x

〉
,∀y ∈ E

}
for all x ∈ E.

The Fenchel conjugate function of f is the convex function f ∗ : E∗ → (–∞, +∞) defined
by

f ∗(ξ ) := sup
{〈ξ ,x〉 – f (x) : x ∈ E

}
.

We know that x∗ ∈ ∂f (x) if and only if f (x) + f ∗(x∗) = 〈x∗,x〉 for x ∈ E; see [].

Proposition . ([], Proposition .) Let f : E → (–∞, +∞] be a proper, convex and
lower semicontinuous function. Then the following conditions are equivalent:

(i) ran ∂f = E∗ and ∂f ∗ = (∂f )– is bounded on bounded subsets of E∗;
(ii) f is strongly coercive.

Let f : E → (–∞, +∞] be a convex function and x ∈ int dom f . For any y ∈ E, we define
the right-hand derivative of f at x in the direction y by

f ◦(x, y) := lim
t↘

f (x + ty) – f (x)
t

. (.)

The function f is said to be Gâteaux differentiable at x if the limit (.) exists for any y.
In this case, the gradient of f at x is the function ∇f (x) : E → (–∞, +∞) defined by
〈∇f (x), y〉 = f ◦(x, y) for all y ∈ E. The function f is said to be Gâteaux differentiable if it
is Gâteaux differentiable at each x ∈ int dom f . If the limit (.) is attained uniformly in
‖y‖ = , then the function f is said to be Fréchet differentiable at x. The function f is said
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to be uniformly Fréchet differentiable on a subset C of E if the limit (.) is attained uni-
formly for x ∈ C and ‖y‖ = . We know that if f is uniformly Fréchet differentiable on
bounded subsets of E, then f is uniformly continuous on bounded subsets of E (cf. []).
We will need the following results.

Proposition . ([], Proposition .) If a function f : E → R is convex,uniformly Fréchet
differentiable and bounded on bounded subsets of E, then ∇f is uniformly continuous on
bounded subsets of E from the strong topology of E to the strong topology of E∗.

Proposition . ([], Proposition ..) Let f : E → R be a convex function which is
bounded on bounded subsets of E. Then the following assertions are equivalent:

(i) f is strongly coercive and uniformly convex on bounded subsets of E;
(ii) f ∗ is Fréchet differentiable and ∇f ∗ is uniformly norm-to-norm continuous on

bounded subsets of dom f ∗ = E∗.

A function f : E → (–∞, +∞] is said to be admissible if it is proper, convex, and lower
semicontinuous on E and Gâteaux differentiable on int dom f . Under these conditions we
know that f is continuous in int dom f , ∂f is single-valued and ∂f =∇f ; see [, ]. An ad-
missible function f : E → (–∞, +∞] is called Legendre (cf. []) if it satisfies the following
two conditions:
(L) the interior of the domain of f , int dom f , is nonempty, f is Gâteaux differentiable

and dom∇f = int dom f ;
(L) the interior of the domain of f ∗, int dom f ∗, is nonempty, f ∗ is Gâteaux

differentiable and dom∇f ∗ = int dom f ∗.
Let f be a Legendre function on E. Since E is reflexive, we always have ∇f = (∇f ∗)–.

This fact, when combined with conditions (L) and (L), implies the following equalities:

ran∇f = dom f ∗ = int dom f ∗ and ran∇f ∗ = dom f = int dom f .

Conditions (L) and (L) imply that the functions f and f ∗ are strictly convex on the inte-
rior of their respective domains.

Example . The following functions are Legendre on E = Rn: Let x ∈ Rn.
(i) Halved energy: f (x) = ‖x‖/ = 


∑n

j= xj .
(ii) Boltzmann-Shannon entropy:

f (x) =

⎧⎨
⎩

∑n
j=(xj ln(xj) – xj), x ≥ ;

+∞, otherwise.

(iii) Burg entropy:

f (x) =

⎧⎨
⎩
–

∑n
j= ln(xj), x > ;

+∞, otherwise.

Note that int dom f = Rn in (i), whereas int dom f = {x ∈ Rn : xj > , j = , . . . ,n} in (ii) and
(iii).
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Let f : E → (–∞, +∞] be a convex function on E which is Gâteaux differentiable on
int dom f . The bifunction Df : dom f × int dom f → [, +∞) given by

Df (y,x) := f (y) – f (x) –
〈∇f (x), y – x

〉

is called the Bregman distance with respect to f (cf. []). In general, the Bregman distance
is not a metric, since it is not symmetric and does not satisfy the triangle inequality. How-
ever, it has the following important property, which is called the three point identity (cf.
[]): for any x ∈ dom f and y, z ∈ int dom f ,

Df (x, y) +Df (y, z) –Df (x, z) =
〈∇f (z) –∇f (y),x – y

〉
. (.)

Example . The Bregman distances corresponding to the Legendre functions of Exam-
ple . are as follows (x, y ∈ Rn):

(i) Euclidean distance: Df (y,x) = ‖y – x‖/.
(ii) Kullback-Leibler divergence: Df (y,x) =

∑n
j=(yj ln(yj/xj) – yj + xj).

(iii) Itakura-Saito divergence: Df (y,x) =
∑n

j=(ln(xj/yj) + yj/xj – ).

With a Legendre function f : E → (–∞, +∞], we associate the bifunctionWf : dom f ∗ ×
dom f → [, +∞) defined by

Wf (ξ ,x) := f (x) – 〈ξ ,x〉 + f ∗(ξ ) for x ∈ dom f and ξ ∈ dom f ∗.

Proposition . ([], Proposition ) Let f : E → (–∞, +∞] be a Legendre function such
that ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let x ∈ int dom f . If the sequence
{Df (x,xn)}n∈N is bounded, then the sequence {xn}n∈N is also bounded.

Proposition . ([], Proposition ) Let f : E → (–∞, +∞] be a Legendre function. Then
the following statements hold:

(i) The functionWf (·,x) is convex for all x ∈ dom f ;
(ii) Wf (∇f (x), y) =Df (y,x) for all x ∈ int dom f and y ∈ dom f .

Let f : E → (–∞, +∞] be a convex function on E which is Gâteaux differentiable on
int dom f . The function f is said to be totally convex at a point x ∈ int dom f if itsmodulus
of total convexity at x, vf (x, ·) : [, +∞) → [, +∞], defined by

vf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
,

is positive whenever t > . The function f is said to be totally convex when it is totally
convex at every point of int dom f . The function f is said to be totally convex on bounded
sets if, for any nonempty bounded set B ⊂ E, the modulus of total convexity of f on B,
vf (B, t) is positive for any t > , where vf (B, ·) : [, +∞) → [, +∞] is defined by

vf (B, t) := inf
{
vf (x, t) : x ∈ B∩ int dom f

}
.

We remark in passing that f is totally convex on bounded sets if and only if f is uniformly
convex on bounded sets; see [, ].
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Proposition . ([], Proposition .) Let f : E → (–∞, +∞] be a convex function whose
domain contains at least two points. If f is lower semicontinuous, then f is totally convex
on bounded sets if and only if f is uniformly convex on bounded sets.

Proposition . ([], Lemma .) Let f : E → R be a totally convex function. If x ∈ E and
the sequence {Df (xn,x)}n∈N is bounded, then the sequence {xn}n∈N is also bounded.

Let f : E → (–∞, +∞] be a convex function on E which is Gâteaux differentiable on
int dom f . The function f is said to be sequentially consistent (cf. []) if for any two se-
quences {xn}n∈N and {yn}n∈N in int dom f and dom f , respectively, such that the first one is
bounded,

lim
n→∞Df (yn,xn) =  implies lim

n→∞‖yn – xn‖ = .

Proposition . ([], Proposition ..) A function f : E → (–∞, +∞] is totally convex
on bounded subsets of E if and only if it is sequentially consistent.

Let C be a nonempty, closed, and convex subset of E. Let f : E → (–∞, +∞] be a con-
vex function on E which is Gâteaux differentiable on int dom f . The Bregman projection
projfC(x) with respect to f (cf. []) of x ∈ int dom f onto C is the minimizer over C of the
functional Df (·,x) : E → [, +∞], that is,

projfC(x) := argmin
{
Df (y,x) : y ∈ C

}
.

Proposition . ([], Corollary .) Let f : E → R be an admissible, strongly coercive,
and strictly convex function. Let C be a nonempty, closed, and convex subset of dom f . Then
projfC(x) exists uniquely for all x ∈ int dom f .

Remark Let f (x) = ‖x‖/ for x ∈ E.
(i) If E is a Hilbert space, then the Bregman projection projfC is reduced to the metric

projection onto C.
(ii) If E is a smooth Banach space, then the Bregman projection projfC is reduced to the

generalized projection �Cx which is defined by

�Cx := argmin
{
φ(y,x) : y ∈ C

}
,

where φ : E × E → R+ is the Lyapunov functional (cf. []) defined by
φ(y,x) := ‖y‖ – 〈y, Jx〉 + ‖x‖ for all x, y ∈ E.

Proposition . ([], Corollary .) Let f : E → (–∞, +∞] be a totally convex function.
Let C be a nonempty, closed, and convex subset of int dom f and x ∈ int dom f . If x̂ ∈ C, then
the following statements are equivalent:

(i) The vector x̂ is the Bregman projection projfC(x) of x onto C.
(ii) The vector x̂ is the unique solution z of the variational inequality

〈∇f (x) –∇f (z), z – y
〉 ≥  for all y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/154
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(iii) The vector x̂ is the unique solution z of the inequality

Df (y, z) +Df (z,x)≤Df (y,x) for all y ∈ C.

3 Bregman asymptotically quasi-nonexpansive in the intermediate sense
Let C be a nonempty, closed, and convex subset of E and T a mapping from C into itself.
Let f : E → (–∞, +∞] be an admissible function. Recall that the mapping T is said to be
Bregman quasi-nonexpansive (cf. []) if F(T) �= ∅ and

Df (p,Tx) ≤Df (p,x) for all p ∈ F(T) and x ∈ C.

The mapping T is said to be Bregman asymptotically quasi-nonexpansive (cf. []) if
F(T) �= ∅ and there exists a sequence {kn} ⊂ [,∞) with limn→∞ kn =  such that

Df
(
p,Tnx

) ≤ knDf (p,x) for all p ∈ F(T),x ∈ C and n ∈N.

Every Bregman quasi-nonexpansivemapping is Bregman asymptotically quasi-nonexpan-
sive with kn = .
We introduce a new class of mappings; the mapping T is said to be Bregman asymptot-

ically quasi-nonexpansive in the intermediate sense if F(T) �= ∅ and

lim sup
n→∞

sup
p∈F(T),x∈C

(
Df

(
p,Tnx

)
–Df (p,x)

) ≤ . (.)

Put

ξn =max
{
, sup

p∈F(T),x∈C

(
Df

(
p,Tnx

)
–Df (p,x)

)}
.

This implies limn→∞ ξn = . Then (.) is reduced to the following:

Df
(
p,Tnx

) ≤Df (p,x) + ξn for all p ∈ F(T) and x ∈ C.

Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense are not
Lipschitz continuous in general.

Example . Assume that E = R, C = [/, /] and T : C → C defined by

Tx =

⎧⎨
⎩
, x ∈ [  , ],

 –
√

x–
 , x ∈ (,  ].

Note that F(T) = {} and Tnx =  for all x ∈ C and n≥ . If f : R→ (–∞, +∞] is a Legendre
function, then T is Bregman asymptotically quasi-nonexpansive in the intermediate sense
since

lim sup
n→∞

sup
x∈C

(
Df

(
,Tnx

)
–Df (,x)

) ≤ lim sup
n→∞

sup
x∈C

Df
(
,Tnx

)
= .

http://www.fixedpointtheoryandapplications.com/content/2014/1/154
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However, T above is not Lipschitzian with respect to Bregman distances in Example ..
Indeed, suppose that there exists L >  such that Df (Ty,Tx) ≤ LDf (y,x) for all x, y ∈ C. By
Taylor’s theorem, there exists t ∈ (, ) such that

Df (y,x) = f (y) – f (x) –
〈∇f (x), y – x

〉
=


∇f

(
x + t(y – x)

)
(y – x). (.)

(i) Let f (x) = ‖x‖/ on dom f = R and Df (y,x) = ‖y – x‖/ for all x, y ∈ R. Put y =  and
x =  + /(L + ). Since Tx =  – /

√
L + , we have


(L + )

=



∥∥∥∥ –

√
L + 

∥∥∥∥


=


‖Ty – Tx‖ ≤ L


‖y – x‖ = L

(L + )
.

This implies L +  ≤ L, which is a contradiction.
(ii) Let f (x) = x ln(x) – x on dom f = [,+∞) and Df (y,x) = y ln(y/x) – y + x for all x ∈

(, +∞) and y ∈ [, +∞). Note that ∇f (x) = /x. Put x = . By (.), we have

Df (y, ) =
(y – )

( + t(y – ))
≤ (y – )


for y≥ 

and

Df (y, ) =
(y – )

( + t(y – ))
≥ (y – )


for  < y≤ .

If y =  + /(L + ), we have


(L + )

=



(
–


√
L + 

)

≤Df (Ty, )

≤ LDf (y, )≤ L


(


(L + )

)

=
L

(L + )
.

This implies L +  ≤ L, which is a contradiction.
(iii) Let f (x) = – ln(x) on dom f = (,+∞) and Df (y,x) = ln(x/y) + y/x –  for all x, y ∈

(, +∞). Note that ∇f (x) = /x. Put y = . By (.), we have

Df (,x) =
( – x)

(x + t( – x))
≤ ( – x)


for x ≥ 

and

Df (,x) =
( – x)

(x + t( – x))
≥ ( – x)


for  < x≤ .

If x =  + /(L + ), we have


(L + )

=



(



√
L + 

)

≤Df (,Tx)

≤ LDf (,x)≤ L


(
–

(L + )

)

=
L

(L + )
.

This implies L +  ≤ L, which is a contradiction.

http://www.fixedpointtheoryandapplications.com/content/2014/1/154
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Theorem . Let f : E → (–∞, +∞] be a Legendre function which is totally convex on
bounded subsets of E. Suppose that ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let C
be a nonempty, closed, and convex subset of int dom f . Let T : C → C be a closed and Breg-
man asymptotically quasi-nonexpansive mapping in the intermediate sense. Then F(T) is
closed and convex.

Proof Since T is closed, we can easily conclude that F(T) is closed. Now we show the
convexity of F(T). Let p,p ∈ F(T) and p = tp + ( – t)p, where t ∈ (, ). We prove that
p ∈ F(T). By the definition of T , we have

Df
(
pi,Tnp

) ≤Df (pi,p) + ξn (.)

for i = , . By the three point identity (.), we know that

Df (x, y) =Df (x, z) +Df (z, y) +
〈∇f (z) –∇f (y),x – z

〉
.

This implies

Df
(
pi,Tnp

)
=Df (pi,p) +Df

(
p,Tnp

)
+

〈∇f (p) –∇f
(
Tnp

)
,pi – p

〉
(.)

for i = , . Combining (.) and (.) yields

Df
(
p,Tnp

) ≤ ξn –
〈∇f (p) –∇f

(
Tnp

)
,pi – p

〉
(.)

for i = , . Multiplying t and  – t on both sides of (.) with i =  and i = , respectively,
yields

lim
n→∞Df

(
p,Tnp

) ≤ lim
n→∞

(
ξn –

〈∇f (p) –∇f
(
Tnp

)
, tp + ( – t)p – p

〉)
= .

This implies that {Df (p,Tnp)}n∈N is bounded. By Propositions . and ., we see that the
sequence {Tnp}n∈N is bounded and ‖p –Tnp‖ →  as n→ ∞. By the closedness of T , we
have

p = lim
n→∞Tn+p = T

(
lim
n→∞Tnp

)
= Tp

and hence p ∈ F(T). Therefore F(T) is convex. This completes the proof. �

Theorem . is reduced to the following results.

Corollary . ([], Lemma ) Let f : E → (–∞, +∞] be a Legendre function which is to-
tally convex on bounded subsets of E. Let C be a nonempty, closed, and convex subset of
int dom f and T : C → C a closed and Bergman asymptotically quasi-nonexpansive map-
ping with the sequence {kn}n∈N ⊂ [, +∞) such that kn →  as n → ∞. Then F(T) is closed
and convex.

http://www.fixedpointtheoryandapplications.com/content/2014/1/154
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4 Main results
In this section, we prove the following strong convergence theorem for finding a fixed
point of a Bregman asymptotically quasi-nonexpansivemapping in the intermediate sense.
Let C be a nonempty, closed, and convex subset of E and T a mapping from C into itself.
The mapping T is said to be asymptotically regular if, for any x ∈ C,

lim
n→∞

∥∥Tn+x – Tnx
∥∥ = .

Theorem . Let f : E → (–∞, +∞] be a Legendre function which is bounded, strongly
coercive, uniformly Fréchet differentiable and totally convex on bounded subsets on E. Let
C be a nonempty, closed, and convex subset of int dom f . Let T : C → C be a closed and
Bregman asymptotically quasi-nonexpansive mapping in the intermediate sense. Suppose
that T is asymptotically regular on C and F(T) is bounded. Let {xn} be a sequence of C
generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ int dom f , chosen arbitrarily,

C = C,

x = projfC x,

yn =∇f ∗(αn∇f (xn) + ( – αn)∇f (Tnxn)),

Cn+ = {z ∈ Cn :Df (z, yn) ≤Df (z,xn) + ξn},
xn+ = projfCn+

x, n ∈N,

where

ξn =max
{
, sup

p∈F(T),x∈C

(
Df

(
p,Tnx

)
–Df (p,x)

)}

and {αn}n∈N ⊂ [, ) is a sequence satisfying lim supn→∞ αn < . Then {xn}n∈N converges
strongly to projfF(T) x.

Proof We divide the proof into five steps.
Step . We show that Cn is closed and convex for all n ∈N.
It is obvious that C = C is closed and convex. Suppose that Cm is closed and convex for

somem ∈N. We see that, for z ∈ Cm,

Df (z, ym)≤Df (z,xm) + ξm

is equivalent to

〈∇f (xm) –∇f (ym), z
〉 ≤ f ∗(∇f (xm)

)
– f ∗(∇f (ym)

)
+ ξm. (.)

Let x, y ∈ Cm+ and z = tx + ( – t)y, where t ∈ (, ). By (.), we have

〈∇f (xm) –∇f (ym), z
〉

= t
〈∇f (xm) –∇f (ym),x

〉
+ ( – t)

〈∇f (xm) –∇f (ym), y
〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/154
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≤ (t +  – t)
(
f ∗(∇f (xm)

)
– f ∗(∇f (ym)

)
+ ξm

)
= f ∗(∇f (xm)

)
– f ∗(∇f (ym)

)
+ ξm

and hence z ∈ Cm+. Therefore Cn is closed and convex for all n ∈ N. By Proposition .,
projfCn x is well defined for all n ∈N.
Step . We show that F(T) ⊂ Cn for all n ∈N.
Let p ∈ F(T). It is obvious that F(T)⊂ C = C. Suppose that F(T) ⊂ Cm for somem ∈N.

By Proposition ., we have

Df (p, ym) =Df
(
p,∇f ∗(αm∇f (xm) + ( – αm)∇f

(
Tmxm

)))
=Wf (αm∇f (xm) + ( – αm)∇f

(
Tmxm

)
,p

)
≤ αmWf (∇f (xm),p

)
+ ( – αm)Wf (∇f

(
Tmxm

)
,p

)
= αmDf (p,xm) + ( – αm)Df

(
p,Tmxm

)
≤ αmDf (p,xm) + ( – αm)

(
Df (p,xm) + ξm

)
≤Df (p,xm) + ξm. (.)

This implies p ∈ Cm+. Therefore F(T)⊂ Cn for all n ∈ N.
Step . We show that {xn}n∈N is bounded.
Let p ∈ F(T). By Proposition .(iii), we have

Df (xn,x) =Df
(
projfCn x,x

)
≤Df (p,x) –Df

(
p,projfCn x

)
≤Df (p,x)

for all n ∈N. This implies that {Df (xn,x)}n∈N is bounded. By Proposition ., the sequence
{xn}n∈N is bounded.
Step . We show that every subsequential limit of {xn}n∈N belongs to F(T).
Since {xn}n∈N is bounded and E is reflexive, we may assume that {xnj}j∈N is a weakly

convergent subsequence of {xn}n∈N and denote its weak limit by x̄. Since Cn is closed and
convex, we have x̄ ∈ Cnj for all j ∈N. By the lower semicontinuity of f , we have

Df (x̄,x) = f (x̄) – f (x) –
〈∇f (x), x̄ – x

〉
≤ lim inf

j→∞
(
f (xnj ) – f (x) –

〈∇f (x),xnj – x
〉)

= lim inf
j→∞ Df (xnj ,x)

≤ lim sup
j→∞

Df (xnj ,x) ≤Df (x̄,x).

This implies

lim
j→∞Df (xnj ,x) =Df (x̄,x). (.)
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By Proposition .(iii), we have

lim
j→∞Df (x̄,xnj ) = lim

j→∞Df
(
x̄,projfCnj

x
)

≤ lim
j→∞

(
Df (x̄,x) –Df

(
projfCnj

x,x
))

= lim
j→∞

(
Df (x̄,x) –Df (xnj ,x)

)
= .

By Proposition ., we have ‖x̄ – xnj‖ →  as j → ∞. By Proposition ., we have

lim
j→∞

∥∥∇f (x̄) –∇f (xnj )
∥∥ = . (.)

Since xn = projfCn x ∈ Cn and xn+ = projfCn+
x ∈ Cn+ ⊂ Cn, we have Df (xn,x) ≤

Df (xn+,x). This implies that {Df (xn,x)}n∈N is nondecreasing and the limit of Df (xn,x)
exists as n→ ∞. By Proposition .(iii), we have

Df (xn+,xn) =Df
(
xn+,proj

f
Cn x

)
≤Df (xn+,x) –Df

(
projfCn x,x

)
=Df (xn+,x) –Df (xn,x)

for all n ∈N. This implies

lim
n→∞Df (xn+,xn) = . (.)

By Proposition ., we have ‖xn+ – xn‖ →  as n→ ∞. By Proposition ., we have

lim
n→∞

∥∥∇f (xn+) –∇f (xn)
∥∥ = . (.)

Since xn+ ∈ Cn+, we have Df (xn+, yn) ≤ Df (xn+,xn) + ξn for all n ∈ N. By (.), we have
Df (xn+, yn) →  as n → ∞. By Proposition ., we have ‖xn+ – yn‖ →  as n → ∞. By
Proposition ., we have

lim
n→∞

∥∥∇f (xn+) –∇f (yn)
∥∥ = . (.)

By the definition of yn, we have

∥∥∇f
(
Tnxn

)
–∇f (xn+)

∥∥
≤ 

 – αn

∥∥∇f (xn+) –∇f (yn)
∥∥ +

αn

 – αn

∥∥∇f (xn+) –∇f (xn)
∥∥.

By (.) and (.), we find from lim supn→∞ αn <  that

lim
n→∞

∥∥∇f
(
Tnxn

)
–∇f (xn+)

∥∥ = . (.)

We have

∥∥∇f
(
Tnxn

)
–∇f (x̄)

∥∥ ≤ ∥∥∇f
(
Tnxn

)
–∇f (xn+)

∥∥ +
∥∥∇f (xn+) –∇f (x̄)

∥∥.
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By (.) and (.), we have ‖∇f (Tnjxnj ) – ∇f (x̄)‖ →  as j → ∞. By Propositions .
and ., ∇f ∗ is uniformly continuous on bounded subsets of E∗ and thus ‖Tnjxnj – x̄‖ → 
as j → ∞. Since f is asymptotically regular, we have

lim
j→∞

∥∥Tnj+xnj – x̄
∥∥ ≤ lim

j→∞
(∥∥Tnj+xnj – Tnjxnj

∥∥ +
∥∥Tnjxnj – x̄

∥∥)
= .

This implies TTnjxnj – x̄ →  as j → ∞. By the closedness of T , we have x̄ = Tx̄. Therefore,
the limit of {xnj}j∈N belongs to F(T).
Step . We show that xn → projfF(T) x as n→ ∞.
Since projfF(T) x ∈ F(T) ⊂ Cn and xn = projfCn x, we have Df (xn,x) ≤ Df (proj

f
F(T) x,x)

for all n ∈N. By (.), we have

Df (x̄,x) = lim
j→∞Df (xnj ,x) ≤Df

(
projfF(T) x,x

)
.

Thus x̄ = projfF(T) x since x̄ ∈ F(T). Hence x̄ is only strong cluster point of xn. Therefore
xn → projfF(T) x as n→ ∞. This completes the proof. �

If f (x) = ‖x‖/ for all x ∈ E, then Theorem . is reduced to the following corollary.

Corollary . ([], Theorem .) Let E be a reflexive, strictly convex and smooth Banach
space such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty, closed,
and convex subset of E. Let T : C → C be an asymptotically quasi-φ-nonexpansive map-
ping in the intermediate sense. Assume that T is asymptotically regular on C and closed,
and F(T) �= ∅ is bounded. Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C = C,

x =�Cx,

yn = J–(αnJxn + ( – αn)JTnxn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + ξn},
xn+ =�Cn+x, n ∈ N,

(.)

where

ξn :=max
{
, sup

p∈F(T),x∈C

(
φ
(
p,Tnx

)
– φ(p,x)

)}
,

�Cn is the generalized projection from E onto Cn and {αn}n∈N ⊂ [, ) is a sequence sat-
isfying lim supn→∞ αn < . Then {xn}n∈N converges strongly to �F(T)x, where �F(T) is the
generalized projection from C onto F(T).

Proof Using the technique used in the proof of Theorem . with f (x) = ‖x‖/ for all
x ∈ E, we find that the sequence {xn} generated by (.) converges strongly to �F(T)x.

�
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