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Abstract
In this paper, we combine the gradient projection algorithm and the hybrid steepest
descent method and prove the strong convergence to a common element of the
equilibrium problem; the null space of an inverse strongly monotone operator; the
set of fixed points of a continuous pseudocontractive mapping and the minimizer of
a convex function. This common element is proved to be the unique solution of a
variational inequality problem.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let K be a
nonempty, closed, and convex subset of H . Let F be a bifunction of K × K into R. The
equilibrium problem for F : K ×K →R is to find x ∈ K such that

F(x, y) ≥ , ∀y ∈ K . (.)

The set of solutions of (.) is denoted by EP(F). For a given nonlinear operator A, the
problem of finding z ∈ K such that

〈Az, y – z〉 ≥ , ∀y ∈ K , (.)

is called the variational inequality problems VIP and the set of solutions of the VIP is
denoted by VIP(A,K ).
Given a mapping A : K →H , let F(x, y) = 〈Ax, y– x〉 for all x, y ∈ K , then z ∈ EP(F) if and

only if 〈Az, y – z〉 ≥ , ∀y ∈ K , that is, z is a solution of the variational inequality (.).
The mapping T : K → K is said to be Lipschitz if there exists L≥  such

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ K . (.)

The operator T is said to be a contraction if in (.) L < , and nonexpansive if L = . Let H
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be a real Hilbert space and K , a nonempty subset of H . A mapping T : K ⊆H → K is said
to be pseudocontractive if for all x, y ∈ K ,

〈Tx – Ty,x – y〉 ≤ ‖x – y‖. (.)

Equivalently, (.) can be written as

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ K . (.)

The set of fixed points of a mapping T is denoted by F(T) = {x ∈ K : Tx = x}.
In what follows, we shall use → for strong convergence and ⇀ for weak convergence.
For every point x ∈H , there exists a unique nearest point in K denoted by PKx such that

‖x– PKx‖ ≤ ‖x– y‖, ∀y ∈ K . The map PK is called the metric projection of H onto K . It is
also well known that PK satisfies

〈PKx – PKy,x – y〉 ≥ ‖PKx – PKy‖, ∀x, y ∈H .

Moreover, PKx is characterized by the properties that

PKx ∈ K and 〈x – PKx,PKx – y〉 ≥ , ∀y ∈ K .

Consider the optimization problem:

min f (x) such that x ∈ K , (.)

where f : K → R ∪ {∞} is a real valued convex functional. If f is a continuously Fréchet
differentiable convex functional onK , then x ∈ K is a solution of the optimization problem
(.) if and only if the optimality condition

〈∇f (x), y – x
〉 ≥ , ∀y ∈ K , (.)

holds.
Using the characterization of the projection operator, one can easily show that solving

the variational inequality (.) is equivalent to solving the fixed point problem of finding
x∗ ∈ K which satisfies the relation

x∗ = PK (I –μ∇f )x∗,

where μ >  is a constant. A formulation of the iterative scheme for the variational in-
equality problem (.) may be as follows: for arbitrary x ∈ K , define {xn}n≥ by

xn+ = PK (I –μ∇f )xn (.)

or more generally

xn+ = PK (I –μn∇f )xn, (.)
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where the parameters μ, μn are positive real numbers known as step-size. The scheme
(.) has been considered with several step-size rules:
• Constant step-size, where for some μ > , we have μn = μ for all n.
• Diminishing step-size, where μn →  and

∑∞
n= μn =∞.

• Polyaks step-size, where μn = f (xn)–f ∗
‖∇f (xn)‖ , where f

∗ is the optimal value of (.).
• Modified Polyaks step-size, where μn = f (xn)–fn

‖∇f (xn)‖ and f̂n =min≤j≤n f (xj) – δ for some
scalar δ > .

The constant step-size rule is suitable when we are interested in finding an approximate
solution to the problem (.). The diminishing step-size rule is an off-line rule and is typ-
ically used with μn = c

n+ or
c√
n+ for some distributed implementations of the method.

These schemes are the well-known Gradient Projection Algorithms. However, the con-
vergence of these schemes requires that the operator ∇f must be Lipschitz continuous
and strongly monotone, which is a strong condition and restrictive in application. If ∇f is
Lipschitz continuous and strongly monotone onH , it is obvious that the map PK (I –μ∇f )
is a strict contraction and by the Banach contraction principle, the sequence {xn} defined
by (.) converges strongly to the unique minimizer of (.) which is the solution of the
variational inequality problem (.). Another limitation of the scheme in (.) is that it is
based on the assumption that the closed form expression of PK : H → K is well known,
whereas in many situations it is not.
The iterative approximation of fixed points and zeros of the nonlinear operators has

been studied extensively by many authors to solve nonlinear operator equations as well as
variational inequality problems (see [, ], and the references therein).
Ceng et al. [] studied the following algorithm:

xn+ = PC
[
snγVxn + (I – snμF)Tnxn

]
, n≥ ,

where sn = –λnL
 and PC(I – λn∇f ) = snI + ( – sn)Tn, n ≥ , and they proved that the

sequence {xn} converges strongly to a minimizer of a constrained convex minimization
problem which also solves a certain variational inequality.
For r > ,Tr and Fr as in Lemma . and Lemma ., respectively, Ofoedu [] introduced

the following iteration scheme:

xn+ = αnu + βnxn +
(
( – βn)I – αnA

)
Wn(I – εB)TrnFrnxn, n ≥ ,

and proved that if H is a real Hilbert space; S :H → H is a continuous pseudocontractive
mapping; Tj : H → H , j = , , , . . . , is a countable infinite family of nonexpansive map-
pings; f : H × H → R is a bifunction satisfying (A)-(A); 	 : H → R ∪ {+∞} a proper
lower semicontinuous convex function; 
 : H → H a continuous monotone mapping;
u ∈ H is a fixed vector; A : H → H is a strongly positive bounded linear operator with
coefficient γ ; B : H → H is an η-inverse strongly monotone mapping and the sequences
{rn}, {αn}, {βn} satisfy appropriate conditions, then the sequence {xn} converges strongly
to a unique solution x∗ ∈ � = F(S) ∩ GMEP(f ,	,
) ∩ B–() ∩ F(Tj) of the variational
inequality 〈u –Ax∗,x – x∗〉 ≤ , ∀x ∈ �.
In , Yamada [] introduced the hybrid steepest descent method which solves the

variational inequality VIP(F ,K ) over the set K of fixed points of a nonexpansive map T .
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In particular, he studied the following:

xn+ = (I – αnμF)Txn

and proved the following theorem.

Theorem IY [] Assume that H is a real Hilbert space and T : H → H is nonexpansive
such that F(T) �= ∅, and A :H →H is η-strongly monotone and L-Lipschitz. Let μ ∈ (, ηL ).
Assume also that the sequence {λn} ⊂ (, ) satisfies the following conditions:

(i) λn → , as n→ ∞,
(ii)

∑∞
n= λn =∞,

(iii)
∑∞

n= |λn+ – λn| <∞ or limn→∞( λn
λn+

) = .
Take x ∈ H , arbitrary and define {xn}n≥ by (.), then {xn}n≥ converges strongly to the
unique solution x∗ ∈ F(T) of VIP(A,K ) where K is the set of fixed points of T .

The scheme (.)minimizes certain convex functions over the intersection of fixed point
sets of nonexpansive mappings if A = ∇f , say, where f is a continuously Fréchet differen-
tiable convex function. The scheme solves the variational inequality VIP(A,K ) and does
not require the closed form expression of PK but, instead, requires a closed form expres-
sion of a nonexpansive mapping T , whose set of fixed points is K .
Motivated by the work of Yamada [], Tian [] introduced the following scheme:

⎧⎪⎨
⎪⎩

φ(un, y) + 
λn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = βnun + ( – βn)Sun,
xn+ = (I – αnμA)yn, ∀n ∈N,

(.)

and he proved that if αn, βn, λn satisfy certain conditions, then the sequence {xn} given
by (.) converges strongly to q ∈ F(S) ∩ EP(φ), which solves the variational inequality
〈Aq,p – q〉 ≥ , ∀p ∈ F(S)∩ EP(φ).
In , Tian and Liu [] introduced the following scheme:

{
	(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
xn+ = (I – αnμF)Tnun, ∀n ∈N,

where un = Qrnxn, PC(I – λn∇f ) = snI + ( – sn)Tn, sn = –λnL
 and proved that if C is a

nonempty, closed, and convex subset of a real Hilbert space H ; 	 a bifunction from
C × C into R satisfying (A)-(A); f : C → R a real valued convex function; ∇f is an
L-Lipschitzian mapping with L ≥ ; � ∩ EP(	) �= ∅ where � is the solution set of a mini-
mization problem; F : C → H a k-Lipschitzian continuous and η-strongly monotone op-
erator with constants k,η ≥ ;  < μ < η

k , τ = μ(η – μk
 ) and the sequences {αn}, {rn},

{λn} satisfy appropriate conditions, then the sequence {xn} generated by x ∈H converges
strongly to a point q ∈ � ∩ EP(φ) which solves the variational inequality 〈Fq,p – q〉 ≥ ,
∀p ∈ � ∩ EP(φ).
In this paper, motivated by the results of Ofoedu [], Yamada [], Tian [], Tian and Liu

[], we shall study a new iterative scheme and prove the strong convergence to a com-
mon element of the equilibrium problem; the null space of an inverse strongly monotone
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operator; the set of fixed points of a continuous pseudocontractive mapping and the min-
imizer of a convex function. This common element is proved to be the unique solution of
a variational inequality problem.

2 Preliminaries
For solving the equilibrium problem for a bifunction F : K ×K →R, let us assume that F
satisfies the following conditions:
(A) F(x,x) = , ∀x ∈ K .
(A) F is monotone, i.e., F(x, y) + F(y,x)≤ , ∀x, y ∈ K .
(A) For each x, y, z ∈ K , t ∈ (, ], limt→ F(tz + ( – t)x, y)≤ F(x, y).
(A) For each x ∈ K , the function y �−→ F(x, y) is convex and lower semicontinuous.

Lemma . (Blum and Oettli []) Let K be nonempty, closed, and convex subset of H and
f a bifunction of K × K → R satisfying (A)-(A). For r >  and x ∈ H , there exists z ∈ K
such that

f (z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ K .

Lemma . (Zegeye []) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let S : C → H be a continuous pseudocontractive mapping. Then, for r >  and
x ∈H , there exists z ∈ C such that

〈y – z,Sz〉 – 
r
〈
y – z, ( + r)z – x

〉 ≤ , ∀y ∈ C.

Furthermore, if

Trx =
{
〈y – z,Sz〉 – 

r
〈
y – z, ( + r)z – x

〉 ≤ ,∀y ∈ C
}
,

∀x ∈H , then the following holds:
(C) Tr is single valued;
(C) Tr is firmly nonexpansive, i.e., for any x, y ∈H

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(C) F(Tr) = F(S);
(C) F(S) is closed and convex.

Lemma . (Combettes and Hirstoaga []) Assume that f : K × K → R satisfies (A)-
(A). For r >  and x ∈H , define Fr :H → K by

Frx =
{
z ∈ K : f (z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ K

}
,

then the following holds:
(B) Fr is single valued;

http://www.fixedpointtheoryandapplications.com/content/2014/1/156
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(B) Fr is firmly nonexpansive, i.e., for any x, y ∈H

‖Frx – Fry‖ ≤ 〈Frx – Fry,x – y〉;

(B) F(Fr) = EP(f );
(B) EP(f ) is closed and convex.

Lemma . (Ofoedu []) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let S : C → C be a continuous pseudocontractive mapping. For r > , let Tr :H →
C be the mapping in Lemma ., then for any x ∈H and for any p,q > ,

‖Tpx – Tqx‖ ≤ |p – q|
p

(‖Tpx‖ + ‖x‖).
Recall that a mapping A :H →H is said to bemonotone if 〈Ax–Ay,x– y〉 ≥ , ∀x, y ∈ K .

In particular, the mapping A is called
() η-strongly monotone over K if there exists η >  such that

〈Ax –Ay,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ K ;
() α-inverse strongly monotone over K if there exists α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ K .

Lemma . Let A :H →H be monotone over a closed and convex subset K of H , then the
following statements are equivalent:
() z ∈ K is a solution of VIP(A,K ) if 〈Az,x – z〉 ≥ , ∀x ∈ K .
() For fixed μ > , z = PK (I –μA)z.

Lemma . (see [, ]) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+ ≤ ( – γn)an + δn, n≥ ,

where
(i) {γn} ⊂ [, ],

∑
γn =∞,

(ii) lim supn→∞
δn
γn

≤  or
∑ |δn| < ∞.

Then limn→∞ an = .

Lemma . Let H be a real Hilbert space, then for all x, y ∈H , the following hold:
(i) ‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖;
(ii) ‖x – y‖ ≤ ‖x‖ – 〈y,x + y〉.

Lemma . (Demiclosedness Principle []) Let T : C → C be a nonexpansive mapping
with F(T) �= ∅. If {xn} is a sequence in C such that xn ⇀ x and xn –Txn →  then x ∈ F(T).

Definition . A map T :H → H is called averaged if there exists a nonexpansive map-
ping S on H and α ∈ (, ) such that

T = ( – α)I + αS,

and we say that T is α-averaged.

http://www.fixedpointtheoryandapplications.com/content/2014/1/156
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Remark .
(i) Firmly nonexpansive maps are 

 -averaged. Thus, a map T is firmly nonexpansive if
and only if T – I = S where S is nonexpansive and I an identity mapping on H .

(ii) Every averaged mapping is nonexpansive.
(iii) A map S is nonexpansive if and only if I – S is 

 -inverse strongly monotone.
(iv) If A is η-inverse strongly monotone, and λ > , then λA is η

λ
-inverse strongly

monotone.

Lemma . A map T : H → H is averaged if and only if A = I – T is η-inverse strongly
monotone for η > 

 . In particular, for α ∈ (, ), T is α-averaged if and only if I – T is 
α -

inverse strongly monotone.

Lemma . Let T = ( –α)A+αS, α ∈ (, ). If A is averaged and S is nonexpansive, then
T is averaged.

Remark .
(i) A map N is firmly nonexpansive if it is -inverse strongly monotone.
(ii) N is firmly nonexpansive if and only if I –N is firmly nonexpansive.
(iii) Every firmly nonexpansive map is averaged.
(iv) If T = ( – α)N + αS, α ∈ (, ), where N is firmly nonexpansive and S is

nonexpansive, then T is averaged.
(v) If (Si), ≤ i ≤m, is a family of nonexpansive mappings, then the mapping

S =
∏m

i= Si is nonexpansive.
(vi) If (Ti), ≤ i≤m, is a family of averaged mappings, then the mapping T =

∏m
i=Ti is

averaged. If T is α-averaged and T is α-averaged for some α,α ∈ (, ), then
TT =

∏
i=Ti is α-averaged with α = α + α – αα.

Let A :H → H be α-inverse strongly monotone, i.e.,

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ H . (.)

When α = , (.) implies that A is firmly nonexpansive and hence, A is nonexpansive.
Thus, a map A is firmly nonexpansive if and only if it is -inversely strongly monotone.
From the Schwartz inequality, we find that α-inverse being strongly monotone implies

α
-Lipschitz continuity. However, the converse is not true. For instance, A = –I (I is the

identity mapping onH) is nonexpansive (hence, -Lipschitz) but not firmly nonexpansive,
hence not -inversely strongly monotone. In , Baillon and Haddad [] showed that
if D(A) =H and A is the gradient of a convex function, say f , i.e., A = ∇f , then 

α
-Lipschitz

continuity implies α-inverse strongly monotonicity and vice versa.
If ∇f is L-Lipschitz, then ∇f is 

L -inverse strongly monotone and λ∇f is 
λL -inverse

strongly monotone. Then, by Lemma ., I – λ∇f is λL
 -averaged. The projection map

PK is firmly nonexpansive and hence is 
 -averaged. The composition PK (I – λ∇f ) is

α-averaged (from Remark .) with α = α +α –αα = (  +
λL
 ) –


 · λL

 = +λL
 ,  < λ < 

L .
Now, for n ∈ N, PK (I – λn∇f ) is +λnL

 -averaged, so that from Remark ., we have
PK (I–λn∇f ) = snI+(–sn)Tn, whereTn is nonexpansive and sn = +λnL

 , n ∈N (see [–],
and the references therein).
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3 Main result
Remark . In what follows, let K be a nonempty, closed, and convex subset of a real
Hilbert space H . Let F : K × K → R be a bifunction satisfying (A)-(A) and let T : K →
K be a continuous pseudocontractive mapping. Let f : K → R be a real valued convex
function and assume that ∇f is 

L -inverse strongly monotone mapping with L ≥ . Let
A : K →H be a k-Lipschitz continuous and η-strongly monotonemapping with constants
k,η >  and  < μ < η

k , τ = μ(η – μk
 ). Let 
 denote the solution set of the minimization

problem in (.). Let B : K → H be an γ -inverse stronglymonotonemapping. Assume that
� = F(T)∩N(B)∩ 
 ∩ EP(F) �= ∅. Let {αn}, {rn}, {λn} satisfy the following conditions:

(i) {αn} ⊂ (, ), limn→∞ αn = ,
∑∞

n= αn =∞,
∑∞

n= |αn+ – αn| <∞,
(ii) {λn} ⊂ (, L ), lim infn→∞ λn > ,

∑∞
n= |λn+ – λn| <∞,

(iii) {rn} ⊂ (,∞), limn→∞ rn > ,
∑∞

n= |rn+ – rn| <∞,
and let ε be a real constant such that  < ε < γ . For r > , Tr , Fr are as in Lemma . and
Lemma ..

Consider the sequence {xn}n≥ generated iteratively from arbitrary x ∈H by

{
F(zn, y) + 

rn 〈y – zn, zn – xn〉 ≥ , ∀y ∈ K ,
xn+ = (I – αnμA)(I – εB)TnTrnzn, ∀n ∈N,

(.)

we shall study the strong convergence of the iteration scheme to a unique solution q ∈ �

where q = P�(I – μA)q solves the variational inequality 〈Aq, z – q〉 ≥ , ∀z ∈ �, and zn =
Frnxn and we have PK (I – λn∇f ) = snI + ( – sn)Tn, where sn = –λL

 , Tn is nonexpansive.

Lemma . Suppose the conditions of Remark . are satisfied, then {xn} defined by (.)
is bounded.

Proof We first show that (I – εB) is nonexpansive. For x, y ∈ K and  < ε < γ , we have

∥∥(I – εB)x – (I – εB)y
∥∥ =

∥∥(x – y) – ε(Bx – By)
∥∥

= ‖x – y‖ – ε〈Bx – By,x – y〉 + ε‖Bx – By‖

≤ ‖x – y‖ – εγ ‖Bx – By‖ + ε‖Bx – By‖

= ‖x – y‖ – (
εγ – ε

)‖Bx – By‖

= ‖x – y‖ – ε(γ – ε)‖Bx – By‖, (.)

which implies that

∥∥(I – εB)x – (I – εB)y
∥∥ ≤ ‖x – y‖, (.)

and hence (I – εB) is nonexpansive.
Let p ∈ �. Let wn = Trnzn; un = Tnwn; vn = (I – εB)un, then Frnp = p, Trnp = p, Tnp = p

and we have

‖vn – p‖ = ∥∥(I – εB)un – (I – εB)p
∥∥ ≤ ‖un – p‖,

‖un – p‖ = ‖Tnwn – p‖ ≤ ‖wn – p‖, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/156
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‖wn – p‖ = ‖Trnzn – p‖ ≤ ‖zn – p‖,
‖zn – p‖ = ‖Frnxn – p‖ ≤ ‖xn – p‖.

For all x ∈ H , define Dn : H → H by Dnx = (I – αnμA)(I – εB)TnTrnFrnx where A is a
k-Lipschitzian and η-strongly monotone mapping on H . Assume that  < μ < η

k , for
x, y ∈H , we have

∥∥(I – αnμA)(I – εB)TnTrnFrnx – (I – αnμA)(I – εB)TnTrnFrny
∥∥

=
∥∥(
(I – εB)unx – (I – εB)uny

)
– αnμA(vnx – vny)

∥∥

=
∥∥(vnx – vny) – αnμ

(
A(vnx) –A(vny)

)∥∥

= ‖vnx – vny‖ – αnμ
〈
A(vnx) –A(vny), vnx – vny

〉
+ α

nμ
∥∥A(vnx) –A(vny)

∥∥

≤ ‖x – y‖ – αnμ
〈
A(vnx) –A(vny), vnx – vny

〉
+ αnμ

k‖vnx – vny‖

≤ ‖x – y‖ – αnμη‖x – y‖ + αnμ
k‖x – y‖

=
(
 – αnμη + αnμ

k
)‖x – y‖

=
[
 – 

(
αnμη –

αnμ
k



)]
‖x – y‖

=
[
 – αnμ

(
η –

μk



)]
‖x – y‖

≤
[
 – αnμ

(
η –

μk



)]

‖x – y‖. (.)

From (.), we have

∥∥(I – αnμA)x – (I – αnμA)y
∥∥ ≤ ( – αnτ )‖x – y‖, (.)

where τ = μ(η– μk
 ). Hence, (I –αnμA) is a strict contraction and by the Banach contrac-

tion principle, it has a unique fixed point in H .
Now, for p ∈ � and from (.) and (.), we have

‖xn+ – p‖ =
∥∥(I – αnμA)(I – εB)un – p

∥∥
=

∥∥(I – αnμA)vn – p
∥∥

=
∥∥(I – αnμA)vn – (I – αnμA)p + (I – αnμA)p – p

∥∥
≤ ∥∥(I – αnμA)vn – (I – αnμA)p

∥∥ + αn‖μAp‖
≤ ( – αnτ )‖vn – p‖ + αn‖μAp‖
≤ ( – αnτ )‖xn – p‖ + αn‖μpA‖

= ( – αnτ )‖xn – p‖ + αnτ

∥∥∥∥μAp
τ

∥∥∥∥
≤ max

{
‖xn – p‖, 

τ
‖μAp‖

}
.
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By induction, we get

‖xn – p‖ ≤max

{
‖x – p‖, 

τ
‖μAp‖

}
.

Therefore {xn} is bounded. Consequently we find that {zn}, {wn}, {un}, {vn} are bounded.
�

Lemma . Suppose that the conditions of Remark . are satisfied, and {xn} is as defined
by (.), then

lim
n→∞‖xn+ – xn‖ → , n→ ∞.

Proof For any p ∈ �, we have

∥∥A(I – εB)Tn–Tnr–zn–
∥∥ =

∥∥A(I – εB)Tn–Tnr–zn– –Ap +Ap
∥∥

≤ ∥∥A(I – εB)Tn–Trn–zn– –Ap
∥∥ + ‖Ap‖

≤ k
∥∥(I – εB)Tn–Trn–zn– – p

∥∥ + ‖Ap‖
≤ k‖xn– – p‖ + ‖Ap‖,

which shows that {A(I – εB)Tn–Trn–zn–} is bounded.
Similarly, we have

∥∥PK (I – λn∇f )xn
∥∥ =

∥∥PK (I – λn∇f )xn – p + p
∥∥

≤ ∥∥PK (I – λn∇f )xn – PK (I – λn∇f )p
∥∥ + ‖p‖

≤ ‖xn – p‖ + ‖p‖.

Hence, {PK (I – λn∇f )xn} is bounded.
Noting that ‖TnTrn–zn––Tn–Trn–zn–‖ = ‖Tnwn––Tn–wn–‖ and fromPK (I–λn∇f ) =

(–λnL)
 I + (+λnL)

 Tn, we get Tn = PK (I–λn∇f )–(–λnL)I
+λnL and we compute as follows:

Tnwn– – Tn–wn–

=
[PK (I – λn∇f ) – ( – λnL)I]

 + λnL
wn–

–
[PK (I – λn–∇f ) – ( – λn–L)I]

 + λn–L
wn–

=
( + λn–L)[PK (I – λn∇f ) – ( – λnL)I]

( + λnL)( + λn–L)
wn–

–
( + λnL)[PK (I – λn–∇f ) – ( – λn–L)I]

( + λnL)( + λn–L)
wn–,

‖Tnwn– – Tn–wn–‖

≤
∥∥∥∥( + λn–L)PK (I – λn∇f )wn– – ( + λnL)PK (I – λn–∇f )wn–

( + λnL)( + λn–L)

∥∥∥∥
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+
∥∥∥∥ ( + λnL)( – λn–L)wn– – ( + λn–L)( – λnL)wn–

( + λnL)( + λn–L)

∥∥∥∥
≤

∥∥∥∥( + λn–L)[PK (I – λn∇f )wn– – PK (I – λn–∇f )wn–]
( + λnL)( + λn–L)

∥∥∥∥
+

∥∥∥∥( + λn–L)PK (I – λn–∇f )wn– – ( + λnL)(PK (I – λn–∇f )wn–)
 + λnL + λn–L + λn–λnL

∥∥∥∥
+

∥∥∥∥L(λn – λn–)


wn–

∥∥∥∥
≤ |λn– – λn|‖∇fwn–‖ + L|λn– – λn|

∥∥PK (I – λn–∇f )wn–
∥∥ + L|λn – λn–|‖wn–‖

= |λn – λn–|
[
‖∇fwn–‖ + L

∥∥PK (I – λn–∇f )wn–
∥∥ + L‖wn–‖

]
≤M|λn – λn–|, (.)

where

M = sup
{
‖∇fwn–‖ + L

∥∥PK (I – λn–∇f )wn–
∥∥ + L‖wn–‖,n ∈ N

}
.

Now, from Lemma ., (.), and (.), we have

‖xn+ – xn‖ =
∥∥(I – αnμA)(I – εB)TnTrnzn – (I – αn–μA)(I – εB)Tn–Trn–zn–

∥∥
=

∥∥(I – αnμA)(I – εB)TnTrnzn – (I – αnμA)(I – εB)TnTrnzn–

+ (I – αnμA)(I – εB)TnTrnzn– – (I – αnμA)(I – εB)TnTrn–zn–

+ (I – αnμA)(I – εB)TnTrn–zn– – (I – αnμA)(I – εB)Tn–Trn–zn–

+ (I – αnμA)(I – εB)Tn–Trn–zn– – (I – αn–μA)(I – εB)Tn–Trn–zn–
∥∥

≤ ∥∥(I – αnμA)(I – εB)TnTrnzn – (I – αnμA)(I – εB)TnTrnzn–
∥∥

+
∥∥(I – αnμA)(I – εB)TnTrnzn– – (I – αnμA)(I – εB)TnTrn–zn–

∥∥
+

∥∥(I – αnμA)(I – εB)TnTrn–zn– – (I – αnμA)(I – εB)Tn–Trn–zn–
∥∥

+
∥∥(I – αnμA)(I – εB)Tn–Trn–zn–

– (I – αn–μA)(I – εB)Tn–Trn–zn–
∥∥

≤ ( – αnτ )‖zn – zn–‖ + ( – αnτ )‖Trnzn– – Trn–zn–‖
+ ( – αnτ )‖TnTrn–zn– – Tn–Trn–zn–‖
+ |αn– – αn|

∥∥μA(I – εB)Tn–Trn–zn–
∥∥

≤ ( – αnτ )‖zn – zn–‖ + ( – αnτ )
|rn – rn–|

rn

(‖Trnzn–‖ + ‖zn–‖
)

+ ( – αnτ )M|λn – λn–| + |αn – αn–|
∥∥μA(I – εB)Tn–Trn–zn–

∥∥
≤ ( – αnτ )‖zn – zn–‖ + ( – αnτ )

|rn – rn–|
rn

M + ( – αnτ )M|λn – λn–|
+ |αn – αn–|M, (.)
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whereM > sup(‖Trnzn–‖ + ‖zn–‖),M > sup(‖A(I – εB)Tn–Trn–zn–‖). Therefore,

‖xn+ – xn‖ ≤ ( – αnτ )‖zn – zn–‖ +M|λn – λn–| +M
|rn – rn–|

rn
+M|αn – αn–|

≤ ( – αnτ )‖zn – zn–‖ +M
[
|λn – λn–| + |rn – rn–|

rn
+ |αn – αn–|

]
, (.)

whereM =max{M,M,M}.
Since, zn = Frnxn, and zn+ = Frn+xn+, we have

F(zn, y) +

rn

〈y – zn, zn – xn〉 ≥ , ∀y ∈ K , (.)

F(zn+, y) +


rn+
〈y – zn+, zn+ – xn+〉 ≥ , ∀y ∈ K . (.)

Substitute y = zn+ in (.) and y = zn in (.) to get

F(zn, zn+) +

rn

〈zn+ – zn, zn – xn〉 ≥ , (.)

F(zn+, zn) +


rn+
〈zn – zn+, zn+ – xn+〉 ≥ . (.)

From (A), we have (.) + (.):


rn

〈zn+ – zn, zn – xn〉 – 
rn+

〈zn+ – zn, zn+ – xn+〉 ≥ ,
〈
zn+ – zn,


rn
(zn – xn) –


rn+

(zn+ – xn+)
〉
≥ ,

〈
zn+ – zn, (zn – xn) –

rn
rn+

(zn+ – xn+)
〉
≥ ,

〈
zn+ – zn, zn – zn+ + zn+ – xn –

rn
rn+

(zn+ – xn+)
〉
≥ .

Without loss of generality, let us assume that there exists a real number c such that rn >
c >  for all n ∈ N. We now have

–‖zn+ – zn‖ +
〈
zn+ – zn, zn+ – xn –

rn
rn+

(zn+ – xn+)
〉
≥ ,

‖zn+ – zn‖ ≤
〈
zn+ – zn, zn+ – xn+ + xn+ – xn –

rn
rn+

(zn+ – xn+)
〉

≤
〈
zn+ – zn,

(
 –

rn
rn+

)
(zn+ – xn+) + xn+ – xn

〉

≤ ‖zn+ – zn‖
[∥∥∥∥ rn+ – rn

rn+
(zn+ – xn+) + xn+ – xn

∥∥∥∥
]

≤ ‖zn+ – zn‖
[ |rn+ – rn|

rn+
‖zn+ – xn+‖ + ‖xn+ – xn‖

]
,
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which implies that

‖zn+ – zn‖ ≤ |rn+ – rn|
rn+

‖zn+ – xn+‖ + ‖xn+ – xn‖

≤ L∗
c

|rn+ – rn| + ‖xn+ – xn‖, (.)

where L∗ = sup{‖zn+ – xn+‖,n ∈ N}.
From (.) and (.), we have

‖xn+ – xn‖

≤ ( – αnτ )
[
L∗
c

|rn – rn–| + ‖xn – xn–‖
]

+M
[
|λn – λn–| + |αn – αn–| + |rn – rn–|

rn

]

= ( – αnτ )‖xn – xn–‖ + ( – αnτ )
L∗
c

|rn – rn–|

+M
[
|λn – λn–| + |αn – αn–| + |rn – rn–|

rn

]

≤ ( – αnτ )‖xn – xn–‖ + L∗
c

|rn – rn–| +M
[
|λn – λn–| + |αn – αn–| + |rn – rn–|

rn

]
.

Using conditions on {rn}, {λn}, {αn}, and Lemma ., we get

lim
n→∞‖xn+ – xn‖ = . (.)

Consequently, from (.) and (.), we have

lim
n→∞‖zn+ – zn‖ = . (.)

�

Lemma . Suppose that the conditions of Remark . are satisfied, and {xn} is as defined
by (.), then

lim
n→∞

∥∥(I – αnμA)(I – εB)TnTrnFrnxn – xn
∥∥ = lim

n→∞‖zn – xn‖
= lim

n→∞‖wn – zn‖
= lim

n→∞‖TrnFrnxn – TnTrnFrnxn‖
= lim

n→∞‖BTnTrnFrnxn‖
= lim

n→∞‖TnTrnFrnxn – xn‖
= lim

n→∞
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥
= lim

n→∞
∥∥(I – εB)TnTrnFrnxn – xn

∥∥
= .

http://www.fixedpointtheoryandapplications.com/content/2014/1/156


Osilike et al. Fixed Point Theory and Applications 2014, 2014:156 Page 14 of 24
http://www.fixedpointtheoryandapplications.com/content/2014/1/156

Proof Observe that

∥∥(I – αnμA)(I – εB)TnTrnFrnxn – xn
∥∥

=
∥∥xn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
=

∥∥(xn – xn+) +
(
xn+ – (I – αnμA)(I – εB)TnTrnFrnxn

)∥∥
≤ ‖xn – xn+‖ →  as n → ∞.

Furthermore, for p ∈ � and using (B) we have

‖zn – p‖ = ‖Frnxn – p‖

= ‖Frnxn – Frnp‖

≤ 〈Frnxn – Frnp,xn – p〉
= 〈zn – p,xn – p〉
=



[‖zn – p‖ + ‖xn – p‖ – ‖zn – xn‖

]
,

which implies that

‖zn – p‖ ≤ ‖xn – p‖ – ‖zn – xn‖. (.)

From (.) and (.), we have the following estimate:

‖xn+ – p‖ = ∥∥(I – αnμA)(I – εB)TnTrnzn – p
∥∥

=
∥∥(
(I – αnμA)vn – (I – αnμA)p

)
– αnμAp

∥∥.

Hence

‖xn+ – p‖

=
∥∥(I – αnμA)vn – (I – αnμA)p

∥∥ + ‖αnμAp‖

+ αn
〈
(I – αnμA)vn – (I – αnμA)p, –μAp

〉
≤ ( – αnτ )‖vn – p‖ + α

n‖μAp‖ + αn
∥∥(I – αnμA)vn – (I – αnμA)p

∥∥‖–μAp‖
≤ ( – αnτ )‖zn – p‖ + α

n‖μAp‖ + αn( – αnτ )‖vn – p‖‖–μAp‖
≤ ‖zn – p‖ + α

n‖μAp‖ + αn‖zn – p‖‖–μAp‖
≤ ‖xn – p‖ – ‖zn – xn‖ + α

n‖μAp‖ + αn‖zn – p‖‖–μAp‖, (.)

‖zn – xn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn‖μAp‖ + αn‖zn – p‖‖–μAp‖
=

[‖xn – p‖ – ‖xn+ – p‖] × [‖xn – p‖ + ‖xn+ – p‖] + αn‖μAp‖

+ αn‖zn – p‖‖–μAp‖
≤ ‖xn – xn+‖

[‖xn – p‖ + ‖xn+ – p‖] + αn‖μAp‖ + αn‖zn – p‖‖–μAp‖.
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Since ‖xn+ – xn‖ →  and αn →  as n→ ∞, we have

lim
n→∞‖zn – xn‖ = . (.)

Similarly, using (C), we have

‖wn – p‖ = ‖TrnFrnxn – p‖

≤ 〈TrnFrnxn – p,Frnxn – p〉

=


[‖wn – p‖ + ‖zn – p‖ – ‖wn – zn‖

]
;

hence,

‖wn – p‖ ≤ ‖zn – p‖ – ‖wn – zn‖.

From (.), we have

‖xn+ – p‖

≤ ( – αnτ )‖vn – p‖ + α
n‖μAp‖ + αn

∥∥(I – αnμA)vn – (I – αnμA)p
∥∥‖–μAp‖

≤ ( – αnτ )‖wn – p‖ + α
n‖μAp‖ + αn

∥∥(I – αnμA)vn – (I – αnμA)p
∥∥‖–μAp‖

= ( – αnτ )‖wn – p‖ + α
n‖μAp‖ + αn( – αnτ )‖vn – p‖‖–μAp‖

≤ ‖wn – p‖ + α
n‖μAp‖ + αn( – αnτ )‖wn – p‖‖–μAp‖

≤ ‖zn – p‖ – ‖wn – zn‖ + α
n‖μAp‖ + αn( – αnτ )‖wn – p‖‖–μAp‖

= ‖xn – p‖ – ‖wn – zn‖ + αn‖μAp‖ + αn( – αnτ )‖wn – p‖‖–μAp‖,
‖wn – zn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn‖μAp‖ + αn‖wn – p‖‖–μAp‖
≤ ‖xn – xn+‖

[‖xn – p‖ + ‖xn+ – p‖] + αn‖μAp‖ + αn‖wn – p‖‖–μAp‖.

Since ‖xn+ – xn‖ → , αn → , we have

lim
n→∞‖wn – zn‖ = . (.)

Furthermore

‖un – p‖ = ‖TnTrnFrnxn – p‖

= ‖TnTrnFrnxn – p‖‖TnTrnFrnxn – p‖
≤ ‖TrnFrnxn – p‖‖TnTrnFrnxn – p‖

=


[‖TrnFrnxn – p‖ + ‖TnTrnFrnxn – p‖ – ‖TrnFrnxn – TnTrnFrnxn‖

]
;

hence,

‖TnTrnFrnxn – p‖ ≤ ‖TrnFrnxn – p‖ – ‖TrnFrnxn – TnTrnFrnxn‖. (.)
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From (.), we obtain

‖xn+ – p‖ ≤ ( – αnτ )‖vn – p‖ + α
n‖μAp‖

+ αn
∥∥(I – αnμA)vn – (I – αnμA)p

∥∥‖–μAp‖
= ( – αnτ )

∥∥(I – εB)TnTrnFrnxn – p
∥∥ + α

n‖μAp‖

+ αn
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – (I – αnμA)p

∥∥‖–μAp‖
≤ ∥∥(I – εB)TnTrnFrnxn – p

∥∥ + αn‖μAp‖

+ αn( – αnτ )
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖–μAp‖
≤ ‖TnTrnFrnxn – p‖ – ε(γ – ε)‖BTnTrnFrnxn‖ + αn‖μAp‖

+ αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖–μAp‖
≤ ‖TrnFrnxn – p‖ – ‖TrnFrnxn – TnTrnFrnxn‖

– ε(γ – ε)‖BTnTrnFrnxn‖

+ αn‖μAp‖ + αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖–μAp‖
≤ ‖xn – p‖ – ‖TrnFrnxn – TnTrnFrnxn‖ – ε(γ – ε)‖BTnTrnFrnxn‖

+ αn‖μAp‖ + αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖–μAp‖.

On re-arranging, we have

‖TrnFrnxn – TnTrnFrnxn‖ + ε(γ – ε)‖BTnTrnFrnxn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn‖μAp‖

+ αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖–μAp‖
≤ ‖xn+ – xn‖

[‖xn – p‖ + ‖xn+ – p‖] + αn‖μAp‖

+ αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖–μAp‖.

Since ‖xn+ – xn‖ → , αn →  as n→ ∞, we have

lim
n→∞

(‖TrnFrnxn – TnTrnFrnxn‖ + ε(γ – ε)‖BTnTrnFrnxn‖
)
= . (.)

Since ε(γ – ε) > , we use the sandwich theorem in (.) to obtain

lim
n→∞‖TrnFrnxn – TnTrnFrnxn‖ = , (.)

lim
n→∞‖BTnTrnFrnxn‖ = . (.)

Using (.), (.), (.), (.), we obtain

‖TnTrnFrnxn – xn‖
≤ ‖TnTrnFrnxn – TrnFrnxn‖ + ‖TrnFrnxn – Frnxn‖ + ‖Frnxn – xn‖ → . (.)
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Furthermore, for p ∈ �,

∥∥(I – εB)TnTrnFrnxn – p
∥∥

=
∥∥TnTrnFrnxn – εBTnTrnFrnxn – (p – εBp)

∥∥

=
〈
TnTrnFrnxn – εBTnTrnFrnxn – (p – εBp), (I – εB)TnTrnFrnxn – p

〉
=


[∥∥TnTrnFrnxn – εBTnTrnFrnxn – (p – εBp)

∥∥ +
∥∥(I – εB)TnTrnFrnxn – p

∥∥

–
∥∥(
TnTrnFrnxn – εBTnTrnFrnxn – (p – εBp)

)
–

(
(I – εB)TnTrnFrnxn – p

)∥∥]
≤ 


[‖TnTrnFrnxn – p‖ + ∥∥(I – εB)TnTrnFrnxn – p

∥∥

–
[∥∥(TnTrnFrnxn – p) –

(
(I – εB)TnTrnFrnxn – p

)∥∥ + ε‖BTnTrnFrnxn‖

– ε
〈
TnTrnFrnxn – (I – εB)TnTrnFrnxn,BTnTrnFrnxn

〉]]
.

Now,

∥∥(I – εB)TnTrnFrnxn – p
∥∥

≤ ‖TnTrnFrnxn – p‖ – ∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn
∥∥

– ε‖BTnTrnFrnxn‖ + ε
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥‖BTnTrnFrnxn‖
≤ ‖xn – p‖ – ∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥

+ ε
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥‖BTnTrnFrnxn‖
= ‖xn – xn+ + xn+ – p‖ – ∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥

+ ε
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥‖BTnTrnFrnxn‖
≤ ‖xn+ – xn‖ + ‖xn+ – p‖ + ‖xn+ – xn‖‖xn+ – p‖
–

∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn
∥∥

+ ε
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥‖BTnTrnFrnxn‖
= ‖xn+ – xn‖

[‖xn+ – xn‖ + ‖xn+ – p‖] + ‖xn+ – p‖

–
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥

+ ε
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥‖BTnTrnFrnxn‖,

which implies that

∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn
∥∥

≤ ‖xn+ – xn‖
[‖xn+ – xn‖ + ‖xn+ – p‖]

+ ‖xn+ – p‖ – ∥∥(I – εB)TnTrnFrnxn – p
∥∥

+ ε
∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥‖BTnTrnFrnxn‖. (.)
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From (.), we obtain

‖xn+ – p‖

≤ ( – αnτ )‖vn – p‖ + α
n‖μAp‖ + αn( – αnτ )‖vn – p‖‖μAp‖

≤ ‖vn – p‖ + αn‖μAp‖ + αn‖vn – p‖‖μAp‖
=

∥∥(I – εB)TnTrnFrnxn – p
∥∥ + αn‖μAp‖

+ αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖μAp‖. (.)

Using (.) in (.), we obtain

∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn
∥∥

≤ ‖xn+ – xn‖
[‖xn+ – xn‖ + ‖xn+ – p‖] + αn‖μAp‖

+ αn
∥∥(I – εB)TnTrnFrnxn – p

∥∥‖μAp‖
+ ε

∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn
∥∥‖BTnTrnFrnxn‖.

Using the fact that ‖xn+ – xn‖ → , αn → , ‖BTnTrnFrnxn‖ → , as n → ∞, we deduce
that

lim
n→∞

∥∥TnTrnFrnxn – (I – εB)TnTrnFrnxn
∥∥ = . (.)

From (.) and (.), we have

∥∥(I – εB)TnTrnFrnxn – xn
∥∥

≤ ∥∥(I – εB)TnTrnFrnxn – TnTrnFrnxn
∥∥ + ‖TnTrnFrnxn – xn‖ → . (.)

�

Lemma . Suppose that the conditions of Remark . are satisfied, and {xn} is as de-
fined by (.). Let q ∈ � be the unique solution of the variational inequality 〈Aq, z– q〉 ≥ ,
∀z ∈ �. Then

lim sup
n→∞

〈Aq,q – z〉 ≤ ,

where q = P�(I –μA)q.

Proof To show this inequality, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈Aq,q – xn〉 = lim
i→∞〈Aq,q – xni〉;

correspondingly, there exists a subsequence {zni} of {zn}. Since {zni} is bounded, there exist
a subsequence {znij } of {zni} and z ∈ H such that znij ⇀ z. Without loss of generality, we
may assume that zni ⇀ z. Since {zni} ⊂ K and K is closed and convex, K is weakly closed.
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So, we have z ∈ K . Let us show that z ∈ � = F(T)∩N(B)∩ 
 ∩ EP(F). First, we show that
z ∈ EP(F). Since zn = Frnxn, we have

F(zn, y) +

rn

〈y – zn, zn – xn〉 ≥ , ∀y ∈ K .

It follows from (A) that


rn

〈y – zn, zn – xn〉 ≥ F(y, zn);

hence,
〈
y – zni ,

zni – xni
rni

〉
≥ F(y, zni ).

Since, zni–xni
rni

→ , zni ⇀ z as i → ∞, it follows that F(y, z) ≤ , ∀y ∈ K . For t ∈ (, ] and
m ∈ K , let yt = tm+ ( – t)z. Sincem ∈ K and z ∈ K , we have yt ∈ K so that F(yt , z) ≤ .We
have from (A) and (A)

 = F(yt , yt) = F
(
yt , tm + ( – t)z

)
= tF(yt ,m) + ( – t)F(yt , z) ≤ tF(yt ,m).

That is, F(yt ,m) ≥ . It follows from (A) that F(z,m) ≥ , ∀m ∈ K . Since, m is taken
arbitrarily, it follows that z ∈ EP(F).
We show that z ∈ F(T). Recall that wni = Trni zni so that

〈y –wni ,Twni〉 –

rni

〈
y –wni , ( + rni )wni – xni

〉 ≤ , ∀y ∈ K . (.)

Put zt = tv + ( – t)z, ∀t ∈ (, ) and v ∈ K . Consequently, we get zt ∈ K . From (.) and
the pseudocontractivity of T , we have

〈zt –wni ,Twni〉 –

rni

〈
zt –wni , ( + rni )wni – xni

〉 ≤ ,

〈zt –wni ,Twni〉 – 〈wni – zt ,Tzt〉 + 〈wni – zt ,Tzt〉

–

rni

〈
zt –wni , ( + rni )wni – xni

〉 ≤ ,

〈wni – zt ,Tzt〉

≥ 〈zt –wni ,Twni〉 + 〈wni – zt ,Tzt〉 – 
rni

〈zt –wni ,wni + rniwni – xni〉

= 〈wni – zt ,Tzt – Twni〉 –

rni

〈zt –wni ,wni – xni〉 – 〈zt –wni ,wni〉

= –〈wni – zt ,Twni – Tzt〉 – 
rni

〈zt –wni ,wni – xni〉 – 〈zt –wni ,wni〉

≥ –‖wni – zt‖ – 
rni

〈zt –wni ,wni – xni〉 –
[〈zt –wni ,wni – zt〉 + 〈zt –wni , zt〉

]

= –‖wni – zt‖ – 
rni

〈zt –wni ,wni – xni〉 + ‖wni – zt‖ – 〈zt –wni , zt〉
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= 〈wni – zt , zt〉 – 
rni

〈zt –wni ,wni – xni〉

≥ 〈wni – zt , zt〉 – 
|rni |

‖zt –wni‖‖wni – xni‖. (.)

Since ‖wni – xni‖ ≤ ‖wni – zni‖ + ‖zni – xni‖ →  as i→ ∞, (.) becomes

〈z – zt ,Tzt〉 ≥ 〈z – zt , zt〉,
t〈z – v,Tzt〉 ≥ t〈z – v, zt〉,
〈z – v,Tzt〉 ≥ 〈z – v, zt〉, ∀v ∈ K ,

(.)

taking the limit as t →  and using the fact that T is continuous, (.) becomes

〈z – v,Tz〉 ≥ 〈z – v, z〉, ∀v ∈ K ,

〈z – v, z〉 – 〈z – v,Tz〉 ≤ ,

〈z – v, z – Tz〉 ≤ .

Put v = Tz and we have

〈z – Tz, z – Tz〉 ≤ ,

‖z – Tz‖ ≤ ,

which implies that z ∈ F(T).
We now show that z ∈ 
. Observe that for {λni} ⊆ {λn},

∥∥PK (I – λni∇f )Trni Frni xni – Trni Frni xni
∥∥ =

∥∥PK (I – λni∇f )wni –wni
∥∥

=
∥∥sniwni + ( – sni )Tniwni –wni

∥∥
=

∥∥( – sni )Tniwni – ( – sni )wni
∥∥

= | – sni |‖Tniwni –wni‖
≤ ‖Tniwni –wni‖ → 

by (.). Let λni → λ as i → ∞. If wni ⇀ z and ‖PK (I – λni∇f )wni – wni‖ → , by the
nonexpansive property of PK (I –λ∇f ), and Lemma ., PK (I –λ∇f )z = z, where λ ∈ (, L );
hence, z ∈ 
.
Next we show that z ∈N(B) = {x ∈H : Bx = }, the null space of B. We make the follow-

ing estimate:

∥∥(I – αnμA)(I – εB)TnTrnFrnxn – p
∥∥

=
∥∥(I – εB)TnTrnFrnxn – αnμA(I – εB)TnTrnFrnxn – p

∥∥

=
〈
(I – εB)TnTrnFrnxn – αnμA(I – εB)TnTrnFrnxn – p,

(I – αnμA)(I – εB)TnTrnFrnxn – p
〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/156


Osilike et al. Fixed Point Theory and Applications 2014, 2014:156 Page 21 of 24
http://www.fixedpointtheoryandapplications.com/content/2014/1/156

=


[∥∥(I – εB)TnTrnFrnxn – αnμA(I – εB)TnTrnFrnxn – p

∥∥

+
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – p

∥∥

–
∥∥(
(I – εB)TnTrnFrnxn – αnμA(I – εB)TnTrnFrnxn – p

)
–

(
(I – αnμA)(I – εB)TnTrnFrnxn – p

)∥∥]
≤ 


[∥∥(I – εB)TnTrnFrnxn – p

∥∥ +
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – p

∥∥

–
(∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥

+ α
n
∥∥μA(I – εB)TnTrnFrnxn

∥∥

– αn
〈
(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn,

μA(I – εB)TnTrnFrnxn
〉)]

≤ 

[∥∥(I – εB)TnTrnFrnxn – p

∥∥ +
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – p

∥∥

–
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥

– α
n
∥∥μA(I – εB)TnTrnFrnxn

∥∥

+ αn
〈
(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn,

μA(I – εB)TnTrnFrnxn
〉]
,

which implies that

∥∥(I – αnμA)(I – εB)TnTrnFrnxn – p
∥∥

≤ ∥∥(I – εB)TnTrnFrnxn – p
∥∥

–
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥
≤ ‖xn – p‖ – ∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥
= ‖xn – xn+ + xn+ – p‖ – ∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥
≤ ‖xn – xn+‖ + ‖xn+ – p‖ + ‖xn – xn+‖‖xn+ – p‖
–

∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn
∥∥

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥
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= ‖xn – xn+‖
[‖xn – xn+‖ + ‖xn+ – p‖] + ‖xn+ – p‖

–
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥.
From (.) and the condition on αn, we obtain

∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn
∥∥

≤ ‖xn – xn+‖
[‖xn – xn+‖ + ‖xn+ – p‖] + ‖xn+ – p‖

–
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – p

∥∥

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥
= ‖xn – xn+‖

[‖xn – xn+‖ + ‖xn+ – p‖] + ‖xn+ – p‖ – ‖xn+ – p‖

+ αn
∥∥(I – εB)TnTrnFrnxn – (I – αnμA)(I – εB)TnTrnFrnxn

∥∥
× ∥∥μA(I – εB)TnTrnFrnxn

∥∥ → . (.)

Using (.), (.) in (.), we have

∥∥xn – (I – εB)xn
∥∥

≤ ‖xn+ – xn‖ +
∥∥xn+ – (I – εB)xn

∥∥
= ‖xn+ – xn‖ +

∥∥(I – αnμA)(I – εB)TnTrnFrnxn – (I – εB)xn
∥∥

≤ ‖xn+ – xn‖ +
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥
+

∥∥(I – εB)TnTrnFrnxn – (I – εB)xn
∥∥

≤ ‖xn+ – xn‖ +
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – (I – εB)TnTrnFrnxn

∥∥
+ ‖TnTrnFrnxn – xn‖ → . (.)

Replace n by ni in (.) to get

lim
i→∞

∥∥xni – (I – εB)xni
∥∥ = .

Since the map (I – εB) is nonexpansive from (.), we deduce from the demiclosedness
principle that

lim
i→∞

∥∥xni – (I – εB)xni
∥∥ =

∥∥∥ lim
i→∞

(
xni – (I – εB)xni

)∥∥∥
=

∥∥z – (I – εB)z
∥∥ = ,

which implies that z – z + εBz =  or Bz =  (ε > ); hence, we get z ∈ N(B) and conclude
that z ∈ �.
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Since q = PK (I –μA)q, it follows that

lim sup
n→∞

〈Aq,q – xn〉 = lim
i→∞〈Aq,q – xni〉 = 〈Aq,q – z〉 ≤ , ∀z ∈ �. (.)

�

Theorem. Suppose that the conditions of Remark . are satisfied, and {xn} is as defined
by (.), then {xn} converges strongly to q ∈ �, which is a unique solution of the variational
inequality 〈Aq, z – q〉 ≥ , ∀z ∈ �.

Proof Let q ∈ �, then

‖xn+ – q‖

=
∥∥(I – αnμA)(I – εB)TnTrnFrnxn – q

∥∥

=
∥∥(I – αnμA)(I – εB)un – (I – αnμA)(I – εB)q + (I – αnμA)(I – εB)q – q

∥∥

=
∥∥[
(I – αnμA)(I – εB)un – (I – αnμA)(I – εB)q

]
– αnμAq

∥∥

≤ ∥∥(I – αnμA)(I – εB)un – (I – αnμA)(I – εB)q
∥∥ + αn〈–μAq,xn+ – q〉

≤ ( – αnτ )
∥∥(I – εB)un – (I – εB)q

∥∥ + αn〈–μAq,xn+ – q〉
≤ ( – αnτ )‖xn – q‖ + αn〈–μAq,xn+ – q〉
= ( – αnτ )‖xn – q‖ + α

nτ
‖xn – q‖ + αn〈–μAq,xn+ – q〉

≤ ( – αnτ )‖xn – q‖ + αnτ

(
αnτM∗


+

τ

〈–μAq,xn+ – q〉
)

= ( – αnτ )‖xn – q‖ + δn, (.)

whereM∗ = sup{‖xn – q‖ : n ∈N} and δn = αnτ ( αnτM∗
 + 

τ
〈–μAq,xn+ – q〉).

Apply Lemma . to (.) to conclude that xn → q. �

Remark . The prototype sequences are

αn =


 + n
, λn =

n
 + nL

, rn =


 + n
.

Remark . Our result is an extension of the result of Tian and Liu [] and better appli-
cable.

Remark . The scheme is found to be better applicable than the results of Yamada []
and Tian [] who worked on a single nonexpansive mapping.
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