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Abstract
In this paper we define a new class of multivalued generalized contractions on cone
metric spaces. Then, by using a necessary new technique, we prove two common
fixed point theorems for a pair of those mappings on complete cone metric spaces
over solid, not necessarily normal cone. Our main theorems are generalizations of the
theorem of Wardowski (Appl. Math. Lett. 24:275-278, 2011) and many existing
theorems in the literature. By using our main theorems, we can obtained some
important corollaries which are generalizations of the well-known metric fixed point
theorems to setting of cone metric spaces over a solid non-normal cone.
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1 Introduction and preliminaries
There exist many generalizations of the concept of metric spaces in the literature. Fixed
point theory in abstract (cone) metric, or in K-metric spaces over a Banach space, was
developed in the mid-s. Huang and Zhang [] reintroduced cone metric spaces and
defined the convergence via interior points of the cone which determines an order on E.
Although they considered and proved several fixed point theorems only in cone metric
spaces over a normal cone, their approach enables the investigation of cone metric spaces
over a cone which is not necessarily normal. It is well known that many fixed point results
in the setting of cone metric spaces can be obtained from the corresponding results in
metric spaces (see [–]). The results in the setting of cone metric spaces are appropriate
only if the underlying cone is not necessarily normal (see []).

Definition . Let E be a topological vector space and P be a subset of E. The set P is
called a cone if

(P) P is closed, nonempty, and P �= {θ}, where θ is the zero vector of E;
(P) a,b ∈ R, a,b ≥ , x, y ∈ P �⇒ ax + by ∈ P;
(P) P ∩ (–P) = {θ}.
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A cone P is called solid [] if intP �= ∅, where intP is the interior of P.

Each cone P of E determines a partial order 	 on E by x 	 y if and only if y – x ∈ P for
each x, y ∈ X. We write x ≺ y if x 	 y but x �= y, while x � y will denote that y – x ∈ intP.
This relation is compatible with the vector structure.

Definition . Let P be a cone in a real Banach space E. The cone P is called normal, if
there exists a constant K >  such that, for all x, y ∈ E,

θ 	 x	 y implies ‖x‖ ≤ K‖y‖,

or, equivalently, if

xn � yn � zn and lim
n→∞xn = lim

n→∞ zn = x, then lim
n→∞ yn = x. (.)

The least positive number K satisfying the above inequality is called the normal constant
of P.

The following example shows that there are non-normal cones.

Example . Let E = C
R([, ]) with the norm ‖f ‖ = ‖f ‖∞ + ‖f ′‖∞ and consider the cone

P = {f ∈ E : f (t) ≥ }. For each n ≥ , put f (x) = x and g(x) = xn. Then θ 	 g 	 f , ‖f ‖ = 
and ‖g‖ = n + . Since for each K >  there exists n ∈ N such that n +  > K , we have
g 	 f , but ‖g‖� K‖f ‖ for any K > . Therefore, the cone P is non-normal.

Definition . ([, ]) Let E be a Banach space and θ be the zero vector of E. Let P be
a cone in E with int(P) �= ∅ and let 	 be a partial ordering with respect to P. A mapping
d : X × X → E is called a cone metric on the nonempty set X if the following axioms are
satisfied:
(d) θ 	 d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d) d(x, y) = d(y,x) for all x, y ∈ X ;
(d) d(x, y) 	 d(x, z) + d(z, y) for all x, y, z ∈ X .
The pair (X,d), where X is a nonempty set and d is a cone metric, is called a conemetric

space.

Example . Let E = R, P = {(x, y) ∈ E : x, y ≥ }, X = R and d : X × X → E defined by
d(x, y) = (|x– y|, c|x– y|), where c≥  is a constant. Then (X,d) is a cone metric space with
the normal cone P, where the normal constant K = .

Definition . (Huang and Zhang []) Let (X,d) be a cone metric space. We say that a
sequence {xn} in X is

(i) a convergent sequence if, for every c in E with θ � c, there is an N such that
d(xn,x)� c for all n >N and for some fixed x in X ;

(ii) a Cauchy sequence if, for every c in E with θ � c, there is an N such that
d(xn,xm) � c for all n,m >N .

Aconemetric spaceX is said to be complete if every Cauchy sequence inX is convergent
in X.
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In the following lemma we suppose that E is a Banach space, P is a cone in E with
int(P) �= ∅, without the assumption of normality of cone P.

Lemma . ([, ]) Let (X,d) be a cone metric space. Then the following properties are
often used (particularly when dealing with cone metric spaces in which the cone need not
be normal).

(p) If u	 v and v � w, then u� w.
(p) If θ 	 u� c for each c ∈ intP, then u = θ .
(p) If a	 b + c for each c ∈ intP, then a	 b.
(p) If θ 	 x	 y and a ≥ , then  	 ax	 ay.
(p) If E is a real Banach space with a cone P and if a 	 λa, where a ∈ P and  < λ < , then

a = θ .
(p) If c ∈ intP, θ 	 an and an → θ , then there exists n such that, for all n > n, we have

an � c.

From (p) it follows that the sequence {xn} converges to x ∈ X if d(xn,x)→ θ as n→ ∞
and {xn} is a Cauchy sequence if d(xn,xm) → θ as n,m → ∞. In the situation with a non-
normal cone we have only one part of Lemmas  and  from []. Also, in this case from
xn → x and yn → y it need not follow that d(xn, yn) → d(x, y), as well as from xn � yn � zn
and limn→∞ xn = limn→∞ zn = x it need not follow that limn→∞ yn = x.

Example . Let E = C
R([, ]), P ⊂ E and the norm ‖ · ‖ be as in Example .. Consider

the sequences xn(t) = tn/n and yn(t) = /n. Then  	 xn ≺ yn and limn→∞ yn = , but

‖xn‖ = max
t∈[,]

∣∣∣∣ t
n

n

∣∣∣∣ + max
t∈[,]

∣∣tn–∣∣ = 
n
+  > .

Therefore, {xn} does not converge to , although  ≤ xn(t) < /n. Thus it follows by (.)
that P is a non-normal cone.

The study of fixed points of multivalued mappings satisfying certain contractive con-
ditions has many applications and studied by many researchers (see [–]). An element
x ∈ X is said to be a fixed point of a multivalued map T : X → X if x ∈ Tx. Recently many
authors proved fixed point theorems for multivalued mappings on complete cone metric
spaces assuming that the corresponding cone is regular or normal (see [–]). For a
cone metric space (X,d) let Ã be a family of subsets of X. Wardowski [, Definition .]
introduced a new cone metric H : Ã × Ã → E. Then he introduced the concept of set-
valued contraction of Nadler type [] and proved a fixed point theorem by assumption
that a cone P of E is solid and normal. But, as noted in [], most of the fixed points results
in cone metric spaces over a normal cone can be obtained as a consequences from the
corresponding results in metric spaces. Very recently Arshad and Ahmad [] modified
Wardowski’s [] idea of H-cone metric. They introduced the following notion of H-cone
metric.

Definition . (Arshad and Ahmad []) Let (X,d) be a cone metric space and let Ã be a
family of all nonempty, closed, bounded subsets of X. A map H : Ã × Ã → E is called an
H-cone metric on Ã induced by d if the following conditions hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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(H) θ �H(A,B) for all A,B ∈ Ã and H(A,B) = θ if and only if A = B;
(H) H(A,B) =H(B,A) for all A,B ∈ Ã;
(H) H(A,B)�H(A,C) +H(C,B) for all A,B,C ∈ Ã;
(H) If A,B ∈ Ã, θ ≺ ε ∈ E with H(A,B) ≺ ε, then for each a ∈ A there exists b ∈ B such

that d(a,b)≺ ε.

Example . Let (X,d) be a metric space and let Ã be a family of all nonempty, closed,
bounded subsets of X. Then the mappingH : Ã× Ã→ R+ given by the formula

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, A,B ∈ Ã, (.)

which is called a Hausdorff metric induced by the metric d, is an H-cone metric induced
by d.

Arshad and Ahmad [] extended the theorem of Wardowski [] to a complete cone
metric space without the assumption that a cone P is normal. They proved the following
theorem.

Theorem . (Arshad and Ahmad []) Let (X,d) be a complete cone metric space. Let
Ã be a collection of nonempty, closed, and bounded subsets of X and let H : Ã× Ã → E be
an H-cone metric induced by d. If for a map T : X → Ã there exists λ ∈ (, ) such that, for
all x, y ∈ X,

H(Tx,Ty) ≤ λ · d(x, y), (.)

then T has a fixed point.

Clearly, Theorem . is a generalization of the classical theoremofmultivalued contrac-
tive mappings (Nadler []). Recall that some of the initial generalizations of the theorem
of Nadler are given in [] and in []. In  Ćirić in [] introduced the concept of
a generalized single-valued contraction, and then in  in [] he used the following
concept of a generalized multivalued contraction.

Definition . (Ćirić []) Let (X,d) be ametric space and let Ã be a family of nonempty,
closed, and bounded subsets of X. A mapping T : X → Ã is said to be a generalized mul-
tivalued contraction if and only if there exists λ ∈ [, ) such that, for all x, y ∈ X,

H(Tx,Ty) ≤ λ ·max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)


}
, (.)

where H(A,B) for A,B ∈ Ã is the Hausdorff metric (.) induced by metric d.

In the present paper we will introduce the concept of a generalized multivalued con-
traction on cone metric spaces and then, using a new technique of proof, we prove two
common fixed point theorems for a pair of those multivalued mappings on cone metric
spaces over solid non-normal cones. As a consequence, we also obtain some important
corollaries which are generalizations of the well-known metric fixed point theorems.
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2 Main results
Inspired by Definition . of Ćirić we shall introduce the notion of the cone generalized
multivalued contraction.

Definition . Let E be a Banach space and let (X,d) be a cone metric space over E. Let
Ã be a family of nonempty, closed, and bounded subsets of X and let there exists an H-
cone metric H : Ã × Ã → E induced by d. A mapping T : X → Ã is said to be a cone
generalized multivalued contraction if and only if there exists λ ∈ [, ) such that, for all
x, y ∈ X, a mapping T satisfies one of the following contractive conditions:
(D) H(Tx,Ty)� λ · d(x, y);
(D) H(Tx,Ty)� λ · d(x,u) for each fixed u ∈ Tx;
(D) H(Tx,Ty)� λ · d(y, v) for each fixed v ∈ Ty;
(D) H(Tx,Ty)� λ · d(x,v)+d(y,u)

 for each fixed v ∈ Ty and each fixed u ∈ Tx.

It is easy to show that the generalized multivalued contraction defined in Definition .
is an example of the cone generalized multivalued contraction defined in Definition ..

Example . Let X = R and (X,d) be the usual metric space ordered by a usual order-
ing ≤. Let Ã be a family of all nonempty, closed, bounded subsets of X andH : Ã× Ã→ E
be a Hausdorff metric. Suppose that a mapping T : X → Ã is a generalized multivalued
contraction defined in Definition .. If we set E = R, θ = , P = {x ∈ E : x ≥ } = R+ and
for x, y ∈ E, we define x	 y if and only if x≤ y, then (X,d) is a cone metric space over cone
P and T : X → Ã is a cone generalized multivalued contraction.

Now we prove our main theorem.

Theorem . Let E be a Banach space, let P be a solid not necessarily normal cone of E
and let (X,d) be a cone metric space over E. Let Ã be a family of nonempty, closed, and
bounded subsets of X and let there exists an H-cone metric H : Ã × Ã → E induced by d.
Suppose that T ,S : X → Ã are two cone multivalued mappings and suppose that there is
λ ∈ (, ) such that, for all x, y ∈ X, at least one of the following conditions holds:
(C) H(Tx,Sy)� λ · d(x, y);
(C) H(Tx,Sy)� λ · d(x,u) for each fixed u ∈ Tx;
(C) H(Tx,Sy)� λ · d(y, v) for each fixed v ∈ Sy;
(C) H(Tx,Sy)� λ · d(x,v)+d(y,u)

 for each fixed v ∈ Sy, u ∈ Tx.
Then T and S have a common fixed point.

Proof Let x ∈ X and x ∈ Sx be arbitrary. Consider the element H(Tx,Sx) ∈ E. If each
right hand side of (C), (C), (C), and (C)with x = x and y = x is θ inE, then d(x,x) = θ

and hence from the property (d) of themetric d it follows x = x. This and x ∈ Sx imply
x ∈ Sx. Further, d(x,u) = d(x,u) = θ for each fixed u ∈ Tx implies x = u ∈ Tx = Tx.
Hence x ∈ Tx. Therefore, in this case x is a common fixed point of S and T and proof
is done.
Consider now the element H(Tx,Sx) ∈ E in the case that, in the one of the inequal-

ities (C), (C), (C) or (C) which holds, the right hand side is not θ . Let e ∈ P be
a fixed element. Since λ > , we have θ ≺ λe. Thus we have H(Tx,Sx) ≺ ε, where

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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ε =H(Tx,Sx)+λe. Then fromH(Tx,Sx) ≺ ε and from the property (H) of theH-cone
metric in Definition . we find, as x ∈ Sx, that there exists x ∈ Tx such that

d(x,x)≺ ε =H(Tx,Sx) + λe.

Consider now the element H(Sx,Tx). Clearly, H(Sx,Tx) ≺ H(Sx,Tx) + λe. Again
from (H) with ε =H(Sx,Tx) + λe, as x ∈ Tx, there exists x ∈ Sx such that

d(x,x)≺H(Sx,Tx) + λe.

Continuing this process we can construct a sequence {xn} in X such that xn+ ∈ Sxn,
xn+ ∈ Txn+ and

d(xn+,xn)≺H(Sxn,Txn–) + λne, (.)

d(xn+,xn+) ≺H(Txn+,Sxn) + λn+e. (.)

According to the inequality (.) and the inequalities (C), (C), (C), and (C) with
x = xn+ and y = xn, we have to consider four cases.
() If H(Txn+,Sxn) 	 λ · d(xn+,xn), then from (.) we have

d(xn+,xn+) ≺ λ · d(n+,xn) + λn+e. (.)

() If H(Txn+,Sxn) 	 λ · d(xn+,u) for any u ∈ Txn+, then we can take u = xn+ ∈
Txn+. So, we obtain H(Txn+,Sxn)	 λ · d(xn+,xn+) and from (.) we get

d(xn+,xn+) ≺ λ · d(xn+,xn+) + λn+e.

Hence

d(xn+,xn+)� λn+( – λ)–e. (.)

() If H(Txn+,Sxn) 	 λ · d(xn, v) for any v ∈ Sxn, then we may take v = xn+ ∈ Sxn
and we obtain H(Txn+,Sxn) 	 λ · d(xn,xn+). Then from (.) we again have (.).
() If H(Txn+,Sxn) 	 λ · d(xn+,v)+d(xn ,u)

 for any v ∈ Sxn and u ∈ Txn+, then we may
take v = xn+ ∈ Sxn, u = xn+ ∈ Txn+. So we obtain

H(Txn+,Sxn)	 λ · d(xn,xn+)


.

Then from (.) and by the triangle inequality we have

d(xn+,xn+) ≺ λ · d(xn,xn+) + d(xn+,xn+)


+ λn+e,

which implies that

d(xn+,xn+) ≺ λ

 – λ
· d(xn,xn+) + λn+

 – λ
e. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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Since λ < , we have /( – λ) < , and from (.) we obtain

d(xn+,xn+) ≺ λ · d(xn,xn+) + λn+e. (.)

It is easy see that from (.), (.), and (.) we get

d(xn+,xn+) ≺ λ · d(xn+,xn) + λn+( – λ)–e. (.)

Using similar arguments to (.) we can prove that

d(xn+,xn)≺ λ · d(xn,xn–) + λn( – λ)–e. (.)

From (.) and (.) we conclude that

d(xn+,xn)� λ · d(xn,xn–) + λn( – λ)–e (.)

for all n ≥ . From (.) we get

d(xn+,xn)� λ
[
λ · d(xn–,xn–) + λn–( – λ)–e

]
+ λn( – λ)–e

= λ · d(xn–,xn–) + λn( – λ)–e.

Using mathematical induction it is easy to prove that

d(xn+,xn)� λn · d(x,x) + nλn( – λ)–e. (.)

By the triangle inequality and (.) for anym > n we have

d(xn,xm)� d(xn,xn+) + d(xn+,xn+) + · · · + d(xm–,xm)

�
[
λn · d(x,x) + nλn( – λ)–e

]
+

[
λn+ · d(x,x) + (n + )λn+( – λ)–e

]
+ · · ·
+

[
λm– · d(x,x) + (m – )λm–( – λ)–e

]
.

Hence we get

d(xn,xm)�
(
λn + λn+ + · · · + λm–)d(x,x) + Rn(λ)( – λ)–e

� λn

 – λ
· d(x,x) + Rn(λ)( – λ)–e, (.)

where Rn(λ) is the remainder of the convergent series
∑∞

n= n · λn. Since λn →  and
Rn(λ)→  as n→ ∞, we get

λn( – λ)– · d(x,x) + Rn(λ)( – λ)–e→ θ as n→ ∞. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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Let c ∈ E with θ � c be arbitrary. From (.) and (p) in Lemma . it follows that we can
choose a natural number n such that

λn( – λ)– · d(x,x) + Rn(λ)( – λ)–e� c

for all n ≥ n. Thus, by (.), d(xn,xm)� c for all m > n ≥ n. Therefore, by (ii) in Defini-
tion ., we conclude that {xn} is Cauchy sequence. Since X is complete, there exists z ∈ X
such that limn→∞ d(xn, z) = θ .
Now we shall show that z is a common fixed point of T and S. Since

H(Txn+,Sz) ≺H(Txn+,Sz) + λn+e,

from the property (H) of the H-cone metric in Definition . we see, as xn+ ∈ Txn+,
that there exists yn+ ∈ Sz such that

d(xn+, yn+) ≺H(Txn+,Sz) + λn+e. (.)

According to (.) and the inequalities (C), (C), (C), and (C) with x = xn+ and
y = z we have to consider four cases.
() If H(Txn+,Sz) 	 λ · d(xn+, z), then from (.) we have

d(xn+, yn+) ≺ λ · d(xn+, z) + λn+e. (.)

() If H(Txn+,Sz) 	 λ · d(xn+,u) for any fixed u ∈ Txn+, then we can take u = xn+ ∈
Txn+. Thus from (.) we get

d(xn+, yn+) ≺ λ · d(xn+,xn+) + λn+e. (.)

() If H(Txn+,Sz) 	 λ · d(z, v) for any fixed v ∈ Sz, then we can take v = yn+ ∈ Sz. Thus
from (.) and by the triangle inequality we get

d(xn+, yn+) ≺ λ · d(z,xn+) + λ · d(xn+, yn+) + λn+e,

which implies that

d(xn+, yn+) ≺ λ

 – λ
· d(z,xn+) + λn+

 – λ
e. (.)

() If H(Txn+,Sz) 	 λ · d(xn+,v)+d(z,u)
 for any v ∈ Sz and u ∈ Txn+, then we can take

v = yn+ ∈ Sz and u = xn+ ∈ Txn+. Thus from (.) and by the triangle inequality we
get

d(xn+, yn+) ≺ λ · d(xn+,xn+) + d(xn+, yn+) + d(z,xn+)


+ λn+e,

which implies that

d(xn+, yn+) ≺ λ · d(xn+,xn+) + d(z,xn+)
 – λ

+
λn+

 – λ
e.

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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Since /( – λ) <  for λ ∈ (, ), we have

d(xn+, yn+) ≺ λ · d(xn+,xn+) + λ · d(z,xn+) + λn+e. (.)

Thus, from (.), (.), (.), and (.) we have

d(xn+, yn+) ≺ λ
[
d(xn+, z) + d(xn+,xn+) + d(z,xn+)( – λ)–

]
+ λn+( – λ)–e. (.)

By the triangle inequality and (.) we get

d(z, yn+) � d(z,xn+) + d(xn+, yn+)

≺ d(z,xn+) + λn+( – λ)–e

+
λ

 – λ
· [d(xn+, z) + d(z,xn+) + d(xn+,xn+)

]
. (.)

Since {xn} converges to z and since λn+ →  and by (.) d(xn+,xn+) → θ as n → ∞,
the right hand side of the inequality (.) converges to θ as n→ ∞. Therefore, from (p)
in Lemma . and (.) we can choose a natural number n such that d(z, yn+)� c for all
n ≥ n, where c ∈ E with θ � c is arbitrary. By (i) in Definition . we conclude that {yn}
converges to z. Since yn+ ∈ Sz and Sz is closed, we get z ∈ Sz.
Analogously, we can get z ∈ Tz. So, we proved that z is a common fixed point of T

and S. �

If we take S = T in Theorem ., then we obtain the following fixed point theorem in
complete non-normal cone metric spaces.

Theorem . Let (X,d) be a complete cone metric space over a solid non-normal cone
and let Ã be a family of nonempty, closed, and bounded subsets of X . Suppose that there
exists an H-cone metric H : Ã× Ã → E induced by d and suppose that T : X → Ã is a cone
generalized multivalued contraction. Then T has a fixed point.

From Theorem . we can obtain Theorem . of Arshad and Ahmad [] and Theo-
rem . of Wardowski [].
Now we shall present an example where Theorem . can be applied, but the theorem

of Arshad and Ahmad [] (Theorem .) and the theorem of Wardowski [] cannot be
applied.

Example . Let X = [, ] and let E = C
R([, ]), P ⊂ E and the norm ‖ · ‖ be as in Exam-

ple .. Define d : X ×X → E by

d(x, y)(t) = |x – y| · et ,

where  ≤ t ≤ . Then d is a cone metric on X. Let Ã be a family of all nonempty, closed,
bounded subsets of X and let the mapping T : X → Ã be defined by

T(x) =

⎧⎨
⎩
[, x ] for  ≤ x < ,

[,  ] for x = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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Let H : Ã× Ã→ E be defined by

H(A,B)(t) =H(A,B) · et for A,B ∈ Ã,

whereH is the usual Hausdorff metric on X induced by the metric d(x, y) = |x – y|.
Now we can show that T satisfies all conditions of Theorem . with λ = 

 .
() If  ≤ x, y <  and x �= y, then we have

H
(
T(x),T(y)

)
(t) =H

([
,

x


]
,
[
,

y


])
· et =

∣∣∣∣x –
y


∣∣∣∣ · et < 

|x– y| · et = λd(x, y)(t).

Thus T satisfies the contractive condition (D) in Definition . with λ = /.
() If  ≤ x <  and y = , then we have

H
(
T(x),T()

)
(t) <

∣∣∣∣  –



∣∣∣∣ · et = 


· et < 


· 

et ≤ λd(,u)(t)

for all u ∈ [, /] = T(). Therefore, in this case T satisfies the contractive condition
(D) in Definition . with λ = /.

From () and () we see that the mapping T satisfies all of the conditions of Theorem .
and has a fixed point x = .
Now we shall show that in this example the theorems of Arshad and Ahmad [] and

Wardowski [], as well as other theorems known in the literature, cannot be applied. Let
y =  and 

 < x < . Then

H
(
T(x),T()

)
(t) =

∣∣∣∣x –



∣∣∣∣ · et >
∣∣∣∣ –




∣∣∣∣ · et >
∣∣∣∣ – 



∣∣∣∣ · et > | – x| · et = d(x, )(t).

Clearly, there does not exist λ <  such thatH(T(x),T())(t)≤ λ ·d(x, )(t). Therefore, The-
orem . of Arshad and Ahmad [] (Theorem .) and Theorem . of Wardowski []
cannot be applied in this example.

In a cone P of an ordered Hausdorff topological vector space (E,P), from a,b ∈ P it
does not need to follow that (/)(a + b) 	 a nor (/)(a + b) 	 b. Thus in addition to the
conditions (C)-(C) of Theorem . we can consider the condition
(C) H(Tx,Sy)� λ · d(x,u)+d(y,v)

 for each fixed u ∈ Tx and v ∈ Sy.
The following theorem is a generalization of Theorem ..

Theorem . Let (X,d) be a complete cone metric space over a solid non-normal cone, let
Ã be a family of non-empty, closed, and bounded subsets of X and let there exists an H-cone
metric H : Ã × Ã → E induced by d. Suppose that T ,S : X → Ã are two cone multivalued
mappings and suppose that there is λ ∈ (, ) such that, for all x, y ∈ X, at least one of the
conditions (C)-(C) holds. Then T and S have a common fixed point.

We shall omit the proof of this theorem since it is similar to the proof of Theorem ..
By using Theorem . and Theorem . we can obtain corollaries which are generaliza-

tions of thewell-knownmetric fixed point theorems ofKannan [], Reich [], Chatterjea

http://www.fixedpointtheoryandapplications.com/content/2014/1/159
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[] and Ćirić [] to non-normal cone metric spaces. For example, the following corol-
lary is a cone multivalued version of Kannan’s fixed point theorem, and it easily follows
from Theorem ..

Corollary . Let (X,d) be a complete cone metric space over a solid non-normal cone, let
Ã be a family of non-empty, closed, and bounded subsets of X and let there exists an H-cone
metric H : Ã × Ã → E induced by d. Suppose that T ,S : X → Ã are two cone multivalued
mappings and suppose that there is γ ∈ (, /) such that, for all x, y ∈ X, the mappings T
and S satisfy the condition

H(Tx,Sy)� γ
(
d(x,u) + d(y, v)

)

for each u ∈ Tx and for each v ∈ Sy. Then T and S have a common fixed point.
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