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Abstract
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1 Introduction and preliminary
There exist a number of generalizations of metric spaces. One of them is the cone metric
space initiated by Huang and Zhang []. They described the convergence in cone metric
spaces, introduced the notion of completeness and proved some fixed point theorems of
contractive mappings on these spaces. Let us recall some notions and definitions.
Let A be a real Banach space and P be a subset of A. P is called a cone if and only if
(i) P is closed and nonempty and P �= {θ},
(ii) if a,b ∈R; a,b≥ ; x, y ∈P , then ax + by ∈P ,
(iii) if x ∈P and –x ∈P , then x = θ .
Given a coneP ⊆A, a partial ordering�with respect toP is defined by x� y if y–x ∈P .

Furthermore, we write x ≺ y if x � y and x �= y, while x � y will stands for y – x ∈ intP ,
where intP is the interior of P .
The cone P is called normal if there is a number M > , such that for every x, y ∈ A,

θ � x � y implies ‖x‖ ≤ M‖y‖. The least positive number satisfying the above condition
is called the normal constant of P .

Lemma . The following conditions are equivalent for a cone P in the Banach space
(A,‖ · ‖):
(a) inf{‖x + y‖ : x, y ∈P ,‖x‖ = ‖y‖ = } > .
(b) P is a normal cone.
(c) For arbitrary sequences {xn}, {yn} and {zn} in E, if xn � yn � zn for each n and

limn→∞ xn = limn→∞ zn = x, then limn→∞ yn = x.
(d) There exists a norm ‖ · ‖ on A, equivalent to the given norm ‖ · ‖, such that the cone

P is monotone with respect to ‖ · ‖, i.e., if θ � x� y, then ‖x‖ ≤ ‖y‖.

Proof See [–], and []. �

Definition . Let X be a nonempty set, and let A be a real Banach space and P ⊆ A be
a cone. Suppose the mapping d : X ×X →A satisfies:
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(i) θ � d(x, y) for every x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y,x) for every x, y ∈ X ;
(iii) d(x, y) � d(x, z) + d(z, y) for every x, y, z ∈ X .

Then d is called a cone metric on X and (X,d) is called a cone metric space.

Let (X,d) be a cone metric space, {xn} be a sequence in X, and x ∈ X. {xn} is said to be
convergent to x, if for every θ � c there is N ∈ N, such that for all n > N , d(xn,x) � c.
Likewise, {xn} is called a Cauchy sequence in X if for every θ � c there is N ∈ N, such
that for each n,m >N , d(xn,xm)� c. A cone metric space X is said to be complete if every
Cauchy sequence in X is convergent in X.
To replace the standard properties of a metric, the properties in the following lemma of

conemetrics are often useful while dealingwith conemetrics when the cone is not normal.

Lemma . Let (X,d) be a cone metric space with corresponding cone P . If x ∈P and {xn}
and {an} are sequences in X and A, respectively, then:
(a) If θ � x� c for all c ∈ intP , then x = θ .
(b) If θ � d(xn,x) � an and an → θ , then for each c ∈ intP there exists a natural number

n, such that d(xn,x) � c for each n > n.
(c) If c ∈ intP and an → θ , then there exists a natural number n, such that for every

n > n, we have an � c.

Proof See [], p.. �

It follows from Lemma .(c) that the sequence {xn} converges to x ∈ X if d(xn,x) → θ ,
and {xn} is a Cauchy sequence if d(xn,xm) → θ as n,m → ∞. The converse is true if P is
a normal cone. To see that xn → x does not necessarily imply d(xn,x)→ θ at non-normal
cones, see example (e) in Section .
There are several states of conemetric spaces. For example, after conemetric spaces over

topological vector spaces, in [] the authors introduce the concept of tvs-cone b-metric
spaces over a solid cone. In the following section another state of metric spaces is pre-
sented: an algebraic cone metric space.

2 Algebraic cones and Banach cone algebras
The concept of conemetric spaces over Banach algebras was previously introduced by Liu
and Xu in []. They proved some fixed point theorems of generalized Lipschitz mappings
with weaker conditions on the generalized Lipschitz constant k by means of the spectral
radius (see Theorems ., ., and . in []). Indeed for the mapping T : X → X the gen-
eralized Lipschitz condition is

d(Tx,Ty) ≤ kd(x, y)

for all x, y ∈ X, where k ∈ P with ρ(k) < .
The same authors in [] introduced the concept of quasicontractions on cone metric

spaces over Banach algebras and proved the existence and uniqueness of fixed points of
such mapping. Afterwards Xu and Radenović deleted the superfluous assumption of nor-
mality in [] (see Theorems ., ., and . in []).
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In this section, we will present the definition of the algebraic cones, Banach cone alge-
bras, and some properties related to this concept.

Definition . (cf. [, ] and []) Let P ⊆A be a cone, and X be a vector space over C.
Suppose the mapping ‖ · ‖ : X →P satisfies:
(N) ‖x‖ = θA if and only if x = θX ,
(N) ‖x + y‖ � ‖x‖ + ‖y‖, for every x, y ∈ X ,
(N) ‖kx‖ = |k|‖x‖ for every k ∈C and x ∈ X .

Then ‖ · ‖ is called a cone norm on X, and the pair (X,‖ · ‖) is called a cone normed space
(CNS).
Sometimes, to emphasize the cone P , we use ‖x‖P instead of ‖x‖.

A real topological algebra is an algebraA over F furnished with a topology τ such that
(i) the map (x, y) → x + y :A×A→A is continuous,
(ii) the map (t,x) → tx :R×A→A is continuous,
(iii) the map (x, y) → xy :A×A→A is continuous.

When F = C, A is called a complex topological algebra and if F = R, A is called a real
topological algebra.
It is obvious that every Banach algebra is a topological algebra.

Definition . LetA be a Banach algebra with identity element eA and P ⊆A be a cone.
P is an algebraic cone if eA ∈P , and for each a,b ∈P , ab ∈P .
Therefore, for each x, y ∈A and a ∈P if x � y and a ∈P , then ax� ay.

For example ifA is a C∗-algebra andA+ is its positive elements, i.e. the set of all Hermi-
tian element a ∈A with σ (a)⊆R+, thenA+ is a cone inA, and wheneverA is commuta-
tive, A+ is an algebraic cone.

Definition . Let X be an algebra, A be a real topological algebra (or as a special case
be a Banach algebra), and P be an algebraic cone inA. Furthermore, let ‖ · ‖ : X →A be a
cone norm, such that (X,‖ · ‖) is a Banach cone metric space, and ‖xy‖ � ‖x‖‖y‖ for each
x, y ∈ X. Then we say that (X,‖ · ‖) is a cone Banach cone algebra.

In the following, X is an algebra with identity eX and (A,‖ · ‖A) is a Banach algebra
with identity eA. Moreover, in Section , some examples are presented in the topological
algebra case.

Theorem . Suppose (X,‖ · ‖) is a normal Banach cone algebra, x ∈ X and ‖‖x‖‖A < ,
then
(a) eX – x is invertible,
(b) ‖‖(eX – x)– – e – x‖‖A ≤ ‖‖x‖‖A

–‖‖x‖‖A ,
(c) ‖‖φ(x)‖‖A <  for every homomorphism φ : X →A, such that ‖‖φ(eX)‖‖A = .

Proof (a) Since ‖xn‖ ≤ ‖x‖n and ‖‖x‖‖A < , the elements

sn = eX + x + x + · · · + xn

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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form a Cauchy sequence X by the normality of P . Since X is complete, there exists s ∈ X,
such that sn → s. As xn → θ and sn · (eX – x) = eX – xn+ = (eX – x) · sn, the continuity of
multiplication implies that s is the inverse of eX – x.
(b) ‖‖s – eX – x‖‖A = ‖‖x + x + · · · ‖‖A ≤ ∑∞

n= ‖‖x‖n‖A = ‖‖x‖‖A
–‖‖x‖‖A .

(c) Suppose λ ∈ C, |λ| ≥ . By (a) eX – λ–x is invertible. So φ(eX) – λ–φ(x) = φ(eX –
λ–x) �= θ . Hence

∥∥∥∥φ(x)
∥∥∥∥

A �= λ
∥∥∥∥φ(eX)

∥∥∥∥
A = λ.

This completes the proof. �

Note that if the condition ‖‖x‖‖A <  in Theorem . is replaced by
∑∞

n= ‖x‖n ≤ , then
(a) is still true. In the next theorem, let G(X) be the group of invertible elements of X.

Theorem . If X is a Banach cone algebra onP , then G(X) is open in X and the mapping
x → x– :G(X)→G(X) is a homeomorphism.

Proof Let x ∈ G(X) and h ∈ X. If ‖x–h‖ ≤ 
 , then by Theorem ., e + x–h and x + h

belong to G(X) (notice that x + h = x(eX + x–h)) and ‖x–h‖– is contained in G(X). Also
by Theorem .,

∥∥∥∥(x + h)– – x– + x–hx–
∥∥∥∥

A =
∥∥∥∥((

eX + x–h
)– – eX + x–h

)
x–

∥∥∥∥
A

≤ 
∥∥∥∥x–∥∥∥∥

A
∥∥‖h‖∥∥

A.

Therefore, ‖‖(x+h)––x–‖‖A ≤ ‖‖h‖‖A(‖‖x–‖‖A+‖‖x–‖‖A‖‖h‖‖A). Hence themap-
ping x → x– :G(X) →G(X) is continuous and homeomorphism. �

Note that for each x ∈ X, the spectrum σ (x) of x is the set of all complex numbers λ, such
that λe– x is not invertible. The complement of σ (x) is the resolvent set of x. It consists of
all λ ∈G for which there exists (λeX – x)–.
The spectral radius of x is the number ρ(x) = sup{|λ| : λ ∈ σ (x)}. For every x ∈ X, and

λ ∈ C if |λ| ≥ ‖‖x‖‖A then eX – λ–x lies in G(X), by Theorem ., and so does λe – x.
Thus, λ /∈ σ (x). This proves that ‖‖x‖‖A is an upper bound for σ (x), and ρ(x) ≤ ‖‖x‖‖A.
In addition by [], there exists a norm ‖ · ‖′

A on A, such that P in (A,‖ · ‖′
A) is a normal

cone with constant normal . Hence we can assume that K = . So σ (x) is compact and

ρ(x) = lim
n→∞

∥∥∥∥xn∥∥∥∥ 
n
A = inf

n≥

∥∥∥∥xn∥∥∥∥ 
n
A

(see Theorem . in []). Since the combination ‖ · ‖A with ‖ · ‖ is a real-valued norm,
we can present an extension of the Gelfand-Mazur theorem.

Theorem . (Gelfand-Mazur) If X is a normal Banach cone algebra in which every
nonzero element is invertible, then X is isometrically isomorphic to the complex field.

3 Fixed point theorems in algebraic conemetric spaces
In this section some fixed point theorems of generalized Lipschitz mappings with weaker
conditions than the condition ρ(k) < , are proved (see Definition . for the condition).

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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Therefore some theorems in [] and [] are improved (see Theorems . and . for in-
stance).
Let (X,d) be an algebraic cone metric space and F : X → X be a self map. F is called

Lipschitzian if and only if there exists a constant L ∈P , called the Lipschitz coefficient for
F , such that

d
(
F(x),F(y)

) ≤ Ld(x, y)

for each x, y ∈ X. In a similar way, we can say that F is a contraction if ‖L‖ < . In the
following, we will see that this definition of contraction maps is general.
When (X,d) is a complete metric space, and F is a contraction, we know that the state-

ment ‘|L| <  if and only if
∑∞

n= |L|n < ∞’ has an important role in the proof of Banach fixed
point theorem. But in a Banach algebraA, the statement ‘‖L‖ <  if and only if

∑∞
n= ‖L‖n <

∞’ is not true. In fact for L ∈A,
∑∞

n= ‖L‖n < ∞ does not imply that ‖L‖ <  (see example
(f ) in Section ). For this reason, we have to state a scholastic definition of contraction.

Definition . Let (X,d) be an algebraic cone metric space, and let F : X → X be a Lips-
chitzian map with Lipschitz coefficient L. F is a contraction map if

∑∞
n= ‖L‖n < ∞, i.e. the

series
∑∞

n= Ln is absolutely convergent.

Let L ∈ A be a Lipschitz coefficient for a self-map F , then each of the properties ρ(L) =
limn→∞ ‖Ln‖ 

n <  and ‖L‖ <  imply that
∑∞

n= ‖L‖n < ∞, but example (f ) of Section 
shows that the converse cannot necessarily be established.

Lemma . LetA be a Banach algebra with a unit eA, and L ∈A. If
∑∞

n= ‖L‖n < ∞, then
eA – L is invertible and (eA – L)– =

∑∞
n= Ln.

Proof The proof is obvious. �

Before presenting some fixed point theorems we remark that although each conemetric
space over a solid cone is metrizable, as was shown by various methods, however, not all
fixed point results can be reduced in this way to their standard metric counterparts. So
this line of investigation is still open (see, e.g., []).
The next theorem is an extension of Theorem . in [], Theorem . in [] and Theo-

rem . in [].

Theorem . Let (X,d) be a complete algebraic cone metric space and F : X → X be a
contraction map with Lipschitz coefficient L. Then F has a unique fixed point u ∈ X.
Furthermore, for each x ∈ X, we have limn→∞ Fn(x) = u with

d
(
Fn(x),u

) � Ln(eA – L)–d
(
x,F(x)

)
.

Proof Since F is a contraction with Lipschitz coefficient L, we have

d
(
F(x),F(y)

) � Ld(x, y)

for each x, y ∈ X, and
∑∞

n= Ln is absolutely convergent. For existence, select x ∈ X. We first
show that {Fn(x)} is Cauchy sequence. Let n ∈N∪ {}, then

d
(
Fn(x),Fn+(x)

) � Ld
(
Fn–(x),Fn(x)

) � · · · � Lnd
(
x,F(x)

)
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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Thus form > n,

d
(
Fn(x),Fm(x)

) � d
(
Fn(x),Fn+(x)

)
+ d

(
Fn+(x),Fn+(x)

)
+ · · · + d

(
Fm–(x),Fm(x)

)
� Lnd

(
x,F(x)

)
+ · · · + Lm–d

(
x,F(x)

)
� Lnd

(
x,F(x)

)(
eA + L + · · · + Lk + · · · )

= d
(
x,F(x)

)
Ln(eA – L)–,

that is, for n ∈N∪ {},m ∈N and m > n,

d
(
Fn(x),Fm(x)

) � Ln(eA – L)–d
(
x,F(x)

)
.

By Lemma .(b), this shows that {Fn(x)} is a Cauchy sequence and, since X is complete,
there exists a u ∈ X with limn→∞ Fn(x) = u. Hence by continuity F(u) = u. It is obvious that
u is unique. �

For each x ∈ X and θ �= r ∈ P , let B(x◦, r) = {x ∈ X : d(x,x◦) � r} and B[x◦, r] = B(x◦, r) ∪
{x ∈ X : d(x,x◦) = r}. Then the collection {B(x◦, r) : x ∈ X, r ∈ intP} forms a basis for the
cone metric topology of (X,d). Also it is easily seen that, for each θ �= r ∈ P , B(x◦, r) is an
open set in conemetric space (X,d). As in the real case, the equality B[x◦, r] = B(x◦, r) does
not necessarily hold for all x ∈ X and θ �= r ∈P . In the next lemma we express a necessary
and sufficient condition for this equality.

Lemma . If (X,d) is a cone metric space, then the following statements are equivalent.
(a) For each x ∈ X and each θ � r, B[x, r] = B(x, r).
(b) For each x, y ∈ X and each θ � ε, there exists z ∈ X , such that d(z, y) � ε and

d(z,x)� d(x, y).

Proof (a) implies (b). If x, y ∈ X and x �= y, then r = d(x, y) ∈ P – {θ}. Now (a) implies that
y ∈ B(x, r) and so for each θ � ε, there exists z ∈ B(x, r) such that d(y, z) � ε.
(b) implies (a). For each y ∈ B[x, r], if d(x, y) � r then y ∈ B(x, r) ⊆ B(x, r). If d(x, y) = r,

then let εn = r
n . So there exists zn ∈ X such that d(zn, y) � εn and d(x, zn) � d(x, y) = r.

Hence there exists a sequence in B(x, r) such that limn→∞ zn = y. This implies y ∈ B(x, r).
�

Corollary . Let (X,‖ · ‖) be an algebraic cone metric space. Then for each x ∈ X and
each r � θ , B[x, r] = B(x, r).

Theorem . Let (X,‖ · ‖) be a complete algebraic cone metric space, r ∈ intP and x◦ ∈ X.
Suppose F : B(x◦, r) → X is a contraction with Lipschitz coefficient L, and

d
(
F(x◦),x◦

) � (eA – L)r and ‖r‖ < .

Then F has a unique fixed point in B(x◦, r).

Proof There exists a r◦, such that d(F(x◦),x◦) � (eA – L)r◦, with θ � r◦ � r. (Otherwise
for each n ∈ N we have ( – /n)(eA – L)r ≺ d(F(x◦),x◦) and then (eA – L)r � d(F(x◦),x◦).)
We will show that F : B(x◦, r◦)→ B(x◦, r◦).

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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Let x ∈ B(x◦, r◦), then

d
(
F(x),x◦

) � d
(
F(x),F(x◦)

)
+ d

(
F(x◦),x◦

)
� Ld(x,x◦) + (eA – L)r◦ � r◦.

By Theorem ., F has a unique fixed point in B(x◦, r◦) ⊆ B(x◦, r). Again it is easy to see
that F has only one fixed point in B(x◦, r). �

Before going to the next theorem, we note that in a Banach algebra A for each L ∈ A
with ‖L‖ <  we can assume that L � eA. Indeed, if ‖L‖ < , then eA – L is invertible and∑∞

n= Ln =
eA

eA–L . So limn→∞ ‖Ln‖ = . Now by Lemma .(c), there exists a natural number
N , such that LN � eA.

Theorem . Let C be a nonempty, closed, and convex subset of an algebraic cone norm
space X. Also let F : C → C be a Lipschitzian map with Lipschitz coefficient L such that
‖L‖ =  and F(C) be a subset of a compact subset of C. Then F has a fixed point.

Proof Since ‖L‖ =  and d(F(x),F(y)) � Ld(x, y) for all x, y ∈ X, let x◦ ∈ C and, for n =
, , . . . , define

Fn(x) =
(
 –


n

)
F(x) +


n
x◦.

Since C is convex and x◦ ∈ C, Fn : C → C is a contraction. Therefore, by Theorem . each
Fn has a unique fixed point xn ∈ C. That is,

xn = Fn(xn) =
(
 –


n

)
F(xn) +


n
x.

In addition, since F(C) lies in a compact subset of C, there exists a subsequence S of inte-
gers and a u ∈ C with limn→∞ F(xn) = u in S. Thus,

xn =
(
 –


n

)
F(xn) +


n
x → u as n→ ∞

in S. So by continuity, F(xn) → F(u) as n→ ∞ in S, and therefore u = F(u). �

Theorem . (See Theorem . in []) Let (X,d) be a complete cone metric space, and P
be an algebraic cone. Suppose that the mapping f and g are two self-maps of X satisfying

d
(
f (x), g(x)

) � αd(x, y) + β
[
d
(
x, f (x)

)
+ d

(
y, g(y)

)]
+ γ

[
d
(
x, g(y)

)
+ d

(
y, f (x)

)]
(.)

for all x, y ∈ X, where α,β ,γ ∈ P and

‖α‖ + ‖β‖ + ‖γ ‖ < , ‖α + β + γ ‖ < ∥∥eA – (β + γ )
∥∥.

Then f and g have a unique common fixed point in X . Moreover, any fixed point of f is a
fixed point of g , and vice versa.

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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Proof Suppose x◦ is an arbitrary point of X and define {xn} by xn+ = f (xn), xn+ =
g(xn+) for n = , , , . . . . Then

d(xn+,xn+) � (α + β + γ )d(xn,xn+) + (β + γ )d(xn+,xn+),

which implies that d(xn+,xn+) � δd(xn,xn+), where

δ = (α + β + γ )
(
eA – (β + γ )

)–
(since ‖β + γ ‖ < , eA – (β + γ ) is invertible). Similarly, it can be shown that

d(xn+,xn+) � δd(xn+,xn+).

Therefore, for all n we have

d(xn+,xn+) � δn+d(x,x),

and, hence, form > n,

d(xm,xn)�
(
δn + δn+ + · · · + δm–)d(x,x◦) � δn(eA – δ)–d(x,x◦),

so that Lemma .(b) implies d(xn,xm) → θ . Hence {xn} is a Cauchy sequence. Since X is
complete, there exists p ∈ X, such that xn → p. Now by (.),

d
(
p, g(p)

) � d(p,xn+) + d
(
xn+, g(p)

)
� d(p,xn+) + αd(xn,p) + β

[
d(xn,xn+) + d

(
p, g(p)

)]
+ γ

[
d(xn,p) + d

(
p, g(p)

)
+ d(p,xn+)

]
,

and so

d
(
p, g(p)

) � (
eA – (α + β)

)–[d(p,xn+) + αd(xn,p)

+ βd(xn,xn+) + γ
(
d(xn,p) + d(p,xn+)

)]
.

Thus gp = p, by Lemma .(a). Now, d(f (p),p) � (β + γ )d(p, f (p)), and so

(
eA – (β + γ )

)
d
(
p, f (p)

) ≥ θ

implies f (p) = p.
To prove uniqueness, suppose that q is another common fixed point of f and g , then

d(p,q) � (α + γ )d(p,q), which gives d(p,q) = θ , and p = q. �

Theorem . (See Theorem . in [] and Theorem . in []) Let (X,d) be a complete
cone metric space and P be an algebraic cone. Suppose the mapping T : X → X satisfies
the contraction condition

d(Tx,Ty) � k
(
d(Tx,x) + d(Ty, y)

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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for all x, y ∈ X, where k ∈ P ,
∑∞

n= kn and
∑∞

n=(k(eA – k)–)n are absolutely convergent.
Then T has a unique fixed point in X, and for any x ∈ X, the iterative sequence {Tnx}
converges to the fixed point.

Proof Choose x ∈ X and for each n ∈N set x = Tx, . . . ,xn+ = Txn. Then

d(xn+,xn) = d(Txn,Txn–)

� k
(
d(Txn,xn) + d(Txn–,xn–)

)
.

So (eA – k)d(xn+,xn) � kd(xn,xn–). Since eA – k is invertible, so

d(xn+,xn) � k(eA – k)–d(xn,xn–).

Let h = k(eA – k)–, then h is invertible. For n >m,

d(xn,xm)�
n–∑
i=m

d(xi,xi+)

�
n–∑
i=m

hid(x,x).

Since
∑∞

i= hi converges to (eA–h)–, so {∑n
i= hi}∞n= is a Cauchy sequence. Therefore, {xn}

is Cauchy. Since X is complete, there is a x∗ ∈ X, such that xn → x∗. Thus,

d
(
Tx∗,x∗) � d

(
Txn,Tx∗) + d

(
Txn,x∗)

� k
(
d(Txn,xn) + d

(
Tx∗,x∗)) + d

(
xn+,x∗).

So ( – k)d(Tx∗,x∗) � kd(Txn,xn) + d(xn+,x∗) and

d
(
Tx∗,x∗) � (eA – k)–

(
kd(Txn,xn) + d

(
xn+,x∗)).

Since d is continuous, so d(Tx∗,x∗) � θ and hence Tx∗ = x∗.
Now, let y∗ be another fixed point of T , then

d
(
x∗, y∗) = d

(
Tx∗,Ty∗)

� k
(
d
(
Tx∗,x∗) + d

(
Ty∗, y∗)) = θ .

Hence x∗ = y∗. �

Remark . In Theorem . if ‖k‖ · 
‖eA–k‖ < , then the series

∑∞
n= kn and

∑∞
n=(k(eA –

k)–)n show absolute convergence.

Theorem . Let (X,d) be a complete algebraic cone metric space, q ∈ P ,
∑∞

n= qn be
absolutely convergent and T : X → X be a function. If for each x ∈ X there exists a positive
integer n = n(x), such that

d
(
Tnx,Tny

) � q · ν (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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for some

ν ∈ {
d(x, y),d(x,Ty),d

(
x,Ty

)
, . . . ,d

(
x,Tny

)
,d

(
x,Tnx

)}
and for all y ∈ X, then T has a unique fixed point u ∈ X. Moreover, for every x ∈ X, u =
limm→∞ Tmx.

Proof The proof is similar to Theorem . in []. �

4 Examples
In this section, CX and C(X), will denote the set of all complex-valued and the set of all
continuous complex-valued functions on a topological space X, respectively. There are
several natural ways of introducing a topology on C

X and C(X) and they all follow the
general approach indicated below.
Let S be a family of subsets of X. For each P ∈ S and each U of open subset of C, let

M(P,U) consisting the set of all f ∈C
X for which f (P) ⊆U . PutO(P,U) =M(P,U)∩C(X).

Sets of this form are a subbase of some topology on C
X , or similarity on C(X), called the

topology of convergence with respect to elements of S. Under this construction, the space
C(X) is a subspace of the space CX . The most important topologies obtained in this way
are the following: the topology of pointwise convergence, corresponding to the case when
S consists of all finite subsets ofX, and the compact-open topology, arisingwhen S consists
of all compact subsets of the space X. The topologies of uniform convergence on C

X and
C(X) are described in slightly different ways. Their bases consist of the sets U ′(f , ε) = {g ∈
C

X : supx∈X |f (x) – g(x)| < ε} andU(f , ε) = C(X)∩U ′(f , ε), respectively. If X is a completely
regular compact space, then the topology of uniform convergence and the compact-open
topology are equal on C(X).
(a) Let CX be equipped with the pointwise topology. So in C

X , a sequence {fn}n∈N ⊆
CX converges to g ∈ CX if and only if {fn(x)}n∈N converges to g(x) for each x in X. It is
obvious that CX under the pointwise topology is a topological algebra (see the definitions
in Section ). Define

P =
{
f ∈ C

X : f (x)≥  for each x ∈ X
}
.

It is obvious that P is an algebraic cone. Now define

〈·, ·〉 :CX ×C
X →C

X

by 〈f , g〉 = f g for each f , g ∈ C
X . It is obvious that 〈·, ·〉 has the following properties:

(i) 〈αf + h, g〉 = α〈f , g〉 + 〈h, g〉 for each f , g,h ∈C
X and each α ∈ C.

(ii) 〈f ,αg + h〉 = α〈f , g〉 + 〈h, g〉 for each f , g,h ∈C
X and each α ∈ C.

(iii) 〈f , g〉 = 〈g, f 〉 for each f , g ∈ C
X .

(iv) 〈f , f 〉 =  if and only if f = .
〈·, ·〉 is a vector-valued inner product on C

X . Now define ‖f ‖P = 〈f , f 〉 
 = |f |. It is ob-

vious that ‖ · ‖P is a cone algebraic norm on P . It is obvious that intP = {f ∈ C
X : f (x) >

 for each x ∈ X}. (CX ,‖ · ‖P ) is a Banach cone algebra. For this purpose, we prove that
(CX ,‖ · ‖P ) is complete. Let {fn}∞n= be a Cauchy sequence, then for each x ∈ X, {fn(x)} is a

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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Cauchy sequence in C. Therefore, there exists g ∈ C
X , such that {fn} is pointwise conver-

gent to g . This shows that (CX ,‖ · ‖P ) is complete.
(b) Let (X, τ ) be a completely regular non-pseudocompact topological space. Let C(X)

be equipped with pointwise convergence topology. It is obvious that C(X) is a topological
subalgebra of CX . But C(X) is not a cone complete subalgebra of CX , because C(X) is not
closed.
(c) Let (X, τ ) be a completely regular non-pseudocompact topological space. Let C(X)

be equipped with uniform convergence topology. A sequence {fn}n∈N ⊆ C(X) converges
to g ∈ C(X) if and only if {fn}n∈N uniformly converges to g on X. C(X) under uniform
convergence on X is not a topological algebra, because multiplication is not continuous.
(d) Let (X, τ ) be a completely regular non-pseudocompact topological space. LetC(X) be

equipped with compact-open topology. A sequence {fn}n∈N ⊆ C(X) converges to g ∈ C(X)
if and only if {fn}n∈N uniformly converges to g on every compact subset of X. It is obvious
that CX under the compact-open topology is a topological algebra. Define

P =
{
f ∈ C(X) : f (x)≥  for each x ∈ X

}
.

It is obvious that P is a cone. Now define

〈·, ·〉 : C(X)×C(X)→ C(X)

by 〈f , g〉 = f g for each f , g ∈ C(X). It is obvious that 〈·, ·〉 has the following properties:
(i) 〈αf + h, g〉 = α〈f , g〉 + 〈h, g〉 for each f , g,h ∈ C(X) and each α ∈C.
(ii) 〈f ,αg + h〉 = α〈f , g〉 + 〈h, g〉 for each f , g,h ∈ C(X) and each α ∈C.
(iii) 〈f , g〉 = 〈g, f 〉 for each f , g ∈ C(X).
(iv) 〈f , f 〉 =  if and only if f = .
〈·, ·〉 is a vector-valued inner product on C(X). Now define ‖f ‖c = 〈f , f 〉 

 = |f |. It is ob-
vious that ‖ · ‖c is a cone algebraic norm on P . It is obvious that intP = {f ∈ C(X) : f (x) >
 for each x ∈ X}. (C(X),‖·‖c) is a Banach cone algebra. For this we prove that (C(X),‖·‖c)
is complete. Let {fn}∞n= be a Cauchy sequence, then, for each compact subset of X, {fn}n∈N
is uniformly Cauchy, so for each x ∈ X {fn} is uniformly convergent. Therefore, there exists
g ∈ C(X) such that {fn} is compact-open convergent to g . This shows that (C(X),‖ · ‖c) is
complete.
(e) Let A = C

R
[, ] with the norm ‖f ‖ = ‖f ‖∞ + ‖f ′‖∞ and P = {f ∈ A : f (x) >

 on [, ]}, that is, a non-normal solid cone ([], p.). We note that:
() (C

R
[, ],‖ · ‖) with pointwise operations is a (cone) Banach algebra.

() Consider fn(x) = xn
n for n ∈ N and x ∈ [, ] and let X = {fn : n ∈ N} ∪ {}, where  is

the constant function zero. Further, define the cone metric d : X ×X →A by
d(f , g) = |f – g|. Then limn→∞ fn =  in the cone metric space (X,d), however,
‖d(fn, )‖ =  + 

n → . Therefore (X,d) is a Banach cone metric space with an
algebraic non-normal cone.

() Suppose X is as () and define d′ : X ×X →A by d′(f , g) = f + g , x �= y and
d′(f , f ) = . Then d′ is a cone metric space too and for gn(x) = –sinnx

n+ and
hn(x) = +sinnx

n+ , since  � gn � gn + hn → , we have d(gn, ) →  in the cone metric
space (X,d′), but ‖d(gn, )‖ = gn � . Therefore (X,d′) is a Banach cone metric
space with a non-continuous metric.

http://www.fixedpointtheoryandapplications.com/content/2014/1/160


Tootkaboni and Bagheri Salec Fixed Point Theory and Applications 2014, 2014:160 Page 12 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/160

(f ) This example was first treated by Kaplansky for another purpose. Let {zn}n∈N be the
natural orthonormal basis of l(N). The weighted shift operators defined by

S(zm) = smzm+ (m ∈N)

for some bounded sequence {sm}m∈N of weights (see [], Example ..). The norm of
such an operator is easily seen to be

‖S‖ = sup
{|sm| :m ∈N

}
.

For eachm,n ∈ N, define tm = (m–
m ) and T(zm) = tmzm+ for eachm ∈N. The norm of Tn

is given by

∥∥Tn∥∥ = sup

{k+n–∏
m=k

tm : k ∈N

}
.

So ‖Tn‖ = ( ····n–····n ). This implies that
∑∞

n= ‖Tn‖ =
∑∞

n=(
····n–
····n ) is convergent and

lim supn→∞ ‖Tn‖ = .
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15. Kadelburg, Z, Radenović, S: A note on various types of cones and fixed point results in cone metric spaces. Asian J.

Math. Appl. 2013, Article ID ama0104 (2013)
16. Agarwal, RP, Meehan, M, O’Regan, D: Fixed Point Theory and Application. Cambridge University Press, Cambridge

(2004)
17. Abbas, M, Rhoades, BE: Fixed and periodic point results in cone metric spaces. Appl. Math. Lett. 22, 511-515 (2009)

http://www.fixedpointtheoryandapplications.com/content/2014/1/160
http://dx.doi.org/10.1155/2009/609281


Tootkaboni and Bagheri Salec Fixed Point Theory and Applications 2014, 2014:160 Page 13 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/160
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