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Abstract
In this paper, let C be a nonempty closed convex subset of a strictly convex Banach
space. Then we prove strong convergence of the modified Ishikawa iteration process
when T is an ANI self-mapping such that T (C) is contained in a compact subset of C,
which generalizes the result due to Takahashi and Kim (Math. Jpn. 48:1-9, 1998).
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1 Introduction
Let C be a nonempty closed convex subset of a Banach space E, and let T be a mapping of
C into itself. Then T is said to be asymptotically nonexpansive [] if there exists a sequence
{kn}, kn ≥ , with limn→∞ kn = , such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖

for all x, y ∈ C and n ≥ . In particular, if kn =  for all n ≥ , T is said to be nonexpansive.
T is said to be uniformly L-Lipschitzian if there exists a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖

for all x, y ∈ C and n ≥ . T is said to be asymptotically nonexpansive in the intermediate
sense (in brief, ANI) [] provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ≤ .

We denote by F(T) the set of all fixed points of T , i.e., F(T) = {x ∈ C : Tx = x}. We define
the modulus of convexity for a convex subset of a Banach space; see also []. Let C be a
nonempty bounded convex subset of a Banach space E with d(C) > , where d(C) is the
diameter of C. Then we define δ(C, ε) with  ≤ ε ≤  as follows:

δ(C, ε) =

r
inf

{
max

(‖x – z‖,‖y – z‖) – ∥∥∥∥z – x + y


∥∥∥∥ : x, y, z ∈ C,‖x – y‖ ≥ rε
}
,
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where r = d(C). When {xn} is a sequence in E, then xn → xwill denote strong convergence
of the sequence {xn} to x. For a mappings T of C into itself, Rhoades [] considered the
following modified Ishikawa iteration process (cf. Ishikawa []) in C defined by x ∈ C:

xn+ = αnTnyn + ( – αn)xn, yn = βnTnxn + ( – βn)xn, (.)

where {αn} and {βn} are two real sequences in [, ]. If βn =  for all n≥ , then the iteration
process (.) reduces to the modified Mann iteration process [] (cf.Mann []).
Takahashi and Kim [] proved the following result: Let E be a strictly convex Banach

space and C be a nonempty closed convex subset of E and T : C → C be a nonexpansive
mapping such that T(C) is contained in a compact subset of C. Suppose x ∈ C, and the
sequence {xn} is defined by xn+ = αnT[βnTxn + ( – βn)xn] + ( – αn)xn, where {αn} and
{βn} are chosen so that αn ∈ [a,b] and βn ∈ [,b] or αn ∈ [a, ] and βn ∈ [a,b] for some a, b
with  < a ≤ b < . Then {xn} converges strongly to a fixed point of T . In , Tsukiyama
and Takahashi [] generalized the result due to Takahashi and Kim [] to a nonexpansive
mapping under much less restrictions on the iterative parameters {αn} and {βn}.
In this paper, letC be a nonempty closed convex subset of a strictly convex Banach space.

We prove that if T : C → C is an ANI mapping such that T(C) is contained in a compact
subset ofC, then the iteration {xn} defined by (.) converges strongly to a fixed point of T ,
which generalizes the result due to Takahashi and Kim [].

2 Strong convergence theorem
We first begin with the following lemma.

Lemma . [] Let C be a nonempty compact convex subset of a Banach space E with
r = d(C) > . Let x, y, z ∈ C and suppose ‖x – y‖ ≥ εr for some ε with  ≤ ε ≤ . Then, for
all λ with  ≤ λ ≤ ,

∥∥λ(x – z) + ( – λ)(y – z)
∥∥ ≤ max

(‖x – z‖,‖y – z‖) – λ( – λ)rδ(C, ε).

Lemma . [] Let C be a nonempty compact convex subset of a strictly convex Banach
space E with r = d(C) > . If limn→∞ δ(C, εn) = , then limn→∞ εn = .

Lemma . [] Let {an} and {bn} be two sequences of nonnegative real numbers such that∑∞
n= bn < ∞ and

an+ ≤ an + bn

for all n ≥ . Then limn→∞ an exists.

Lemma . Let C be a nonempty compact convex subset of a Banach space E, and let
T : C → C be an ANI mapping. Put

cn = sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ∨ ,

so that
∑∞

n= cn <∞. Suppose that the sequence {xn} is defined by (.). Then limn→∞ ‖xn –
z‖ exists for any z ∈ F(T).
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Proof The existence of a fixed point of T follows from Schauder’s fixed theorem []. For
a fixed z ∈ F(T), since

∥∥Tnyn – z
∥∥ ≤ ‖yn – z‖ + cn

=
∥∥βnTnxn + ( – βn)xn – z

∥∥ + cn

≤ βn
∥∥Tnxn – z

∥∥ + ( – βn)‖xn – z‖ + cn

≤ βn‖xn – z‖ + cn + ( – βn)‖xn – z‖ + cn

≤ ‖xn – z‖ + cn,

we obtain

‖xn+ – z‖ =
∥∥αnTnyn + ( – αn)xn – z

∥∥
≤ αn

∥∥Tnyn – z
∥∥ + ( – αn)‖xn – z‖

≤ αn
(‖xn – z‖ + cn

)
+ ( – αn)‖xn – z‖

≤ ‖xn – z‖ + cn.

By Lemma ., we readily see that limn→∞ ‖xn – z‖ exists. �

Theorem . Let C be a nonempty compact convex subset of a strictly convex Banach
space E with r = d(C) > . Let T : C → C be an ANI mapping. Put

cn = sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ∨ ,

so that
∑∞

n= cn < ∞. Suppose x ∈ C, and the sequence {xn} defined by (.) satisfies αn ∈
[a,b] and lim supn→∞ βn = b <  or lim infn→∞ αn >  and βn ∈ [a,b] for some a, b with
 < a≤ b < . Then limn→∞ ‖xn – Txn‖ = .

Proof The existence of a fixed point of T follows from Schauder’s fixed theorem []. For
any fixed z ∈ F(T), we first show that if αn ∈ [a,b] and lim supn→∞ βn = b <  for some
a,b ∈ (, ), then we obtain limn→∞ ‖Txn – xn‖ = . In fact, let εn = ‖Tnyn–xn‖

r . Then we
have  ≤ εn ≤  since ‖Tnyn – xn‖ ≤ r. As in the proof of Lemma ., we obtain

∥∥Tnyn – z
∥∥ ≤ ‖xn – z‖ + cn. (.)

Since

∥∥Tnyn – xn
∥∥ = rεn,

and by (.) and Lemma ., we have

‖xn+ – z‖ =
∥∥αn

(
Tnyn – z

)
+ ( – αn)(xn – z)

∥∥
≤ ‖xn – z‖ + cn – αn( – αn)rδ(C, εn).
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Thus

αn( – αn)rδ(C, εn) ≤ ‖xn – z‖ – ‖xn+ – z‖ + cn.

Since

r
∞∑
n=

a( – b)δ
(
C,

‖Tnyn – xn‖
r

)
< ∞,

we obtain

lim
n→∞ δ

(
C,

‖Tnyn – xn‖
r

)
= .

By using Lemma ., we obtain

lim
n→∞

∥∥Tnyn – xn
∥∥ = . (.)

Since

∥∥Tnxn – xn
∥∥ ≤ ∥∥Tnxn – Tnyn

∥∥ +
∥∥Tnyn – xn

∥∥
≤ ‖xn – yn‖ + cn +

∥∥Tnyn – xn
∥∥

= βn
∥∥Tnxn – xn

∥∥ + cn +
∥∥Tnyn – xn

∥∥,
we obtain

( – βn)
∥∥Tnxn – xn

∥∥ ≤ cn +
∥∥Tnyn – xn

∥∥. (.)

Since lim supn→∞ βn = b < , we have

lim inf
n→∞ ( – βn) =  – b > . (.)

From (.), (.) and (.), we obtain

lim
n→∞

∥∥Tnxn – xn
∥∥ = . (.)

Since

‖xn+ – xn‖ =
∥∥( – αn)xn + αnTnyn – xn

∥∥
= αn

∥∥Tnyn – xn
∥∥

≤ b
∥∥Tnyn – xn

∥∥,
and by (.), we obtain

lim
n→∞‖xn+ – xn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/162
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Since

‖xn – Txn‖
≤ ‖xn – xn+‖ +

∥∥xn+ – Tn+xn+
∥∥ +

∥∥Tn+xn+ – Tn+xn
∥∥ +

∥∥Tn+xn – Txn
∥∥

≤ ‖xn – xn+‖ + cn+ +
∥∥xn+ – Tn+xn+

∥∥ +
∥∥Tn+xn – Txn

∥∥
and by the uniform continuity of T , (.) and (.), we have

lim
n→∞‖xn – Txn‖ = . (.)

Next, we show that if lim infn→∞ αn >  and βn ∈ [a,b], thenwe also obtain (.). In fact, let
εn = ‖Tnxn–xn‖

r . Then we have  ≤ εn ≤ . From lim infn→∞ αn > , there are some positive
integer n and a positive number a such that αn > a >  for all n≥ n. Since

‖xn+ – z‖ =
∥∥αn

(
Tnyn – z

)
+ ( – αn)(xn – z)

∥∥
≤ αn

∥∥Tnyn – z
∥∥ + ( – αn)‖xn – z‖

≤ αn‖yn – z‖ + αncn + ( – αn)‖xn – z‖,

and hence

‖xn+ – z‖ – ‖xn – z‖
αn

≤ ‖yn – z‖ – ‖xn – z‖ + cn.

So, we obtain

‖xn – z‖ – ‖yn – z‖ ≤ ‖xn – z‖ – ‖xn+ – z‖
αn

+ cn

≤ ‖xn – z‖ – ‖xn+ – z‖
a

+ cn. (.)

Since

∥∥Tnxn – z
∥∥ ≤ ‖xn – z‖ + cn,

from Lemma ., we obtain

‖yn – z‖ =
∥∥βnTnxn + ( – βn)xn – z

∥∥
=

∥∥βn
(
Tnxn – z

)
+ ( – βn)(xn – z)

∥∥
≤ ‖xn – z‖ + cn – βn( – βn)rδ(C, εn). (.)

By using (.) and (.), we obtain

βn( – βn)rδ(C, εn) ≤ ‖xn – z‖ – ‖yn – z‖ + cn

≤ ‖xn – z‖ – ‖xn+ – z‖
a

+ cn.
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Hence

r
∞∑
n=

a( – b)δ
(
C,

‖Tnxn – xn‖
r

)
< ∞.

We also obtain

lim
n→∞

∥∥xn – Tnxn
∥∥ =  (.)

similarly to the argument above. Since

‖yn – xn‖ =
∥∥βnTnxn + ( – βn)xn – xn

∥∥
≤ βn

∥∥Tnxn – xn
∥∥

≤ b
∥∥Tnxn – xn

∥∥,
and by using (.), we obtain

lim
n→∞‖xn – yn‖ = . (.)

Since

∥∥Tnyn – xn
∥∥ ≤ ∥∥Tnyn – Tnxn

∥∥ +
∥∥Tnxn – xn

∥∥
≤ ‖yn – xn‖ + cn +

∥∥Tnxn – xn
∥∥,

by using (.) and (.), we obtain

lim
n→∞

∥∥Tnyn – xn
∥∥ = . (.)

Since

∥∥Tnyn – yn
∥∥ ≤ ∥∥Tnyn – xn

∥∥ + ‖xn – yn‖,

by using (.) and (.), we obtain

lim
n→∞

∥∥Tnyn – yn
∥∥ = . (.)

Since

‖xn – xn–‖ =
∥∥( – αn–)xn– + αn–Tn–yn– – xn–

∥∥
= αn–

∥∥Tn–yn– – xn–
∥∥

≤ ∥∥Tn–yn– – yn–
∥∥ + ‖yn– – xn–‖,

by (.) and (.), we get

lim
n→∞‖xn – xn–‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/162
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From

∥∥Tn–xn – xn
∥∥

≤ ∥∥Tn–xn – Tn–xn–
∥∥ +

∥∥Tn–xn– – xn–
∥∥ + ‖xn– – xn‖

≤ ‖xn – xn–‖ + cn– +
∥∥Tn–xn– – xn–

∥∥
and by (.) and (.), we obtain

lim
n→∞

∥∥Tn–xn – xn
∥∥ = . (.)

Since

∥∥xn – Txn
∥∥

≤ ‖xn – yn‖ +
∥∥yn – Tnyn

∥∥ +
∥∥Tnyn – Tnxn

∥∥ +
∥∥Tnxn – Txn

∥∥
≤ ∥∥yn – Tnyn

∥∥ + ‖xn – yn‖ + cn +
∥∥Tnxn – Txn

∥∥
and by the uniform continuity of T , (.), (.) and (.), we have

lim
n→∞‖xn – Txn‖ = . �

Our Theorem . carries over Theorem  of Takahashi and Kim [] to an ANImapping.

Theorem . Let C be a nonempty closed convex subset of a strictly convex Banach
space E, and let T : C → C be an ANI mapping, and let T(C) be contained in a compact
subset of C. Put

cn = sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ∨ ,

so that
∑∞

n= cn < ∞. Suppose x ∈ C, and the sequence {xn} defined by (.) satisfies αn ∈
[a,b] and lim supn→∞ βn = b <  or lim infn→∞ αn >  and βn ∈ [a,b] for some a, b with
 < a≤ b < . Then {xn} converges strongly to a fixed point of T .

Proof By Mazur’s theorem [], A := co({x} ∪ T(C)) is a compact subset of C contain-
ing {xn} which is invariant under T . So, without loss of generality, we may assume that
C is compact and {xn} is well defined. The existence of a fixed point of T follows from
Schauder’s fixed theorem []. If d(C) = , then the conclusion is obvious. So, we assume
d(C) > . From Theorem ., we obtain

lim
n→∞‖xn – Txn‖ = . (.)

Since C is compact, there exist a subsequence {xnk } of the sequence {xn} and a point p ∈ C
such that xnk → p. Thus we obtain p ∈ F(T) by the continuity of T and (.). Hence we
obtain limn→∞ ‖xn – p‖ =  by Lemma .. �
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Corollary . Let C be a nonempty closed convex subset of a strictly convex Banach
space E, and let T : C → C be an asymptotically nonexpansive mapping with {kn} satisfy-
ing kn ≥ ,

∑∞
n=(kn – ) < ∞, and let T(C) be contained in a compact subset of C. Suppose

x ∈ C, and the sequence {xn} defined by (.) satisfies αn ∈ [a,b] and lim supn→∞ βn = b < 
or lim infn→∞ αn >  and βn ∈ [a,b] for some a, b with  < a ≤ b < . Then {xn} converges
strongly to a fixed point of T .

Proof Note that

∞∑
n=

cn =
∞∑
n=

(kn – )diam(C) < ∞,

where diam(C) = supx,y∈C ‖x – y‖ < ∞. The conclusion now follows easily from Theo-
rem .. �

We give an example which satisfies all assumptions of T in Theorem ., i.e., T : C → C
is an ANI mapping which is not Lipschitzian and hence not asymptotically nonexpansive.

Example . Let E :=R and C := [, ]. Define T : C → C by

Tx =

{
, x ∈ [, ];√
 – x, x ∈ [, ].

Note thatTnx =  for all x ∈ C and n≥  and F(T) = {}. Clearly,T is uniformly continuous,
ANI on C, but T is not Lipschitzian. Indeed, suppose not, i.e., there exists L >  such that

|Tx – Ty| ≤ L|x – y|

for all x, y ∈ C. If we take y :=  and x :=  – 
(L+) > , then

√
 – x≤ L( – x) ⇔ 

L
≤  – x =


(L + )

⇔ L +  ≤ L.

This is a contradiction.

We also give an example of an ANI mapping which is not a Lipschitz function.

Example . Let E =R and C = [–π , π ] and let |h| < . Let T : C → C be defined by

Tx = hx sinnx

for each x ∈ C and for all n ∈ N, where N denotes the set of all positive integers. Clearly
F(T) = {}. Since

T(x) = hx sinnx,

Tx = hx sinnx sinnhx sinn(sinnx) · · · ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/162
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we obtain {Tnx} →  uniformly on C as n→ ∞. Thus

lim sup
n→∞

{∥∥Tnx – Tny
∥∥ – ‖x – y‖ ∨ 

}
= 

for all x, y ∈ C. Hence T is an ANI mapping, but it is not a Lipschitz function. In fact,
suppose that there exists h >  such that |Tx – Ty| ≤ h|x – y| for all x, y ∈ C. If we take
x = π

n and y = π
n , then

|Tx – Ty| =
∣∣∣∣hπn sinn

π
n

– h
π
n

sinn
π
n

∣∣∣∣ = hπ
n

,

whereas

h|x – y| = h
∣∣∣∣πn –

π
n

∣∣∣∣ = hπ
n

.
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