Strong convergence for asymptotically nonexpansive mappings in the intermediate sense

Gang Eun Kim*

Correspondence:
kimge@pknu.ac.kr
Department of Applied Mathematics, Pukyong National University, Busan, 608-737, Korea

Abstract

In this paper, let C be a nonempty closed convex subset of a strictly convex Banach space. Then we prove strong convergence of the modified Ishikawa iteration process when T is an ANI self-mapping such that $T(C)$ is contained in a compact subset of C, which generalizes the result due to Takahashi and Kim (Math. Jpn. 48:1-9, 1998). MSC: 47H05; 47H10 Keywords: strong convergence; fixed point; Mann and Ishikawa iteration process; ANI

1 Introduction

Let C be a nonempty closed convex subset of a Banach space E, and let T be a mapping of C into itself. Then T is said to be asymptotically nonexpansive [1] if there exists a sequence $\left\{k_{n}\right\}, k_{n} \geq 1$, with $\lim _{n \rightarrow \infty} k_{n}=1$, such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|
$$

for all $x, y \in C$ and $n \geq 1$. In particular, if $k_{n}=1$ for all $n \geq 1, T$ is said to be nonexpansive. T is said to be uniformly L-Lipschitzian if there exists a constant $L>0$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|
$$

for all $x, y \in C$ and $n \geq 1 . T$ is said to be asymptotically nonexpansive in the intermediate sense (in brief, ANI) [2] provided T is uniformly continuous and

$$
\limsup _{n \rightarrow \infty} \sup _{x, y \in C}\left(\left\|T^{n} x-T^{n} y\right\|-\|x-y\|\right) \leq 0 .
$$

We denote by $F(T)$ the set of all fixed points of T, i.e., $F(T)=\{x \in C: T x=x\}$. We define the modulus of convexity for a convex subset of a Banach space; see also [3]. Let C be a nonempty bounded convex subset of a Banach space E with $d(C)>0$, where $d(C)$ is the diameter of C. Then we define $\delta(C, \epsilon)$ with $0 \leq \epsilon \leq 1$ as follows:

$$
\delta(C, \epsilon)=\frac{1}{r} \inf \left\{\max (\|x-z\|,\|y-z\|)-\left\|z-\frac{x+y}{2}\right\|: x, y, z \in C,\|x-y\| \geq r \epsilon\right\},
$$

where $r=d(C)$. When $\left\{x_{n}\right\}$ is a sequence in E, then $x_{n} \rightarrow x$ will denote strong convergence of the sequence $\left\{x_{n}\right\}$ to x. For a mappings T of C into itself, Rhoades [4] considered the following modified Ishikawa iteration process (cf. Ishikawa [5]) in C defined by $x_{1} \in C$:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} T^{n} y_{n}+\left(1-\alpha_{n}\right) x_{n}, \quad y_{n}=\beta_{n} T^{n} x_{n}+\left(1-\beta_{n}\right) x_{n}, \tag{1.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are two real sequences in $[0,1]$. If $\beta_{n}=0$ for all $n \geq 1$, then the iteration process (1.1) reduces to the modified Mann iteration process [6] (cf. Mann [7]).
Takahashi and Kim [8] proved the following result: Let E be a strictly convex Banach space and C be a nonempty closed convex subset of E and $T: C \rightarrow C$ be a nonexpansive mapping such that $T(C)$ is contained in a compact subset of C. Suppose $x_{1} \in C$, and the sequence $\left\{x_{n}\right\}$ is defined by $x_{n+1}=\alpha_{n} T\left[\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}\right]+\left(1-\alpha_{n}\right) x_{n}$, where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are chosen so that $\alpha_{n} \in[a, b]$ and $\beta_{n} \in[0, b]$ or $\alpha_{n} \in[a, 1]$ and $\beta_{n} \in[a, b]$ for some a, b with $0<a \leq b<1$. Then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T. In 2000, Tsukiyama and Takahashi [9] generalized the result due to Takahashi and Kim [8] to a nonexpansive mapping under much less restrictions on the iterative parameters $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$.
In this paper, let C be a nonempty closed convex subset of a strictly convex Banach space. We prove that if $T: C \rightarrow C$ is an ANI mapping such that $T(C)$ is contained in a compact subset of C, then the iteration $\left\{x_{n}\right\}$ defined by (1.1) converges strongly to a fixed point of T, which generalizes the result due to Takahashi and Kim [8].

2 Strong convergence theorem

We first begin with the following lemma.

Lemma 2.1 [9] Let C be a nonempty compact convex subset of a Banach space E with $r=d(C)>0$. Let $x, y, z \in C$ and suppose $\|x-y\| \geq \epsilon r$ for some ϵ with $0 \leq \epsilon \leq 1$. Then, for all λ with $0 \leq \lambda \leq 1$,

$$
\|\lambda(x-z)+(1-\lambda)(y-z)\| \leq \max (\|x-z\|,\|y-z\|)-2 \lambda(1-\lambda) r \delta(C, \epsilon) .
$$

Lemma 2.2 [9] Let C be a nonempty compact convex subset of a strictly convex Banach space E with $r=d(C)>0$. If $\lim _{n \rightarrow \infty} \delta\left(C, \epsilon_{n}\right)=0$, then $\lim _{n \rightarrow \infty} \epsilon_{n}=0$.

Lemma 2.3 [10] Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of nonnegative real numbers such that $\sum_{n=1}^{\infty} b_{n}<\infty$ and

$$
a_{n+1} \leq a_{n}+b_{n}
$$

for all $n \geq 1$. Then $\lim _{n \rightarrow \infty} a_{n}$ exists.

Lemma 2.4 Let C be a nonempty compact convex subset of a Banach space E, and let $T: C \rightarrow C$ be an ANI mapping. Put

$$
c_{n}=\sup _{x, y \in C}\left(\left\|T^{n} x-T^{n} y\right\|-\|x-y\|\right) \vee 0,
$$

so that $\sum_{n=1}^{\infty} c_{n}<\infty$. Suppose that the sequence $\left\{x_{n}\right\}$ is defined by (1.1). Then $\lim _{n \rightarrow \infty} \| x_{n}-$ $z \|$ exists for any $z \in F(T)$.

Proof The existence of a fixed point of T follows from Schauder's fixed theorem [11]. For a fixed $z \in F(T)$, since

$$
\begin{aligned}
\left\|T^{n} y_{n}-z\right\| & \leq\left\|y_{n}-z\right\|+c_{n} \\
& =\left\|\beta_{n} T^{n} x_{n}+\left(1-\beta_{n}\right) x_{n}-z\right\|+c_{n} \\
& \leq \beta_{n}\left\|T^{n} x_{n}-z\right\|+\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+c_{n} \\
& \leq \beta_{n}\left\|x_{n}-z\right\|+c_{n}+\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+c_{n} \\
& \leq\left\|x_{n}-z\right\|+2 c_{n},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n} T^{n} y_{n}+\left(1-\alpha_{n}\right) x_{n}-z\right\| \\
& \leq \alpha_{n}\left\|T^{n} y_{n}-z\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| \\
& \leq \alpha_{n}\left(\left\|x_{n}-z\right\|+2 c_{n}\right)+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| \\
& \leq\left\|x_{n}-z\right\|+2 c_{n} .
\end{aligned}
$$

By Lemma 2.3, we readily see that $\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\|$ exists.

Theorem 2.5 Let C be a nonempty compact convex subset of a strictly convex Banach space E with $r=d(C)>0$. Let $T: C \rightarrow C$ be an ANI mapping. Put

$$
c_{n}=\sup _{x, y \in C}\left(\left\|T^{n} x-T^{n} y\right\|-\|x-y\|\right) \vee 0,
$$

so that $\sum_{n=1}^{\infty} c_{n}<\infty$. Suppose $x_{1} \in C$, and the sequence $\left\{x_{n}\right\}$ defined by (1.1) satisfies $\alpha_{n} \in$ $[a, b]$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} \beta_{n}=b<1$ or $\liminf _{n \rightarrow \infty} \alpha_{n}>0$ and $\beta_{n} \in[a, b]$ for some a, b with $0<a \leq b<1$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$.

Proof The existence of a fixed point of T follows from Schauder's fixed theorem [11]. For any fixed $z \in F(T)$, we first show that if $\alpha_{n} \in[a, b]$ and $\limsup _{n \rightarrow \infty} \beta_{n}=b<1$ for some $a, b \in(0,1)$, then we obtain $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$. In fact, let $\epsilon_{n}=\frac{\left\|T^{n} y_{n}-x_{n}\right\|}{r}$. Then we have $0 \leq \epsilon_{n} \leq 1$ since $\left\|T^{n} y_{n}-x_{n}\right\| \leq r$. As in the proof of Lemma 2.4, we obtain

$$
\begin{equation*}
\left\|T^{n} y_{n}-z\right\| \leq\left\|x_{n}-z\right\|+2 c_{n} . \tag{2.1}
\end{equation*}
$$

Since

$$
\left\|T^{n} y_{n}-x_{n}\right\|=r \epsilon_{n}
$$

and by (2.1) and Lemma 2.1, we have

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n}\left(T^{n} y_{n}-z\right)+\left(1-\alpha_{n}\right)\left(x_{n}-z\right)\right\| \\
& \leq\left\|x_{n}-z\right\|+2 c_{n}-2 \alpha_{n}\left(1-\alpha_{n}\right) r \delta\left(C, \epsilon_{n}\right) .
\end{aligned}
$$

Thus

$$
2 \alpha_{n}\left(1-\alpha_{n}\right) r \delta\left(C, \epsilon_{n}\right) \leq\left\|x_{n}-z\right\|-\left\|x_{n+1}-z\right\|+2 c_{n} .
$$

Since

$$
2 r \sum_{n=1}^{\infty} a(1-b) \delta\left(C, \frac{\left\|T^{n} y_{n}-x_{n}\right\|}{r}\right)<\infty
$$

we obtain

$$
\lim _{n \rightarrow \infty} \delta\left(C, \frac{\left\|T^{n} y_{n}-x_{n}\right\|}{r}\right)=0 .
$$

By using Lemma 2.2, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} y_{n}-x_{n}\right\|=0 \tag{2.2}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|T^{n} x_{n}-x_{n}\right\| & \leq\left\|T^{n} x_{n}-T^{n} y_{n}\right\|+\left\|T^{n} y_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-y_{n}\right\|+c_{n}+\left\|T^{n} y_{n}-x_{n}\right\| \\
& =\beta_{n}\left\|T^{n} x_{n}-x_{n}\right\|+c_{n}+\left\|T^{n} y_{n}-x_{n}\right\|,
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\left(1-\beta_{n}\right)\left\|T^{n} x_{n}-x_{n}\right\| \leq c_{n}+\left\|T^{n} y_{n}-x_{n}\right\| . \tag{2.3}
\end{equation*}
$$

Since $\lim \sup _{n \rightarrow \infty} \beta_{n}=b<1$, we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(1-\beta_{n}\right)=1-b>0 \tag{2.4}
\end{equation*}
$$

From (2.2), (2.3) and (2.4), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} x_{n}-x_{n}\right\|=0 \tag{2.5}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| & =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}-x_{n}\right\| \\
& =\alpha_{n}\left\|T^{n} y_{n}-x_{n}\right\| \\
& \leq b\left\|T^{n} y_{n}-x_{n}\right\|,
\end{aligned}
$$

and by (2.2), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{2.6}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \left\|x_{n}-T x_{n}\right\| \\
& \quad \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T^{n+1} x_{n+1}\right\|+\left\|T^{n+1} x_{n+1}-T^{n+1} x_{n}\right\|+\left\|T^{n+1} x_{n}-T x_{n}\right\| \\
& \quad \leq 2\left\|x_{n}-x_{n+1}\right\|+c_{n+1}+\left\|x_{n+1}-T^{n+1} x_{n+1}\right\|+\left\|T^{n+1} x_{n}-T x_{n}\right\|
\end{aligned}
$$

and by the uniform continuity of T, (2.5) and (2.6), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 . \tag{2.7}
\end{equation*}
$$

Next, we show that if $\liminf _{n \rightarrow \infty} \alpha_{n}>0$ and $\beta_{n} \in[a, b]$, then we also obtain (2.7). In fact, let $\epsilon_{n}=\frac{\left\|T^{n} x_{n}-x_{n}\right\|}{r}$. Then we have $0 \leq \epsilon_{n} \leq 1$. From $\liminf _{n \rightarrow \infty} \alpha_{n}>0$, there are some positive integer n_{0} and a positive number a such that $\alpha_{n}>a>0$ for all $n \geq n_{0}$. Since

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n}\left(T^{n} y_{n}-z\right)+\left(1-\alpha_{n}\right)\left(x_{n}-z\right)\right\| \\
& \leq \alpha_{n}\left\|T^{n} y_{n}-z\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| \\
& \leq \alpha_{n}\left\|y_{n}-z\right\|+\alpha_{n} c_{n}+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|,
\end{aligned}
$$

and hence

$$
\frac{\left\|x_{n+1}-z\right\|-\left\|x_{n}-z\right\|}{\alpha_{n}} \leq\left\|y_{n}-z\right\|-\left\|x_{n}-z\right\|+c_{n} .
$$

So, we obtain

$$
\begin{align*}
\left\|x_{n}-z\right\|-\left\|y_{n}-z\right\| & \leq \frac{\left\|x_{n}-z\right\|-\left\|x_{n+1}-z\right\|}{\alpha_{n}}+c_{n} \\
& \leq \frac{\left\|x_{n}-z\right\|-\left\|x_{n+1}-z\right\|}{a}+c_{n} . \tag{2.8}
\end{align*}
$$

Since

$$
\left\|T^{n} x_{n}-z\right\| \leq\left\|x_{n}-z\right\|+c_{n}
$$

from Lemma 2.1, we obtain

$$
\begin{align*}
\left\|y_{n}-z\right\| & =\left\|\beta_{n} T^{n} x_{n}+\left(1-\beta_{n}\right) x_{n}-z\right\| \\
& =\left\|\beta_{n}\left(T^{n} x_{n}-z\right)+\left(1-\beta_{n}\right)\left(x_{n}-z\right)\right\| \\
& \leq\left\|x_{n}-z\right\|+c_{n}-2 \beta_{n}\left(1-\beta_{n}\right) r \delta\left(C, \epsilon_{n}\right) . \tag{2.9}
\end{align*}
$$

By using (2.8) and (2.9), we obtain

$$
\begin{aligned}
2 \beta_{n}\left(1-\beta_{n}\right) r \delta\left(C, \epsilon_{n}\right) & \leq\left\|x_{n}-z\right\|-\left\|y_{n}-z\right\|+c_{n} \\
& \leq \frac{\left\|x_{n}-z\right\|-\left\|x_{n+1}-z\right\|}{a}+2 c_{n} .
\end{aligned}
$$

Hence

$$
2 r \sum_{n=1}^{\infty} a(1-b) \delta\left(C, \frac{\left\|T^{n} x_{n}-x_{n}\right\|}{r}\right)<\infty .
$$

We also obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T^{n} x_{n}\right\|=0 \tag{2.10}
\end{equation*}
$$

similarly to the argument above. Since

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & =\left\|\beta_{n} T^{n} x_{n}+\left(1-\beta_{n}\right) x_{n}-x_{n}\right\| \\
& \leq \beta_{n}\left\|T^{n} x_{n}-x_{n}\right\| \\
& \leq b\left\|T^{n} x_{n}-x_{n}\right\|,
\end{aligned}
$$

and by using (2.10), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 . \tag{2.11}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|T^{n} y_{n}-x_{n}\right\| & \leq\left\|T^{n} y_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-x_{n}\right\| \\
& \leq\left\|y_{n}-x_{n}\right\|+c_{n}+\left\|T^{n} x_{n}-x_{n}\right\|,
\end{aligned}
$$

by using (2.10) and (2.11), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} y_{n}-x_{n}\right\|=0 \tag{2.12}
\end{equation*}
$$

Since

$$
\left\|T^{n} y_{n}-y_{n}\right\| \leq\left\|T^{n} y_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|,
$$

by using (2.11) and (2.12), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n} y_{n}-y_{n}\right\|=0 \tag{2.13}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|x_{n}-x_{n-1}\right\| & =\left\|\left(1-\alpha_{n-1}\right) x_{n-1}+\alpha_{n-1} T^{n-1} y_{n-1}-x_{n-1}\right\| \\
& =\alpha_{n-1}\left\|T^{n-1} y_{n-1}-x_{n-1}\right\| \\
& \leq\left\|T^{n-1} y_{n-1}-y_{n-1}\right\|+\left\|y_{n-1}-x_{n-1}\right\|,
\end{aligned}
$$

by (2.11) and (2.13), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}\right\|=0 \tag{2.14}
\end{equation*}
$$

From

$$
\begin{aligned}
& \left\|T^{n-1} x_{n}-x_{n}\right\| \\
& \quad \leq\left\|T^{n-1} x_{n}-T^{n-1} x_{n-1}\right\|+\left\|T^{n-1} x_{n-1}-x_{n-1}\right\|+\left\|x_{n-1}-x_{n}\right\| \\
& \quad \leq 2\left\|x_{n}-x_{n-1}\right\|+c_{n-1}+\left\|T^{n-1} x_{n-1}-x_{n-1}\right\|
\end{aligned}
$$

and by (2.10) and (2.14), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T^{n-1} x_{n}-x_{n}\right\|=0 \tag{2.15}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \left\|x_{n}-T x_{n}\right\| \\
& \qquad \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T^{n} y_{n}\right\|+\left\|T^{n} y_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-T x_{n}\right\| \\
& \quad \leq\left\|y_{n}-T^{n} y_{n}\right\|+2\left\|x_{n}-y_{n}\right\|+c_{n}+\left\|T^{n} x_{n}-T x_{n}\right\|
\end{aligned}
$$

and by the uniform continuity of T, (2.11), (2.13) and (2.15), we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0
$$

Our Theorem 2.6 carries over Theorem 3 of Takahashi and Kim [8] to an ANI mapping.

Theorem 2.6 Let C be a nonempty closed convex subset of a strictly convex Banach space E, and let $T: C \rightarrow C$ be an ANI mapping, and let $T(C)$ be contained in a compact subset of C. Put

$$
c_{n}=\sup _{x, y \in C}\left(\left\|T^{n} x-T^{n} y\right\|-\|x-y\|\right) \vee 0
$$

so that $\sum_{n=1}^{\infty} c_{n}<\infty$. Suppose $x_{1} \in C$, and the sequence $\left\{x_{n}\right\}$ defined by (1.1) satisfies $\alpha_{n} \in$ $[a, b]$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} \beta_{n}=b<1$ or $\liminf _{n \rightarrow \infty} \alpha_{n}>0$ and $\beta_{n} \in[a, b]$ for some a, b with $0<a \leq b<1$. Then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Proof By Mazur's theorem [12], $A:=\overline{c o}\left(\left\{x_{1}\right\} \cup T(C)\right)$ is a compact subset of C containing $\left\{x_{n}\right\}$ which is invariant under T. So, without loss of generality, we may assume that C is compact and $\left\{x_{n}\right\}$ is well defined. The existence of a fixed point of T follows from Schauder's fixed theorem [11]. If $d(C)=0$, then the conclusion is obvious. So, we assume $d(C)>0$. From Theorem 2.5, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \tag{2.16}
\end{equation*}
$$

Since C is compact, there exist a subsequence $\left\{x_{n_{k}}\right\}$ of the sequence $\left\{x_{n}\right\}$ and a point $p \in C$ such that $x_{n_{k}} \rightarrow p$. Thus we obtain $p \in F(T)$ by the continuity of T and (2.16). Hence we obtain $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0$ by Lemma 2.4.

Corollary 2.7 Let C be a nonempty closed convex subset of a strictly convex Banach space E, and let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping with $\left\{k_{n}\right\}$ satisfying $k_{n} \geq 1, \sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$, and let $T(C)$ be contained in a compact subset of C. Suppose $x_{1} \in C$, and the sequence $\left\{x_{n}\right\}$ defined by (1.1) satisfies $\alpha_{n} \in[a, b]$ and $\lim \sup _{n \rightarrow \infty} \beta_{n}=b<1$ or $\liminf _{n \rightarrow \infty} \alpha_{n}>0$ and $\beta_{n} \in[a, b]$ for some a, b with $0<a \leq b<1$. Then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Proof Note that

$$
\sum_{n=1}^{\infty} c_{n}=\sum_{n=1}^{\infty}\left(k_{n}-1\right) \operatorname{diam}(C)<\infty,
$$

where $\operatorname{diam}(C)=\sup _{x, y \in C}\|x-y\|<\infty$. The conclusion now follows easily from Theorem 2.6.

We give an example which satisfies all assumptions of T in Theorem 2.6, i.e., $T: C \rightarrow C$ is an ANI mapping which is not Lipschitzian and hence not asymptotically nonexpansive.

Example 2.8 Let $E:=\mathbb{R}$ and $C:=[0,2]$. Define $T: C \rightarrow C$ by

$$
T x= \begin{cases}1, & x \in[0,1] \\ \sqrt{2-x}, & x \in[1,2] .\end{cases}
$$

Note that $T^{n} x=1$ for all $x \in C$ and $n \geq 2$ and $F(T)=\{1\}$. Clearly, T is uniformly continuous, ANI on C, but T is not Lipschitzian. Indeed, suppose not, i.e., there exists $L>0$ such that

$$
|T x-T y| \leq L|x-y|
$$

for all $x, y \in C$. If we take $y:=2$ and $x:=2-\frac{1}{(L+1)^{2}}>1$, then

$$
\sqrt{2-x} \leq L(2-x) \quad \Leftrightarrow \quad \frac{1}{L^{2}} \leq 2-x=\frac{1}{(L+1)^{2}} \quad \Leftrightarrow \quad L+1 \leq L .
$$

This is a contradiction.

We also give an example of an ANI mapping which is not a Lipschitz function.

Example 2.9 Let $E=\mathbb{R}$ and $C=[-3 \pi, 3 \pi]$ and let $|h|<1$. Let $T: C \rightarrow C$ be defined by

$$
T x=h x \sin n x
$$

for each $x \in C$ and for all $n \in \mathbb{N}$, where \mathbb{N} denotes the set of all positive integers. Clearly $F(T)=\{0\}$. Since

$$
\begin{aligned}
& T(x)=h x \sin n x, \\
& T^{2} x=h^{2} x \sin n x \sin n h x \sin n(\sin n x) \cdots,
\end{aligned}
$$

we obtain $\left\{T^{n} x\right\} \rightarrow 0$ uniformly on C as $n \rightarrow \infty$. Thus

$$
\limsup _{n \rightarrow \infty}\left\{\left\|T^{n} x-T^{n} y\right\|-\|x-y\| \vee 0\right\}=0
$$

for all $x, y \in C$. Hence T is an ANI mapping, but it is not a Lipschitz function. In fact, suppose that there exists $h>0$ such that $|T x-T y| \leq h|x-y|$ for all $x, y \in C$. If we take $x=\frac{5 \pi}{2 n}$ and $y=\frac{3 \pi}{2 n}$, then

$$
|T x-T y|=\left|h \frac{5 \pi}{2 n} \sin n \frac{5 \pi}{2 n}-h \frac{3 \pi}{2 n} \sin n \frac{3 \pi}{2 n}\right|=\frac{4 h \pi}{n},
$$

whereas

$$
h|x-y|=h\left|\frac{5 \pi}{2 n}-\frac{3 \pi}{2 n}\right|=\frac{h \pi}{n} .
$$

Competing interests

The author declares that they have no competing interests.

Acknowledgements

The author would like to express their sincere appreciation to the anonymous referee for useful suggestions which improved the contents of this manuscript.

Received: 13 February 2014 Accepted: 4 July 2014 Published: 23 July 2014

References

1. Goebel, K, Kirk, WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171-174 (1972)
2. Bruck, RE, Kuczumow, T, Reich, S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloq. Math. 65, 169-179 (1993)
3. Ishihara, H, Takahashi, W: Modulus of convexity, characteristic of convexity and fixed point theorems. Kodai Math. J. 10, 197-208 (1987)
4. Rhoades, BE: Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 183, 118-120 (1994)
5. Ishikawa, S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
6. Schu, J: Iterative contraction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158, 407-413 (1991)
7. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
8. Takahashi, W, Kim, GE: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 48, 1-9 (1998)
9. Tsukiyama, N, Takahashi, W: Approximating fixed points of nonexpansive mappings with compact domains. Commun. Appl. Nonlinear Anal. 7(4), 39-47 (2000)
10. Tan, KK, Xu, HK: Approximating fixed points of nonexpansive mappings by the Ishikawa Iteration process. J. Math. Anal. Appl. 178, 301-308 (1993)
11. Schauder, J: Der Fixpunktsatz in Funktionalräumen. Stud. Math. 2, 171-180 (1930)
12. Dunford, N, Schwartz, JT: Linear Operators, Part I. Interscience, New York (1958)

doi:10.1186/1687-1812-2014-162

Cite this article as: Kim: Strong convergence for asymptotically nonexpansive mappings in the intermediate sense. Fixed Point Theory and Applications 2014 2014:162.

