# RESEARCH

**Open Access** 

# Strong convergence for asymptotically nonexpansive mappings in the intermediate sense

Gang Eun Kim\*

\*Correspondence: kimge@pknu.ac.kr Department of Applied Mathematics, Pukyong National University, Busan, 608-737, Korea

### Abstract

In this paper, let *C* be a nonempty closed convex subset of a strictly convex Banach space. Then we prove strong convergence of the modified Ishikawa iteration process when *T* is an ANI self-mapping such that T(C) is contained in a compact subset of *C*, which generalizes the result due to Takahashi and Kim (Math. Jpn. 48:1-9, 1998). **MSC:** 47H05; 47H10

**Keywords:** strong convergence; fixed point; Mann and Ishikawa iteration process; ANI

## **1** Introduction

Let *C* be a nonempty closed convex subset of a Banach space *E*, and let *T* be a mapping of *C* into itself. Then *T* is said to be *asymptotically nonexpansive* [1] if there exists a sequence  $\{k_n\}, k_n \ge 1$ , with  $\lim_{n\to\infty} k_n = 1$ , such that

 $\left\|T^n x - T^n y\right\| \le k_n \|x - y\|$ 

for all  $x, y \in C$  and  $n \ge 1$ . In particular, if  $k_n = 1$  for all  $n \ge 1$ , T is said to be *nonexpansive*. *T* is said to be *uniformly L*-*Lipschitzian* if there exists a constant L > 0 such that

 $\left\|T^n x - T^n y\right\| \le L \|x - y\|$ 

for all  $x, y \in C$  and  $n \ge 1$ . *T* is said to be *asymptotically nonexpansive in the intermediate sense* (in brief, ANI) [2] provided *T* is uniformly continuous and

 $\limsup_{n\to\infty}\sup_{x,y\in C}\left(\left\|T^nx-T^ny\right\|-\|x-y\|\right)\leq 0.$ 

We denote by F(T) the set of all fixed points of T, *i.e.*,  $F(T) = \{x \in C : Tx = x\}$ . We define the modulus of convexity for a convex subset of a Banach space; see also [3]. Let C be a nonempty bounded convex subset of a Banach space E with d(C) > 0, where d(C) is the diameter of C. Then we define  $\delta(C, \epsilon)$  with  $0 \le \epsilon \le 1$  as follows:

$$\delta(C,\epsilon) = \frac{1}{r} \inf \left\{ \max(\|x-z\|, \|y-z\|) - \|z-\frac{x+y}{2}\| : x, y, z \in C, \|x-y\| \ge r\epsilon \right\},\$$

© 2014 Kim; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



where r = d(C). When  $\{x_n\}$  is a sequence in *E*, then  $x_n \to x$  will denote strong convergence of the sequence  $\{x_n\}$  to *x*. For a mappings *T* of *C* into itself, Rhoades [4] considered the following modified Ishikawa iteration process (*cf.* Ishikawa [5]) in *C* defined by  $x_1 \in C$ :

$$x_{n+1} = \alpha_n T^n y_n + (1 - \alpha_n) x_n, \qquad y_n = \beta_n T^n x_n + (1 - \beta_n) x_n, \tag{1.1}$$

where  $\{\alpha_n\}$  and  $\{\beta_n\}$  are two real sequences in [0, 1]. If  $\beta_n = 0$  for all  $n \ge 1$ , then the iteration process (1.1) reduces to the modified Mann iteration process [6] (*cf.* Mann [7]).

Takahashi and Kim [8] proved the following result: Let *E* be a strictly convex Banach space and *C* be a nonempty closed convex subset of *E* and  $T : C \to C$  be a nonexpansive mapping such that T(C) is contained in a compact subset of *C*. Suppose  $x_1 \in C$ , and the sequence  $\{x_n\}$  is defined by  $x_{n+1} = \alpha_n T[\beta_n Tx_n + (1 - \beta_n)x_n] + (1 - \alpha_n)x_n$ , where  $\{\alpha_n\}$  and  $\{\beta_n\}$  are chosen so that  $\alpha_n \in [a, b]$  and  $\beta_n \in [0, b]$  or  $\alpha_n \in [a, 1]$  and  $\beta_n \in [a, b]$  for some *a*, *b* with  $0 < a \le b < 1$ . Then  $\{x_n\}$  converges strongly to a fixed point of *T*. In 2000, Tsukiyama and Takahashi [9] generalized the result due to Takahashi and Kim [8] to a nonexpansive mapping under much less restrictions on the iterative parameters  $\{\alpha_n\}$  and  $\{\beta_n\}$ .

In this paper, let *C* be a nonempty closed convex subset of a strictly convex Banach space. We prove that if  $T: C \to C$  is an ANI mapping such that T(C) is contained in a compact subset of *C*, then the iteration  $\{x_n\}$  defined by (1.1) converges strongly to a fixed point of *T*, which generalizes the result due to Takahashi and Kim [8].

#### 2 Strong convergence theorem

We first begin with the following lemma.

**Lemma 2.1** [9] Let C be a nonempty compact convex subset of a Banach space E with r = d(C) > 0. Let  $x, y, z \in C$  and suppose  $||x - y|| \ge \epsilon r$  for some  $\epsilon$  with  $0 \le \epsilon \le 1$ . Then, for all  $\lambda$  with  $0 \le \lambda \le 1$ ,

$$\left\|\lambda(x-z)+(1-\lambda)(y-z)\right\|\leq \max(\|x-z\|,\|y-z\|)-2\lambda(1-\lambda)r\delta(C,\epsilon).$$

**Lemma 2.2** [9] Let C be a nonempty compact convex subset of a strictly convex Banach space E with r = d(C) > 0. If  $\lim_{n\to\infty} \delta(C, \epsilon_n) = 0$ , then  $\lim_{n\to\infty} \epsilon_n = 0$ .

**Lemma 2.3** [10] Let  $\{a_n\}$  and  $\{b_n\}$  be two sequences of nonnegative real numbers such that  $\sum_{n=1}^{\infty} b_n < \infty$  and

 $a_{n+1} \leq a_n + b_n$ 

for all  $n \ge 1$ . Then  $\lim_{n\to\infty} a_n$  exists.

**Lemma 2.4** Let C be a nonempty compact convex subset of a Banach space E, and let  $T: C \rightarrow C$  be an ANI mapping. Put

$$c_n = \sup_{x,y\in C} \left( \left\| T^n x - T^n y \right\| - \left\| x - y \right\| \right) \vee 0,$$

so that  $\sum_{n=1}^{\infty} c_n < \infty$ . Suppose that the sequence  $\{x_n\}$  is defined by (1.1). Then  $\lim_{n\to\infty} ||x_n - z||$  exists for any  $z \in F(T)$ .

*Proof* The existence of a fixed point of *T* follows from Schauder's fixed theorem [11]. For a fixed  $z \in F(T)$ , since

$$\|T^{n}y_{n} - z\| \leq \|y_{n} - z\| + c_{n}$$
  
=  $\|\beta_{n}T^{n}x_{n} + (1 - \beta_{n})x_{n} - z\| + c_{n}$   
 $\leq \beta_{n}\|T^{n}x_{n} - z\| + (1 - \beta_{n})\|x_{n} - z\| + c_{n}$   
 $\leq \beta_{n}\|x_{n} - z\| + c_{n} + (1 - \beta_{n})\|x_{n} - z\| + c_{n}$   
 $\leq \|x_{n} - z\| + 2c_{n},$ 

we obtain

$$\|x_{n+1} - z\| = \|\alpha_n T^n y_n + (1 - \alpha_n) x_n - z\|$$
  

$$\leq \alpha_n \|T^n y_n - z\| + (1 - \alpha_n) \|x_n - z\|$$
  

$$\leq \alpha_n (\|x_n - z\| + 2c_n) + (1 - \alpha_n) \|x_n - z\|$$
  

$$\leq \|x_n - z\| + 2c_n.$$

By Lemma 2.3, we readily see that  $\lim_{n\to\infty} ||x_n - z||$  exists.

**Theorem 2.5** Let C be a nonempty compact convex subset of a strictly convex Banach space E with r = d(C) > 0. Let  $T : C \to C$  be an ANI mapping. Put

$$c_n = \sup_{x,y \in C} \left( \|T^n x - T^n y\| - \|x - y\| \right) \vee 0,$$

so that  $\sum_{n=1}^{\infty} c_n < \infty$ . Suppose  $x_1 \in C$ , and the sequence  $\{x_n\}$  defined by (1.1) satisfies  $\alpha_n \in [a,b]$  and  $\limsup_{n\to\infty} \beta_n = b < 1$  or  $\liminf_{n\to\infty} \alpha_n > 0$  and  $\beta_n \in [a,b]$  for some a, b with  $0 < a \le b < 1$ . Then  $\lim_{n\to\infty} \|x_n - Tx_n\| = 0$ .

*Proof* The existence of a fixed point of *T* follows from Schauder's fixed theorem [11]. For any fixed  $z \in F(T)$ , we first show that if  $\alpha_n \in [a, b]$  and  $\limsup_{n\to\infty} \beta_n = b < 1$  for some  $a, b \in (0, 1)$ , then we obtain  $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$ . In fact, let  $\epsilon_n = \frac{||T^n y_n - x_n||}{r}$ . Then we have  $0 \le \epsilon_n \le 1$  since  $||T^n y_n - x_n|| \le r$ . As in the proof of Lemma 2.4, we obtain

$$\|T^n y_n - z\| \le \|x_n - z\| + 2c_n.$$
(2.1)

Since

$$\left\|T^n y_n - x_n\right\| = r\epsilon_n,$$

and by (2.1) and Lemma 2.1, we have

$$\|x_{n+1} - z\| = \|\alpha_n (T^n y_n - z) + (1 - \alpha_n)(x_n - z)\|$$
  
$$\leq \|x_n - z\| + 2c_n - 2\alpha_n (1 - \alpha_n) r \delta(C, \epsilon_n).$$

Thus

$$2\alpha_n(1-\alpha_n)r\delta(C,\epsilon_n) \le ||x_n-z|| - ||x_{n+1}-z|| + 2c_n.$$

Since

$$2r\sum_{n=1}^{\infty}a(1-b)\delta\left(C,\frac{\|T^ny_n-x_n\|}{r}\right)<\infty,$$

we obtain

$$\lim_{n\to\infty}\delta\left(C,\frac{\|T^ny_n-x_n\|}{r}\right)=0.$$

By using Lemma 2.2, we obtain

$$\lim_{n \to \infty} \|T^n y_n - x_n\| = 0.$$
(2.2)

Since

$$\|T^{n}x_{n} - x_{n}\| \leq \|T^{n}x_{n} - T^{n}y_{n}\| + \|T^{n}y_{n} - x_{n}\|$$
  
$$\leq \|x_{n} - y_{n}\| + c_{n} + \|T^{n}y_{n} - x_{n}\|$$
  
$$= \beta_{n}\|T^{n}x_{n} - x_{n}\| + c_{n} + \|T^{n}y_{n} - x_{n}\|,$$

we obtain

$$(1 - \beta_n) \| T^n x_n - x_n \| \le c_n + \| T^n y_n - x_n \|.$$
(2.3)

Since  $\limsup_{n\to\infty} \beta_n = b < 1$ , we have

$$\liminf_{n \to \infty} (1 - \beta_n) = 1 - b > 0.$$
(2.4)

From (2.2), (2.3) and (2.4), we obtain

$$\lim_{n \to \infty} \left\| T^n x_n - x_n \right\| = 0.$$
(2.5)

Since

$$\|x_{n+1} - x_n\| = \|(1 - \alpha_n)x_n + \alpha_n T^n y_n - x_n\|$$
  
=  $\alpha_n \|T^n y_n - x_n\|$   
 $\leq b \|T^n y_n - x_n\|,$ 

and by (2.2), we obtain

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(2.6)

Since

$$\begin{aligned} \|x_n - Tx_n\| \\ &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - T^{n+1}x_{n+1}\| + \|T^{n+1}x_{n+1} - T^{n+1}x_n\| + \|T^{n+1}x_n - Tx_n\| \\ &\leq 2\|x_n - x_{n+1}\| + c_{n+1} + \|x_{n+1} - T^{n+1}x_{n+1}\| + \|T^{n+1}x_n - Tx_n\| \end{aligned}$$

and by the uniform continuity of T, (2.5) and (2.6), we have

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$
(2.7)

Next, we show that if  $\liminf_{n\to\infty} \alpha_n > 0$  and  $\beta_n \in [a, b]$ , then we also obtain (2.7). In fact, let  $\epsilon_n = \frac{\|T^n x_n - x_n\|}{r}$ . Then we have  $0 \le \epsilon_n \le 1$ . From  $\liminf_{n\to\infty} \alpha_n > 0$ , there are some positive integer  $n_0$  and a positive number a such that  $\alpha_n > a > 0$  for all  $n \ge n_0$ . Since

$$\|x_{n+1} - z\| = \|\alpha_n (T^n y_n - z) + (1 - \alpha_n)(x_n - z)\|$$
  

$$\leq \alpha_n \|T^n y_n - z\| + (1 - \alpha_n)\|x_n - z\|$$
  

$$\leq \alpha_n \|y_n - z\| + \alpha_n c_n + (1 - \alpha_n)\|x_n - z\|,$$

and hence

$$\frac{\|x_{n+1}-z\|-\|x_n-z\|}{\alpha_n} \le \|y_n-z\|-\|x_n-z\|+c_n.$$

So, we obtain

$$\|x_n - z\| - \|y_n - z\| \le \frac{\|x_n - z\| - \|x_{n+1} - z\|}{\alpha_n} + c_n$$
  
$$\le \frac{\|x_n - z\| - \|x_{n+1} - z\|}{a} + c_n.$$
(2.8)

Since

$$||T^n x_n - z|| \le ||x_n - z|| + c_n$$

from Lemma 2.1, we obtain

$$\|y_{n} - z\| = \|\beta_{n}T^{n}x_{n} + (1 - \beta_{n})x_{n} - z\|$$
  
$$= \|\beta_{n}(T^{n}x_{n} - z) + (1 - \beta_{n})(x_{n} - z)\|$$
  
$$\leq \|x_{n} - z\| + c_{n} - 2\beta_{n}(1 - \beta_{n})r\delta(C, \epsilon_{n}).$$
 (2.9)

By using (2.8) and (2.9), we obtain

$$2\beta_n(1-\beta_n)r\delta(C,\epsilon_n) \le ||x_n-z|| - ||y_n-z|| + c_n$$
$$\le \frac{||x_n-z|| - ||x_{n+1}-z||}{a} + 2c_n.$$

Hence

$$2r\sum_{n=1}^{\infty}a(1-b)\delta\left(C,\frac{\|T^nx_n-x_n\|}{r}\right)<\infty.$$

We also obtain

$$\lim_{n \to \infty} \|x_n - T^n x_n\| = 0$$
(2.10)

similarly to the argument above. Since

$$\|y_n - x_n\| = \|\beta_n T^n x_n + (1 - \beta_n) x_n - x_n\|$$
  

$$\leq \beta_n \|T^n x_n - x_n\|$$
  

$$\leq b \|T^n x_n - x_n\|,$$

and by using (2.10), we obtain

$$\lim_{n \to \infty} \|x_n - y_n\| = 0.$$
(2.11)

Since

$$\|T^{n}y_{n} - x_{n}\| \leq \|T^{n}y_{n} - T^{n}x_{n}\| + \|T^{n}x_{n} - x_{n}\|$$
$$\leq \|y_{n} - x_{n}\| + c_{n} + \|T^{n}x_{n} - x_{n}\|,$$

by using (2.10) and (2.11), we obtain

$$\lim_{n \to \infty} \|T^n y_n - x_n\| = 0.$$
(2.12)

Since

$$||T^{n}y_{n}-y_{n}|| \leq ||T^{n}y_{n}-x_{n}|| + ||x_{n}-y_{n}||,$$

by using (2.11) and (2.12), we obtain

$$\lim_{n \to \infty} \left\| T^n y_n - y_n \right\| = 0.$$
(2.13)

Since

$$\|x_n - x_{n-1}\| = \|(1 - \alpha_{n-1})x_{n-1} + \alpha_{n-1}T^{n-1}y_{n-1} - x_{n-1}\|$$
  
=  $\alpha_{n-1}\|T^{n-1}y_{n-1} - x_{n-1}\|$   
 $\leq \|T^{n-1}y_{n-1} - y_{n-1}\| + \|y_{n-1} - x_{n-1}\|,$ 

by (2.11) and (2.13), we get

$$\lim_{n \to \infty} \|x_n - x_{n-1}\| = 0.$$
(2.14)

From

$$\begin{aligned} & \left| T^{n-1}x_{n} - x_{n} \right| \\ & \leq \left\| T^{n-1}x_{n} - T^{n-1}x_{n-1} \right\| + \left\| T^{n-1}x_{n-1} - x_{n-1} \right\| + \left\| x_{n-1} - x_{n} \right\| \\ & \leq 2 \left\| x_{n} - x_{n-1} \right\| + c_{n-1} + \left\| T^{n-1}x_{n-1} - x_{n-1} \right\| \end{aligned}$$

and by (2.10) and (2.14), we obtain

$$\lim_{n \to \infty} \|T^{n-1}x_n - x_n\| = 0.$$
(2.15)

Since

$$\begin{aligned} \|x_n - Tx_n\| \\ &\leq \|x_n - y_n\| + \|y_n - T^n y_n\| + \|T^n y_n - T^n x_n\| + \|T^n x_n - Tx_n\| \\ &\leq \|y_n - T^n y_n\| + 2\|x_n - y_n\| + c_n + \|T^n x_n - Tx_n\| \end{aligned}$$

and by the uniform continuity of T, (2.11), (2.13) and (2.15), we have

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$

Our Theorem 2.6 carries over Theorem 3 of Takahashi and Kim [8] to an ANI mapping.

**Theorem 2.6** Let C be a nonempty closed convex subset of a strictly convex Banach space E, and let  $T : C \to C$  be an ANI mapping, and let T(C) be contained in a compact subset of C. Put

$$c_n = \sup_{x,y\in C} \left( \left\| T^n x - T^n y \right\| - \|x - y\| \right) \vee 0,$$

so that  $\sum_{n=1}^{\infty} c_n < \infty$ . Suppose  $x_1 \in C$ , and the sequence  $\{x_n\}$  defined by (1.1) satisfies  $\alpha_n \in [a,b]$  and  $\limsup_{n\to\infty} \beta_n = b < 1$  or  $\liminf_{n\to\infty} \alpha_n > 0$  and  $\beta_n \in [a,b]$  for some a, b with  $0 < a \le b < 1$ . Then  $\{x_n\}$  converges strongly to a fixed point of T.

*Proof* By Mazur's theorem [12],  $A := \overline{co}(\{x_1\} \cup T(C))$  is a compact subset of *C* containing  $\{x_n\}$  which is invariant under *T*. So, without loss of generality, we may assume that *C* is compact and  $\{x_n\}$  is well defined. The existence of a fixed point of *T* follows from Schauder's fixed theorem [11]. If d(C) = 0, then the conclusion is obvious. So, we assume d(C) > 0. From Theorem 2.5, we obtain

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0. \tag{2.16}$$

Since *C* is compact, there exist a subsequence  $\{x_{n_k}\}$  of the sequence  $\{x_n\}$  and a point  $p \in C$  such that  $x_{n_k} \to p$ . Thus we obtain  $p \in F(T)$  by the continuity of *T* and (2.16). Hence we obtain  $\lim_{n\to\infty} ||x_n - p|| = 0$  by Lemma 2.4.

**Corollary 2.7** Let *C* be a nonempty closed convex subset of a strictly convex Banach space *E*, and let  $T: C \to C$  be an asymptotically nonexpansive mapping with  $\{k_n\}$  satisfying  $k_n \ge 1$ ,  $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ , and let T(C) be contained in a compact subset of *C*. Suppose  $x_1 \in C$ , and the sequence  $\{x_n\}$  defined by (1.1) satisfies  $\alpha_n \in [a, b]$  and  $\limsup_{n\to\infty} \beta_n = b < 1$  or  $\liminf_{n\to\infty} \alpha_n > 0$  and  $\beta_n \in [a, b]$  for some *a*, *b* with  $0 < a \le b < 1$ . Then  $\{x_n\}$  converges strongly to a fixed point of *T*.

Proof Note that

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} (k_n - 1) \operatorname{diam}(C) < \infty,$$

where diam(*C*) = sup<sub>*x*,*y*∈*C*</sub>  $||x - y|| < \infty$ . The conclusion now follows easily from Theorem 2.6.

We give an example which satisfies all assumptions of *T* in Theorem 2.6, *i.e.*,  $T : C \rightarrow C$  is an ANI mapping which is not Lipschitzian and hence not asymptotically nonexpansive.

**Example 2.8** Let  $E := \mathbb{R}$  and C := [0, 2]. Define  $T : C \to C$  by

$$Tx = \begin{cases} 1, & x \in [0,1]; \\ \sqrt{2-x}, & x \in [1,2]. \end{cases}$$

Note that  $T^n x = 1$  for all  $x \in C$  and  $n \ge 2$  and  $F(T) = \{1\}$ . Clearly, T is uniformly continuous, ANI on C, but T is not Lipschitzian. Indeed, suppose not, *i.e.*, there exists L > 0 such that

$$|Tx - Ty| \le L|x - y|$$

for all *x*, *y*  $\in$  *C*. If we take *y* := 2 and *x* := 2 -  $\frac{1}{(L+1)^2} > 1$ , then

$$\sqrt{2-x} \le L(2-x) \quad \Leftrightarrow \quad \frac{1}{L^2} \le 2-x = \frac{1}{(L+1)^2} \quad \Leftrightarrow \quad L+1 \le L.$$

This is a contradiction.

We also give an example of an ANI mapping which is not a Lipschitz function.

**Example 2.9** Let  $E = \mathbb{R}$  and  $C = [-3\pi, 3\pi]$  and let |h| < 1. Let  $T : C \to C$  be defined by

 $Tx = hx \sin nx$ 

for each  $x \in C$  and for all  $n \in \mathbb{N}$ , where  $\mathbb{N}$  denotes the set of all positive integers. Clearly  $F(T) = \{0\}$ . Since

$$T(x) = hx \sin nx,$$
  

$$T^{2}x = h^{2}x \sin nx \sin nhx \sin n(\sin nx) \cdots,$$

we obtain  $\{T^n x\} \to 0$  uniformly on *C* as  $n \to \infty$ . Thus

$$\limsup_{n\to\infty}\left\{\left\|T^nx-T^ny\right\|-\|x-y\|\vee 0\right\}=0$$

for all  $x, y \in C$ . Hence *T* is an ANI mapping, but it is not a Lipschitz function. In fact, suppose that there exists h > 0 such that  $|Tx - Ty| \le h|x - y|$  for all  $x, y \in C$ . If we take  $x = \frac{5\pi}{2n}$  and  $y = \frac{3\pi}{2n}$ , then

$$|Tx - Ty| = \left| h \frac{5\pi}{2n} \sin n \frac{5\pi}{2n} - h \frac{3\pi}{2n} \sin n \frac{3\pi}{2n} \right| = \frac{4h\pi}{n},$$

whereas

$$h|x-y| = h \left| \frac{5\pi}{2n} - \frac{3\pi}{2n} \right| = \frac{h\pi}{n}.$$

#### **Competing interests**

The author declares that they have no competing interests.

#### Acknowledgements

The author would like to express their sincere appreciation to the anonymous referee for useful suggestions which improved the contents of this manuscript.

#### Received: 13 February 2014 Accepted: 4 July 2014 Published: 23 July 2014

#### References

- Goebel, K, Kirk, WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171-174 (1972)
- Bruck, RE, Kuczumow, T, Reich, S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Collog. Math. 65, 169-179 (1993)
- Ishihara, H, Takahashi, W: Modulus of convexity, characteristic of convexity and fixed point theorems. Kodai Math. J. 10, 197-208 (1987)
- 4. Rhoades, BE: Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 183, 118-120 (1994)
- 5. Ishikawa, S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
- Schu, J: Iterative contraction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158, 407-413 (1991)
- 7. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
- 8. Takahashi, W, Kim, GE: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 48, 1-9 (1998)
- 9. Tsukiyama, N, Takahashi, W: Approximating fixed points of nonexpansive mappings with compact domains. Commun. Appl. Nonlinear Anal. **7**(4), 39-47 (2000)
- 10. Tan, KK, Xu, HK: Approximating fixed points of nonexpansive mappings by the Ishikawa Iteration process. J. Math. Anal. Appl. **178**, 301-308 (1993)
- 11. Schauder, J: Der Fixpunktsatz in Funktionalräumen. Stud. Math. 2, 171-180 (1930)
- 12. Dunford, N, Schwartz, JT: Linear Operators, Part I. Interscience, New York (1958)

#### doi:10.1186/1687-1812-2014-162

**Cite this article as:** Kim: **Strong convergence for asymptotically nonexpansive mappings in the intermediate sense.** *Fixed Point Theory and Applications* 2014 **2014**:162.