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Abstract
In this paper, we introduce and analyze an iterative algorithm by the hybrid iterative
method for finding a solution of the system of generalized equilibrium problems with
constraints of several problems: a generalized mixed equilibrium problem, finitely
many variational inclusions, and the common fixed point problem of an
asymptotically strict pseudocontractive mapping in the intermediate sense and
infinitely many nonexpansive mappings in a real Hilbert space. Weak convergence
result under mild assumptions will be established.
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1 Introduction and formulations
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, let C be a
nonempty closed convex subset of H and PC be the metric projection of H onto C. Let
S : C → H be a nonlinear mapping on C. We denote by Fix(S) the set of fixed points of S
and by R the set of all real numbers. A mapping V is called strongly positive on H if there
exists a constant γ̄ ∈ (, ] such that

〈Vx,x〉 ≥ γ̄ ‖x‖, ∀x ∈H . (.)

Amapping S : C →H is called L-Lipschitz continuous if there exists a constant L ≥  such
that

‖Sx – Sy‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, S is called a nonexpansive mapping if L =  and A is called a contraction if
L ∈ [, ).
Let ϕ : C → R be a real-valued function, A : H → H be a nonlinear mapping and � :

C ×C → R be a bifunction. Peng and Yao [] introduced the following generalized mixed
equilibrium problem (GMEP) of finding x ∈ C such that

�(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)
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We denote the set of solutions of GMEP (.) by GMEP(�,ϕ,A). GMEP (.) is very gen-
eral in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others.
Throughout this paper, we assume as in [] that � : C×C → R is a bifunction satisfying

conditions (H)-(H) and ϕ : C → R is a lower semicontinuous and convex function with
restriction (H), where
(H) �(x,x) =  for all x ∈ C;
(H) � is monotone, i.e., �(x, y) +�(y,x)≤  for any x, y ∈ C;
(H) � is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

�
(
tz + ( – t)x, y

) ≤ �(x, y);

(H) �(x, ·) is convex and lower semicontinuous for each x ∈ C;
(H) for each x ∈H and r > , there exists a bounded subset Dx ⊂ C and yx ∈ C such

that for any z ∈ C \Dx,

�(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < .

Given a positive number r > , let S(�,ϕ)
r :H → C be a solution set of the auxiliary mixed

equilibrium problem, that is, for each x ∈H ,

S(�,ϕ)
r (x) :=

{
y ∈ C : �(y, z) + ϕ(z) – ϕ(y) +


r
〈
K ′(y) –K ′(x), z – y

〉 ≥ ,∀z ∈ C
}
.

In particular, whenever K(x) = 
‖x‖, ∀x ∈H , S(�,ϕ)

r is rewritten as T (�,ϕ)
r .

Let �,� : C × C → R be two bifunctions and A,A : C → H be two nonlinear map-
pings. Consider the following system of generalized equilibrium problems (SGEP): find
(x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

�(x∗,x) + 〈Ay∗,x – x∗〉 + 
ν

〈x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

�(y∗, y) + 〈Ax∗, y – y∗〉 + 
ν

〈y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ C,
(.)

where ν >  and ν >  are two constants. It is introduced and studied in []. When � ≡
� ≡ , the SGEP reduces to a system of variational inequalities, which is considered and
studied in []. It is worth to mention that the system of variational inequalities is a tool to
solve the Nash equilibrium problem for noncooperative games.
In , Ceng and Yao [] transformed the SGEP into a fixed point problem in the fol-

lowing way.

Proposition . (see []) Let �,� : C ×C → R be two bifunctions satisfying conditions
(H)-(H), and let Ak : C →H be ζk-inverse-strongly monotone for k = , . Let νk ∈ (, ζk)
for k = , . Then (x∗, y∗) ∈ C × C is a solution of SGEP (.) if and only if x∗ is a fixed
point of the mapping G : C → C defined by G = T�

ν (I – νA)T�
ν (I – νA), where y∗ =

T�
ν (I – νA)x∗. Here, we denote the fixed point set of G by SGEP(G).

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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Let {Tn}∞n= be an infinite family of nonexpansive mappings on H and {λn}∞n= be a se-
quence of nonnegative numbers in [, ]. For any n ≥ , define a mapping Wn on H as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,

Un,n = λnTnUn,n+ + ( – λn)I,

Un,n– = λn–Tn–Un,n + ( – λn–)I,

· · ·
Un,k = λkTkUn,k+ + ( – λk)I,

Un,k– = λk–Tk–Un,k + ( – λk–)I,

· · ·
Un, = λTUn, + ( – λ)I,

Wn =Un, = λTUn, + ( – λ)I.

(.)

Such a mapping Wn is called the W -mapping generated by Tn,Tn–, . . . ,T and λn,λn–,
. . . ,λ.
In , for the case where C =H , Yao et al. [] proposed the following hybrid iterative

algorithm:

⎧⎨
⎩

�(yn, z) + ϕ(z) – ϕ(yn) + 
r 〈K ′(yn) –K ′(xn), z – yn〉 ≥ , z ∈H ,

xn+ = αn(u + γ f (xn)) + βnxn + (( – βn)I – αn(I +μV ))Wnyn, ∀n≥ ,
(.)

where f : H → H is a contraction, K : H → R is differentiable and strongly convex,
{αn}, {βn} ⊂ (, ) and x,u ∈ H are given, for finding a common element of the set
MEP(�,ϕ) and the fixed point set

⋂∞
n= Fix(Tn) of an infinite family of nonexpansive map-

pings {Tn}∞n= onH . They proved the strong convergence of the sequence generated by the
hybrid iterative algorithm (.) to a point x∗ ∈ 
 :=

⋂∞
n= Fix(Tn)∩MEP(�,ϕ) under some

appropriate conditions. This point x∗ also solves the following optimization problem:

min
x∈


μ


〈Vx,x〉 + 


‖x – u‖ – h(x), (OP)

where h :H → R is the potential function of γ f .
Let f : H → H be a contraction and V be a strongly positive bounded linear oper-

ator on H . Assume that ϕ : H → R is a lower semicontinuous and convex functional,
that �,�,� : H × H → R satisfy conditions (H)-(H), and that A,A,A : H → H are
inverse-strongly monotone. Let the mapping G be defined as in Proposition .. Very re-
cently, Ceng et al. [] introduced the following hybrid extragradient-like iterative algo-
rithm:

⎧⎨
⎩
zn = S(�,ϕ)

rn (xn – rnAxn),

xn+ = αn(u + γ f (xn)) + βnxn + (( – βn)I – αn(I +μV ))WnGzn, ∀n≥ ,
(.)

for finding a common solution of GMEP (.), SGEP (.) and the fixed point prob-
lem of an infinite family of nonexpansive mappings {Tn}∞n= on H , where {rn} ⊂ (,∞),

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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{αn}, {βn} ⊂ (, ), νk ∈ (, ζk), k = , , and x,u ∈ H are given. The authors proved the
strong convergence of the sequence generated by the hybrid iterative algorithm (.) to a
point x∗ ∈ 
 :=

⋂∞
n= Fix(Tn)∩GMEP(�,ϕ,A)∩SGEP(G) under some suitable conditions.

This point x∗ also solves the following optimization problem:

min
x∈


μ


〈Vx,x〉 + 


‖x – u‖ – h(x), (OP)

where h :H → R is the potential function of γ f .
On the other hand, let B be a single-valued mapping of C into H and R be a set-valued

mapping with domain D(R) = C. Consider the following variational inclusion []: find a
point x ∈ C such that

 ∈ Bx + Rx. (.)

We denote by I(B,R) the solution set of the variational inclusion (.). It is known that
problem (.) provides a convenient framework for the unified study of optimal solutions
in many optimization-related areas including mathematical programming, complemen-
tarity problems, variational inequalities, optimal control, mathematical economics, equi-
libria and game theory, etc. Let a set-valued mapping R : D(R) ⊂ H → H be maximal
monotone. We define the resolvent operator JR,λ : H → D(R) associated with R and λ as
follows:

JR,λ = (I + λR)–, ∀x ∈H ,

where λ is a positive number.
In , for the case where C = H , Yao et al. [] introduced and analyzed the follow-

ing iterative algorithms for finding an element of the intersection 
 :=
⋂∞

n= Fix(Tn) ∩
GMEP(�,ϕ,A) ∩ I(B,R) of the solution set of GMEP (.), the solution set of the varia-
tional inclusion (.) and the fixed point set of a countable family {Tn}∞n= of nonexpansive
mappings: for arbitrarily given x ∈H , let the sequence {xn} be generated by

⎧⎨
⎩

�(un, y) + ϕ(y) – ϕ(un) + 〈y – un,Axn〉 + 
r 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

xn+ = αnγ f (xn) + βnxn + [( – βn)I – αnV ]WnJR,λ(un – λBun), ∀n≥ ,
(.)

where {αn}, {βn} are two sequences in [, ] andWn is theW -mapping defined by (.). It is
proven that under appropriate conditions the sequence {xn} converges strongly to x∗ ∈ 
,
where x∗ = P
(γ f (x∗) + (I –V )x∗) is a unique solution of the VIP:

〈
(γ f –V )x∗, y – x∗〉 ≤ , ∀y ∈ 
. (.)

Next, we recall some concepts. LetC be a nonempty subset of a normed spaceX. Amap-
ping S : C → C is called uniformly Lipschitzian if there exists a constant L >  such that

∥∥Snx – Sny
∥∥ ≤L‖x – y‖, ∀n≥ ,∀x, y ∈ C.

Recently, Kim and Xu [] introduced the concept of asymptotically k-strict pseudocon-
tractive mappings in a Hilbert space as follows.

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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Definition . Let C be a nonempty subset of a Hilbert space H . A mapping S : C → C
is said to be an asymptotically k-strict pseudocontractive mapping with sequence {γn} if
there exists a constant k ∈ [, ) and a sequence {γn} in [,∞) with limn→∞ γn =  such
that

∥∥Snx – Sny
∥∥ ≤ ( + γn)‖x – y‖ + k

∥∥x – Snx –
(
y – Sny

)∥∥, ∀n≥ ,∀x, y ∈ C.

They studied weak and strong convergence theorems for this class of mappings. It is
important to note that every asymptotically k-strict pseudocontractive mapping with se-

quence {γn} is a uniformlyL-LipschitzianmappingwithL = sup{ k+
√

+(–k)γn
+k : n≥ }. Sub-

sequently, Sahu et al. [] considered the concept of asymptotically k-strict pseudocontrac-
tive mappings in the intermediate sense, which are not necessarily Lipschitzian.

Definition . Let C be a nonempty subset of a Hilbert space H . A mapping S : C → C is
said to be an asymptotically k-strict pseudocontractive mapping in the intermediate sense
with sequence {γn} if there exist a constant k ∈ [, ) and a sequence {γn} in [,∞) with
limn→∞ γn =  such that

lim sup
n→∞

sup
x,y∈C

(∥∥Snx – Sny
∥∥ – ( + γn)‖x – y‖ – k

∥∥x – Snx –
(
y – Sny

)∥∥) ≤ .

Put cn :=max{, supx,y∈C(‖Snx– Sny‖ – ( + γn)‖x– y‖ – k‖x– Snx– (y– Sny)‖)}. Then
cn ≥  (∀n≥ ), cn →  (n→ ∞) and we get the relation

∥∥Snx – Sny
∥∥ ≤ ( + γn)‖x – y‖

+ k
∥∥x – Snx –

(
y – Sny

)∥∥ + cn, ∀n≥ ,∀x, y ∈ C. (.)

Whenever cn =  for all n ≥  in (.), then S is an asymptotically k-strict pseudocon-
tractive mapping with sequence {γn}. In , Sahu et al. [] derived the weak and strong
convergence of themodifiedMann iteration processes for an asymptotically k-strict pseu-
docontractive mapping in the intermediate sense with sequence {γn}. More precisely, they
first established one weak convergence theorem for the following iterative scheme:

⎧⎨
⎩
x = x ∈ C chosen arbitrarily,

xn+ = ( – αn)xn + αnSnxn, ∀n≥ ,

where  < δ ≤ αn ≤  – k – δ,
∑∞

n= αncn < ∞ and
∑∞

n= γn <∞; and then obtained another
strong convergence theorem for the following iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

yn = ( – αn)xn + αnSnxn,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, ∀n≥ ,

where  < δ ≤ αn ≤  – k, θn = cn + γnn and n = sup{‖xn – z‖ : z ∈ Fix(S)} < ∞.

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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Motivated and inspired by the above results and the method in [], we introduce and
analyze an iterative algorithm by the hybrid iterative method for finding a solution of the
system of generalized equilibrium problems with constraints of several problems: a gener-
alized mixed equilibrium problem, finitely many variational inclusions, and the common
fixed point problem of an asymptotically strict pseudocontractive mapping in the inter-
mediate sense and infinitely many nonexpansive mappings in a real Hilbert space. A weak
convergence theorem for the iterative algorithmwill be established undermild conditions.

2 Preliminaries
Throughout this paper, we assume thatH is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ ·‖, respectively. LetC be a nonempty closed convex subset
ofH . We use the notations xn ⇀ x and xn → x to indicate the weak convergence of {xn} to
x and the strong convergence of {xn} to x, respectively. Moreover, we use ωw(xn) to denote
the weak ω-limit set of {xn}, i.e.,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

Definition . A mapping A : C →H is called
(i) monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η >  such that

〈Ax –Ay,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C;

(iii) ζ -inverse-strongly monotone if there exists a constant ζ >  such that

〈Ax –Ay,x – y〉 ≥ ζ‖Ax –Ay‖, ∀x, y ∈ C.

It is easy to see that the projection PC is -ism. Inverse strongly monotone (also referred
to as co-coercive) operators have been applied widely in solving practical problems in
various fields.

Definition . A differentiable function K :H → R is called:
(i) convex if

K(y) –K(x)≥ 〈
K ′(x), y – x

〉
, ∀x, y ∈H ,

where K ′(x) is the Frechet derivative of K at x;
(ii) strongly convex if there exists a constant σ >  such that

K(y) –K(x) –
〈
K ′(x), y – x

〉 ≥ σ


‖x – y‖, ∀x, y ∈H .

It is easy to see that if K :H → R is a differentiable strongly convex function with con-
stant σ > , then K ′ :H →H is strongly monotone with constant σ > .

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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The metric projection from H onto C is the mapping PC :H → C which assigns to each
point x ∈H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

Some important properties of projections are listed in the following proposition.

Proposition . ([, p.]) For given x ∈H and z ∈ C,
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈H . (This implies that PC is nonexpansive

and monotone.)

By using the technique of [], we can readily obtain the following elementary result
whereMEP(�,ϕ) is the solution set of the mixed equilibrium problem [].

Proposition . (see [, Lemma  and Proposition ]) Let C be a nonempty closed convex
subset of a real Hilbert space H , and let ϕ : C → R be a lower semicontinuous and convex
function. Let � : C ×C → R be a bifunction satisfying conditions (H)-(H). Assume that

(i) K :H → R is strongly convex with constant σ >  and the function x �→ 〈y – x,K ′(x)〉
is weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H and r > , there exists a bounded subset Dx ⊂ C and yx ∈ C such that
for any z ∈ C \Dx,

�(z, yx) + ϕ(yx) – ϕ(z) +

r
〈
K ′(z) –K ′(x), yx – z

〉
< .

Then the following hold:
(a) for each x ∈ H , S(�,ϕ)

r (x) �= ∅;
(b) S(�,ϕ)

r is single-valued;
(c) S(�,ϕ)

r is nonexpansive if K ′ is Lipschitz continuous with constant ν >  and

〈
K ′(x) –K ′(x),u – u

〉 ≤ 〈
K ′(u) –K ′(u),u – u

〉
, ∀(x,x) ∈H ×H ,

where ui = S(�,ϕ)
r (xi) for i = , ;

(d) for all s, t >  and x ∈H ,

〈
K ′(S(�,ϕ)

s x
)
–K ′(S(�,ϕ)

t x
)
,S(�,ϕ)

s x–S(�,ϕ)
t x

〉 ≤ s – t
s

〈
K ′(S(�,ϕ)

s x
)
–K ′(x),S(�,ϕ)

s x–S(�,ϕ)
t x

〉
;

(e) Fix(S(�,ϕ)
r ) =MEP(�,ϕ);

(f ) MEP(�,ϕ) is closed and convex.

Remark . In Proposition ., whenever � : C × C → R is a bifunction satisfying con-
ditions (H)-(H) and K(x) = 

‖x‖, ∀x ∈H , we have, for any x, y ∈H ,

∥∥S(�,ϕ)
r x – S(�,ϕ)

r y
∥∥ ≤ 〈

S(�,ϕ)
r x – S(�,ϕ)

r y,x – y
〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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(S(�,ϕ)
r is firmly nonexpansive) and

∥∥S(�,ϕ)
s x – S(�,ϕ)

t x
∥∥ ≤ |s – t|

s
∥∥S(�,ϕ)

s x – x
∥∥, ∀s, t > ,x ∈ H .

If, in addition, ϕ ≡ , then T (�,ϕ)
r is rewritten as T�

r ; see [, Lemma .] for more details.

We need some facts and tools in a real Hilbert spaceH which are listed as lemmas below.

Lemma . Let X be a real inner product space. Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . ([, p.]) Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(b) ‖λx +μy‖ = λ‖x‖ +μ‖y‖ – λμ‖x – y‖ for all x, y ∈H and λ,μ ∈ [, ] with

λ +μ = ;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈H .

We have the following crucial lemmas concerning theW -mappings defined by (.).

Lemma. (see [, Lemma .]) Let {Tn}∞n= be a sequence of nonexpansive self-mappings
onH such that

⋂∞
n= Fix(Tn) �= ∅, and let {λn} be a sequence in (,b] for some b ∈ (, ).Then

Fix(W ) =
⋂∞

n= Fix(Tn).

Lemma . (see [, Demiclosedness principle]) Let C be a nonempty closed convex sub-
set of a real Hilbert space H . Let T be a nonexpansive self-mapping on C. Then I – T is
demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and
the sequence {(I – T)xn} strongly converges to some y, it follows that (I – T)x = y. Here I is
the identity operator of H .

Lemma . ([, Lemma .]) Let C be a nonempty subset of a Hilbert space H and S : C →
C be an asymptotically k-strict pseudocontractive mapping in the intermediate sense with
sequence {γn}. Then

∥∥Snx – Sny
∥∥ ≤ 

 – k
(
k‖x – y‖ +

√(
 + ( – k)γn

)‖x – y‖ + ( – k)cn
)

for all x, y ∈ C and n≥ .

Lemma . (Demiclosedness principle [, Proposition .]) Let C be a nonempty closed
convex subset of a Hilbert space H and S : C → C be a continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense with sequence {γn}. Then I – S is
demiclosed at zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C and
lim supm→∞ lim supn→∞ ‖xn – Smxn‖ = , then (I – S)x = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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Recall that a Banach space X is said to satisfy the Opial condition [] if for any given
sequence {xn} ⊂ X which converges weakly to an element x ∈ X, the following inequality
holds:

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ X, y �= x.

It is well known in [] that every Hilbert space H satisfies the Opial condition.

Lemma . (see [, Proposition .]) Let C be a nonempty closed convex subset of a real
Hilbert space H , and let {xn} be a sequence in H . Suppose that

‖xn+ – p‖ ≤ ( + λn)‖xn – p‖ + δn, ∀p ∈ C,n≥ ,

where {λn} and {δn} are sequences of nonnegative real numbers such that
∑∞

n= λn < ∞ and∑∞
n= δn < ∞. Then {PCxn} converges strongly in C.

3 Weak convergence theorem
In this section, we will prove weak convergence of another iterative algorithm by the hy-
brid Mann-type viscosity method for finding a solution of the system of generalized equi-
librium problems with constraints of several problems: a generalized mixed equilibrium
problem, finitely many variational inclusions, and the common fixed point problem of an
asymptotically strict pseudocontractive mapping in the intermediate sense and infinitely
many nonexpansive mappings in a real Hilbert space. This iterative algorithm is based
on the extragradient method, viscosity approximation method and Mann-type iterative
method.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let N
be an integer. Let �, �, � be three bifunctions from C × C to R satisfying (H)-(H)
and ϕ : C → R be a lower semicontinuous and convex functional. Let Ri : C → H be a
maximal monotone mapping, and let A,Ak :H → H and Bi : C →H be ζ -inverse strongly
monotone, ζk-inverse strongly monotone, and ηi-inverse strongly monotone, respectively,
where k ∈ {, } and i ∈ {, , . . . ,N}. Let S : C → C be a uniformly continuous asymptoti-
cally k-strict pseudocontractive mapping in the intermediate sense for some  ≤ k <  with
sequence {γn} ⊂ [,∞) such that

∑∞
n= γn < ∞ and {cn} ⊂ [,∞) such that

∑∞
n= cn < ∞.

Let {Tn}∞n= be a sequence of nonexpansive mappings on H and {λn} be a sequence in (,b]
for some b ∈ (, ). Let V be a γ̄ -strongly positive bounded linear operator and f :H → H
be an l-Lipschitzian mapping with γ l < ( + μ)γ̄ . Let Wn be the W-mapping defined by
(.). Assume that 
 :=

⋂∞
n= Fix(Tn)∩GMEP(�,ϕ,A)∩ SGEP(G)∩ ⋂N

i= I(Bi,Ri)∩ Fix(S)
is nonempty, where G is defined as in Proposition .. Let {rn} be a sequence in [, ζ ] and
{αn}, {βn} and {δn} be sequences in (, ) such that

∑∞
n= αn <∞ and  < k + ε ≤ δn ≤ d < .

Pick any x ∈H and let {xn} be a sequence generated by the following algorithm:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = S(�,ϕ)
rn (I – rnA)xn,

zn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,

kn = δnzn + ( – δn)Snzn,

xn+ = αn(u + γ f (xn)) + βnkn + [( – βn)I – αn(I +μV )]WnGkn, ∀n≥ .

(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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Assume that the following conditions are satisfied:
(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is Lipschitz

continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is weakly
upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

�(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ rn ≤ lim supn→∞ rn < ζ ;
(iv) νk ∈ (, ζk), k ∈ {, } and {λi,n} ⊂ [ai,bi] ⊂ (, ηi), ∀i ∈ {, , . . . ,N}.

If S(�,ϕ)
r is firmly nonexpansive, then {xn} converges weakly to w = limn→∞ P
xn.

Proof First, let us show that limn→∞ ‖xn – p‖ exists for any p ∈ 
. Put

�i
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

for all i ∈ {, , . . . ,N}, n ≥ , and �
n = I , where I is the identity mapping on H . Then we

get zn = �N
n un. Take p ∈ 
 arbitrarily. Repeating the same arguments as in the proof of

[, Theorem .], we can obtain that

∥∥( – βn)I – αn(I +μV )
∥∥ ≤  – βn – αn – αnμγ̄ , (.)

‖un – p‖ ≤ ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖ ≤ ‖xn – p‖, (.)

‖zn – p‖ ≤ ‖un – p‖, (.)

‖Gkn – p‖ ≤ ∥∥T�
ν (I – νA)kn – T�

ν (I – νA)p
∥∥

+ ν(ν – ζ)
∥∥AT�

ν (I – νA)kn –AT�
ν (I – νA)p

∥∥

≤ ∥∥T�
ν (I – νA)kn – T�

ν (I – νA)p
∥∥

≤ ‖kn – p‖ + ν(ν – ζ)‖Akn –Ap‖

≤ ‖kn – p‖, (.)
∥∥�i

nun – p
∥∥ ≤ ‖xn – p‖ + λi,n(λi,n – ηi)

∥∥Bi�
i–
n un – Bip

∥∥, i ∈ {, , . . . ,N}, (.)
∥∥�i

nun – p
∥∥ ≤ ‖xn – p‖ – ∥∥�i–

n un –�i
nun

∥∥

+ λi,n
∥∥�i–

n un –�i
nun

∥∥∥∥Bi�
i–
n un – Bip

∥∥, i ∈ {, , . . . ,N}. (.)

We observe that

‖kn – p‖ = ∥∥δn(zn – p) + ( – δn)
(
Snzn – p

)∥∥

= δn‖zn – p‖ + ( – δn)
∥∥Snzn – p

∥∥ – δn( – δn)
∥∥zn – Snzn

∥∥

≤ δn‖zn – p‖ + ( – δn)
[
( + γn)‖zn – p‖ + k

∥∥zn – Snzn
∥∥ + cn

]
– δn( – δn)

∥∥zn – Snzn
∥∥

=
[
 + γn( – δn)

]‖zn – p‖ + ( – δn)(k – δn)
∥∥zn – Snzn

∥∥ + ( – δn)cn

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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≤ ( + γn)‖zn – p‖ + ( – δn)(k – δn)
∥∥zn – Snzn

∥∥ + cn

≤ ( + γn)‖zn – p‖ + cn. (.)

Set V̄ = I + μV . Then by Lemma . we deduce from (.)-(.) and (.) and  ≤ γ l ≤
( +μ)γ̄ that

‖xn+ – p‖

=
∥∥αnγ

(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(WnGkn – p)

+ αn
(
u + (γ f – V̄ )p

)∥∥

≤ ∥∥αnγ
(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(WnGkn – p)

∥∥

+ αn
〈
u + (γ f – V̄ )p,xn+ – p

〉
≤ [

αnγ
∥∥f (xn) – f (p)

∥∥ + βn‖kn – p‖ + ∥∥( – βn)I – αnV̄
∥∥‖WnGkn – p‖]

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ [

αnγ l‖xn – p‖ + βn‖kn – p‖ + ( – βn – αn – αnμγ̄ )‖kn – p‖]
+ αn

(∥∥u + (γ f – V̄ )p
∥∥ + ‖xn+ – p‖)

≤ [
αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖kn – p‖]

+ αn
(∥∥u + (γ f – V̄ )p

∥∥ + ‖xn+ – p‖)
=

[
αn( +μ)γ̄ ‖xn – p‖ + (

 – αn( +μ)γ̄
)‖kn – p‖]

+ αn
(∥∥u + (γ f – V̄ )p

∥∥ + ‖xn+ – p‖)
≤ αn( +μ)γ̄ ‖xn – p‖ + (

 – αn( +μ)γ̄
)‖kn – p‖

+ αn
(∥∥u + (γ f – V̄ )p

∥∥ + ‖xn+ – p‖)
≤ αn( +μ)γ̄ ‖xn – p‖ + (

 – αn( +μ)γ̄
)(
( + γn)‖zn – p‖ + cn

)
+ αn

(∥∥u + (γ f – V̄ )p
∥∥ + ‖xn+ – p‖)

≤ αn( +μ)γ̄ ‖xn – p‖ + (
 – αn( +μ)γ̄

)(
( + γn)‖xn – p‖ + cn

)
+ αn

(∥∥u + (γ f – V̄ )p
∥∥ + ‖xn+ – p‖)

= ‖xn – p‖ + (
 – αn( +μ)γ̄

)
γn‖xn – p‖ + (

 – αn( +μ)γ̄
)
cn

+ αn
(∥∥u + (γ f – V̄ )p

∥∥ + ‖xn+ – p‖)
≤ ( + γn)‖xn – p‖ + cn + αn

(∥∥u + (γ f – V̄ )p
∥∥ + ‖xn+ – p‖),

which hence yields

‖xn+ – p‖ ≤  + γn

 – αn
‖xn – p‖ + αn

 – αn

∥∥u + (γ f – V̄ )p
∥∥ +


 – αn

cn

=
(
 +

αn + γn

 – αn

)
‖xn – p‖ + αn

 – αn

∥∥u + (γ f – V̄ )p
∥∥ +


 – αn

cn

≤ [
 + (αn + γn)�

]‖xn – p‖ + αn�
∥∥u + (γ f – V̄ )p

∥∥ + �cn, (.)
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where � = 
–supn≥ αn

< ∞ (due to {αn} ⊂ (, ) and limn→∞ αn = ). Since
∑∞

n= αn < ∞,∑∞
n= γn < ∞ and

∑∞
n= cn < ∞, by Lemma . we have that limn→∞ ‖xn – p‖ exists. Thus

{xn} is bounded and so are the sequences {un}, {zn} and {kn}.
Also, utilizing Lemmas . and .(b), we obtain from (.)-(.) and (.) that

‖xn+ – p‖

=
∥∥αn

(
u + γ f (xn) – V̄WnGkn

)
+ βn(kn – p) + ( – βn)(WnGkn – p)

∥∥

≤ ∥∥βn(kn – p) + ( – βn)(WnGkn – p)
∥∥ + αn

〈
u + γ f (xn) – V̄WnGkn,xn+ – p

〉
= βn‖kn – p‖ + ( – βn)‖WnGkn – p‖ – βn( – βn)‖kn –WnGkn‖

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ βn‖kn – p‖ + ( – βn)‖kn – p‖ – βn( – βn)‖kn –WnGkn‖

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
= ‖kn – p‖ – βn( – βn)‖kn –WnGkn‖ + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖

≤ ( + γn)‖zn – p‖ + cn – βn( – βn)‖kn –WnGkn‖

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ( + γn)‖xn – p‖ + cn – βn( – βn)‖kn –WnGkn‖

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖, (.)

which leads to

βn( – βn)‖kn –WnGkn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖.

Since limn→∞ αn = , limn→∞ γn =  and limn→∞ cn = , it follows from the existence of
limn→∞ ‖xn – p‖ and condition (iii) that

lim
n→∞‖kn –WnGkn‖ = . (.)

Note that

xn+ – kn = αn
(
u + γ f (xn) – V̄WnGkn

)
+ ( – βn)(WnGkn – kn),

which yields

‖xn+ – kn‖ ≤ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥ + ( – βn)‖WnGkn – kn‖
≤ αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥ + ‖WnGkn – kn‖.

So, from (.) and limn→∞ αn = , we get

lim
n→∞‖xn+ – kn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/164
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In the meantime, we conclude from (.), (.), (.) and (.) that

‖xn+ – p‖

≤ ‖kn – p‖ – βn( – βn)‖kn –WnGkn‖ + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖kn – p‖ + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖

≤ ( + γn)‖zn – p‖ + ( – δn)(k – δn)
∥∥zn – Snzn

∥∥ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ( + γn)‖xn – p‖ + ( – δn)(k – δn)

∥∥zn – Snzn
∥∥ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖,

which together with  < k + ε ≤ δn ≤ d <  implies that

( – d)ε
∥∥zn – Snzn

∥∥

≤ ( – δn)(δn – k)
∥∥zn – Snzn

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖.

Consequently, from limn→∞ αn = , limn→∞ γn = , limn→∞ cn =  and the existence of
limn→∞ ‖xn – p‖, we get

lim
n→∞

∥∥zn – Snzn
∥∥ = . (.)

Since kn – zn = ( – δn)(Snzn – zn), from (.) we have

lim
n→∞‖kn – zn‖ = . (.)

Combining (.), (.), (.) and (.), we have

‖xn+ – p‖

≤ ‖kn – p‖ + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖zn – p‖ + γn‖zn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖

≤ ‖un – p‖ + γn‖zn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖,

which implies

rn(ζ – rn)‖Axn –Ap‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖.
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Since limn→∞ αn = , limn→∞ γn =  and limn→∞ cn = , from condition (iii) and the exis-
tence of limn→∞ ‖xn – p‖ we get

lim
n→∞‖Axn –Ap‖ = . (.)

Repeating the same arguments as those of (.) in the proof of [, Theorem .], we can
get

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖ + rn‖Axn –Ap‖‖xn – un‖. (.)

Combining (.), (.) and (.), we have

‖xn+ – p‖ ≤ ‖kn – p‖ + αn‖u + γ f (xn) – V̄WnGkn‖‖xn+ – p‖
≤ ‖zn – p‖ + γn‖zn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖

≤ ‖un – p‖ + γn‖xn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖xn – p‖ – ‖xn – un‖ + rn‖Axn –Ap‖‖xn – un‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖,

which implies

‖xn – un‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + rn‖Axn –Ap‖‖xn – un‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖.

Since limn→∞ αn = , limn→∞ γn =  and limn→∞ cn = , from (.) and the existence of
limn→∞ ‖xn – p‖ we obtain

lim
n→∞‖xn – un‖ = . (.)

Combining (.), (.) and (.), we have

‖xn+ – p‖ ≤ ‖kn – p‖ + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖zn – p‖ + γn‖zn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖

≤ ∥∥�i
nun – p

∥∥ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖xn – p‖ + λi,n(λi,n – ηi)

∥∥Bi�
i–
n un – Bip

∥∥

+ γn‖xn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖,

where i ∈ {, , . . . ,N}, which implies

λi,n(ηi – λi,n)
∥∥Bi�

i–
n un – Bip

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖.
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Since limn→∞ αn = , limn→∞ γn =  and limn→∞ cn = , from {λi,n} ⊂ [ai,bi] ⊂ (, ηi),
i ∈ {, , . . . ,N} and the existence of limn→∞ ‖xn – p‖ we obtain

lim
n→∞

∥∥Bi�
i–
n un – Bip

∥∥ = , i ∈ {, , . . . ,N}. (.)

Combining (.), (.) and (.), we get

‖xn+ – p‖

≤ ‖kn – p‖ + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖zn – p‖ + γn‖zn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖

≤ ∥∥�i
nun – p

∥∥ + γn‖xn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄WnGkn

∥∥‖xn+ – p‖
≤ ‖xn – p‖ – ∥∥�i–

n un –�i
nun

∥∥ + λi,n
∥∥�i–

n un –�i
nun

∥∥∥∥Bi�
i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖,

which implies

∥∥�i–
n un –�i

nun
∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + λi,n
∥∥�i–

n un –�i
nun

∥∥∥∥Bi�
i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄WnGkn
∥∥‖xn+ – p‖.

Since limn→∞ αn = , limn→∞ γn =  and limn→∞ cn = , from (.) and the existence of
limn→∞ ‖xn – p‖ we obtain

lim
n→∞

∥∥�i–
n un –�i

nun
∥∥ = , i ∈ {, , . . . ,N}. (.)

By (.), we have

‖un – zn‖ =
∥∥�

nun –�N
n un

∥∥
≤ ∥∥�

nun –�
nun

∥∥ +
∥∥�

nun –�
nun

∥∥ + · · · + ∥∥�N–
n un –�N

n un
∥∥

→  as n→ ∞. (.)

From (.) and (.), we have

‖xn – zn‖ ≤ ‖xn – un‖ + ‖un – zn‖
→  as n→ ∞. (.)

By (.) and (.), we obtain

‖kn – xn‖ ≤ ‖kn – zn‖ + ‖zn – xn‖
→  as n→ ∞, (.)
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which together with (.) and (.) implies that

‖xn+ – xn‖ ≤ ‖xn+ – kn‖ + ‖kn – xn‖
→  as n→ ∞. (.)

On the other hand, we observe that

‖zn+ – zn‖ ≤ ‖zn+ – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn‖.

By (.) and (.), we have

lim
n→∞‖zn+ – zn‖ = . (.)

We note that

‖zn – Szn‖ ≤ ‖zn – zn+‖ +
∥∥zn+ – Sn+zn+

∥∥ +
∥∥Sn+zn+ – Sn+zn

∥∥ +
∥∥Sn+zn – Szn

∥∥.
From (.), (.), Lemma . and the uniform continuity of S, we obtain

lim
n→∞‖zn – Szn‖ = . (.)

On the other hand, for simplicity, we write p̃ = T�
ν (I – νA)p, vn = T�

ν (I – νA)kn and
ṽn =Gkn = T�

ν (I – νA)vn for all n≥ . Then

p =Gp = T�
ν (I – νA)p̃ = T�

ν (I – νA)T�
ν (I – νA)p.

We now show that limn→∞ ‖Gkn – kn‖ = , i.e., limn→∞ ‖ṽn – kn‖ = . As a matter of
fact, utilizing the arguments similar to those of (.) in the proof of [, Theorem .],
we deduce from (.)-(.) and (.) that for p ∈ 
,

‖xn+ – p‖

≤ ∥∥αnγ
(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(WnGkn – p)

∥∥

+ αn
〈
u + (γ f – V̄ )p,xn+ – p

〉
≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖ṽn – p‖

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖yn – p‖
+

(
 – βn – αn( +μ)γ̄

)
× [

ν(ν – ζ)‖Akn –Ap‖ + ν(ν – ζ)‖Avn –Ap̃‖
]
, (.)

which immediately leads to

(
 – βn – αn( +μ)γ̄

)[
ν(ζ – ν)‖Akn –Ap‖ + ν(ζ – ν)‖Avn –Ap̃‖

]
≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn + αn

∥∥u + (γ f – V̄ )p
∥∥‖xn+ – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + γn‖xn – p‖ + cn

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖.
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Since limn→∞ αn = , limn→∞ γn = , limn→∞ cn =  and lim supn→∞ βn < , we conclude
from (.) and condition (iv) that

lim
n→∞‖Akn –Ap‖ =  and lim

n→∞‖Avn –Ap̃‖ = . (.)

Utilizing the arguments similar to those of (.) and (.) in the proof of [, Theo-
rem .], we can obtain

‖vn – p̃‖ ≤ ‖kn – p‖ – ∥∥(kn – vn) – (p – p̃)
∥∥

+ ν
〈
(kn – vn) – (p – p̃),Akn –Ap

〉
– ν

‖Akn –Ap‖, (.)

and

‖ṽn – p‖ ≤ ‖kn – p‖ – ∥∥(vn – ṽn) + (p – p̃)
∥∥

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥. (.)

Consequently, from (.), (.), (.), (.) and (.) it follows that

‖xn+ – p‖

≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (
 – βn – αn( +μ)γ̄

)‖ṽn – p‖

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖vn – p̃‖

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖

+
(
 – βn – αn( +μ)γ̄

)
× [‖kn – p‖ – ∥∥(kn – vn) – (p – p̃)

∥∥ + ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖
]

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + (

 – αn( +μ)γ̄
)‖kn – p‖

–
(
 – βn – αn( +μ)γ̄

)∥∥(kn – vn) – (p – p̃)
∥∥

+ ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖
+ αn

∥∥u + (γ f – V̄ )p
∥∥‖xn+ – p‖

≤ αn( +μ)γ̄ ‖xn – p‖ + (
 – αn( +μ)γ̄

)(
( + γn)‖zn – p‖ + cn

)
–

(
 – βn – αn( +μ)γ̄

)∥∥(kn – vn) – (p – p̃)
∥∥

+ ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖
+ αn

∥∥u + (γ f – V̄ )p
∥∥‖xn+ – p‖

≤ αn( +μ)γ̄ ‖xn – p‖ + (
 – αn( +μ)γ̄

)(
( + γn)‖xn – p‖ + cn

)
–

(
 – βn – αn( +μ)γ̄

)∥∥(kn – vn) – (p – p̃)
∥∥
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+ ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖
+ αn

∥∥u + (γ f – V̄ )p
∥∥‖xn+ – p‖

≤ ( + γn)‖xn – p‖ + cn –
(
 – βn – αn( +μ)γ̄

)∥∥(kn – vn) – (p – p̃)
∥∥

+ ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖,

which hence leads to

(
 – βn – αn( +μ)γ̄

)∥∥(kn – vn) – (p – p̃)
∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ ‖xn – xn+‖

(‖xn – p‖ + ‖xn+ – p‖) + γn‖xn – p‖ + cn

+ ν
∥∥(kn – vn) – (p – p̃)

∥∥‖Akn –Ap‖ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖.

Since limn→∞ αn = , limn→∞ γn = , limn→∞ cn =  and lim supn→∞ βn < , from (.)
and (.) we have

lim
n→∞

∥∥(kn – vn) – (p – p̃)
∥∥ = . (.)

Furthermore, from (.), (.), (.), (.) and (.) it follows that

‖xn+ – p‖

≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (
 – βn – αn( +μ)γ̄

)‖ṽn – p‖

+ αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖

+
(
 – βn – αn( +μ)γ̄

)
× [‖kn – p‖ – ∥∥(vn – ṽn) + (p – p̃)

∥∥ + ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥]
+ αn

∥∥u + (γ f – V̄ )p
∥∥‖xn+ – p‖

≤ αn( +μ)γ̄ ‖xn – p‖ + (
 – αn( +μ)γ̄

)‖kn – p‖

–
(
 – βn – αn( +μ)γ̄

)∥∥(vn – ṽn) + (p – p̃)
∥∥

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + (

 – αn( +μ)γ̄
)(
( + γn)‖zn – p‖ + cn

)
–

(
 – βn – αn( +μ)γ̄

)∥∥(vn – ṽn) + (p – p̃)
∥∥

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + (

 – αn( +μ)γ̄
)(
( + γn)‖xn – p‖ + cn

)
–

(
 – βn – αn( +μ)γ̄

)∥∥(vn – ṽn) + (p – p̃)
∥∥

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
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≤ ( + γn)‖xn – p‖ + cn –
(
 – βn – αn( +μ)γ̄

)∥∥(vn – ṽn) + (p – p̃)
∥∥

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖,

which hence yields

(
 – βn – αn( +μ)γ̄

)∥∥(vn – ṽn) + (p – p̃)
∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖
≤ ‖xn – xn+‖

(‖xn – p‖ + ‖xn+ – p‖) + γn‖xn – p‖ + cn

+ ν‖Avn –Ap̃‖
∥∥(vn – ṽn) + (p – p̃)

∥∥ + αn
∥∥u + (γ f – V̄ )p

∥∥‖xn+ – p‖.

Since limn→∞ αn = , limn→∞ γn = , limn→∞ cn =  and lim supn→∞ βn < , from (.)
and (.) we have

lim
n→∞

∥∥(vn – ṽn) + (p – p̃)
∥∥ = . (.)

Note that

‖kn – ṽn‖ ≤ ∥∥(kn – vn) – (p – p̃)
∥∥ +

∥∥(vn – ṽn) + (p – p̃)
∥∥.

Hence from (.) and (.) we get

lim
n→∞‖kn – ṽn‖ = lim

n→∞‖kn –Gkn‖ = , (.)

which together with (.) and (.) implies that

‖kn –Wnkn‖ ≤ ‖kn –WnGkn‖ + ‖WnGkn –Wnkn‖
≤ ‖kn –WnGkn‖ + ‖Gkn – kn‖
→  as n→ ∞. (.)

Also, observe that

‖kn –Wkn‖ ≤ ‖kn –Wnkn‖ + ‖Wnkn –Wkn‖.

From (.), [, Remark .] and the boundedness of {kn} we immediately obtain

lim
n→∞‖kn –Wkn‖ = . (.)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} which converges weakly
to w. From (.) and (.), we have that zni ⇀ w and kni ⇀ w. From (.), (.), (.),
we have that uni ⇀ w, �m

niuni ⇀ w, zni ⇀ w and kni ⇀ w, where m ∈ {, , . . . ,N}. Since S
is uniformly continuous, by (.) we get limn→∞ ‖zn – Smzn‖ =  for any m ≥ . Hence
from Lemma . we obtain w ∈ Fix(S). In the meantime, utilizing Lemma ., we deduce
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from kni ⇀ w, (.) and (.) that w ∈ SGEP(G) and w ∈ Fix(W ) =
⋂∞

n= Fix(Tn) (due
to Lemma .). Utilizing similar arguments to those in the proof of [, Theorem .],
we can derive w ∈ GMEP(�,ϕ,A) ∩ ⋂N

i= I(Bi,Ri). Consequently, w ∈ 
. This shows that
ωw(xn) ⊂ 
.
Next let us show that ωw(xn) is a single-point set. As a matter of fact, let {xnj} be another

subsequence of {xn} such that xnj ⇀ w′. Then we get w′ ∈ 
. If w �= w′, from the Opial
condition, we have

lim
n→∞‖xn –w‖ = lim

i→∞‖xni –w‖ < lim
i→∞

∥∥xni –w′∥∥
= lim

n→∞‖xn –w′‖ = lim
j→∞

∥∥xnj –w′∥∥
< lim

j→∞‖xnj –w‖ = lim
n→∞‖xn –w‖.

This attains a contradiction. So we have w = w′. Put wn = P
xn. Since w ∈ 
, we have
〈xn –wn,wn –w〉 ≥ . By Lemma ., we have that {wn} converges strongly to some w̃ ∈ 
.
Since {xn} converges weakly to w, we have

〈w – w̃, w̃ –w〉 ≥ .

Therefore we obtain w = w̃ = limn→∞ P
xn. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let �,
�, � be three bifunctions from C×C to R satisfying (H)-(H) and ϕ : C → R be a lower
semicontinuous and convex functional. Let Ri : C → H be a maximal monotone mapping,
and let A,Ak :H → H and Bi : C → H be ζ -inverse strongly monotone, ζk-inverse strongly
monotone and ηi-inverse strongly monotone, respectively, for k = ,  and i = , . Let S :
C → C be a uniformly continuous asymptotically k-strict pseudocontractive mapping in
the intermediate sense for some  ≤ k <  with sequence {γn} ⊂ [,∞) such that

∑∞
n= γn <

∞ and {cn} ⊂ [,∞) such that
∑∞

n= cn < ∞. Let {Tn}∞n= be a sequence of nonexpansive
mappings on H and {λn} be a sequence in (,b] for some b ∈ (, ). Let V be a γ̄ -strongly
positive bounded linear operator and f : H → H be an l-Lipschitzian mapping with γ l <
( + μ)γ̄ . Let Wn be the W-mapping defined by (.). Assume that 
 :=

⋂∞
n= Fix(Tn) ∩

GMEP(�,ϕ,A) ∩ SGEP(G) ∩ I(B,R) ∩ I(B,R) ∩ Fix(S) is nonempty, where G is defined
as in Proposition .. Let {rn} be a sequence in [, ζ ] and {αn}, {βn} and {δn} be sequences
in (, ) such that

∑∞
n= αn < ∞ and  < k + ε ≤ δn ≤ d < . Pick any x ∈ H and let {xn} be

a sequence generated by the following algorithm:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = S(�,ϕ)
rn (I – rnA)xn,

zn = JR,λ,n (I – λ,nB)JR,λ,n (I – λ,nB)un,

kn = δnzn + ( – δn)Snzn,

xn+ = αn(u + γ f (xn)) + βnkn + [( – βn)I – αn(I +μV )]WnGkn, ∀n≥ .

(.)

Assume that the following conditions are satisfied:
(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is Lipschitz

continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is weakly
upper semicontinuous for each y ∈H ;
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(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

�(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ rn ≤ lim supn→∞ rn < ζ ;
(iv) νk ∈ (, ζk) and {λi,n} ⊂ [ai,bi] ⊂ (, ηi) for k = ,  and i = , .

If S(�,ϕ)
r is firmly nonexpansive, then {xn} converges weakly to w = limn→∞ P
xn.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
�, �, � be three bifunctions from C × C to R satisfying (H)-(H) and ϕ : C → R be
a lower semicontinuous and convex functional. Let R : C → H be a maximal monotone
mapping, and let A,Ak :H →H and B : C →H be ζ -inverse strongly monotone, ζk-inverse
strongly monotone and η-inverse strongly monotone, respectively, for k = , . Let S : C → C
be a uniformly continuous asymptotically k-strict pseudocontractive mapping in the in-
termediate sense for some  ≤ k <  with sequence {γn} ⊂ [,∞) such that

∑∞
n= γn < ∞

and {cn} ⊂ [,∞) such that
∑∞

n= cn < ∞. Let V be a γ̄ -strongly positive bounded linear
operator and f : H → H be an l-Lipschitzian mapping with γ l < ( + μ)γ̄ . Assume that

 := GMEP(�,ϕ,A) ∩ SGEP(G) ∩ I(B,R) ∩ Fix(S) is nonempty, where G is defined as in
Proposition .. Let {rn} be a sequence in [, ζ ] and {αn}, {βn} and {δn} be sequences in
(, ) such that

∑∞
n= αn < ∞ and  < k + ε ≤ δn ≤ d < . Pick any x ∈ H and let {xn} be a

sequence generated by the following algorithm:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un = S(�,ϕ)
rn (I – rnA)xn,

zn = JR,ρn (I – ρnB)un,

kn = δnzn + ( – δn)Snzn,

xn+ = αn(u + γ f (xn)) + βnkn + [( – βn)I – αn(I +μV )]Gkn, ∀n≥ .

(.)

Assume that the following conditions are satisfied:
(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is Lipschitz

continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is weakly
upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

�(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn <  and  < lim infn→∞ rn ≤ lim supn→∞ rn < ζ ;
(iv) νk ∈ (, ζk) and {ρn} ⊂ [a,b]⊂ (, η) for k = , .

If S(�,ϕ)
r is firmly nonexpansive, then {xn} converges weakly to w = limn→∞ P
xn.
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