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1 Introduction
Many important real world problems have reformulations which require finding zero
points of some nonlinear operators, for instance, evolution equations, complementarity
problems,mini-max problems, variational inequalities and optimization problems; see [–
] and the references therein. It is well known that minimizing a convex function f can
be reduced to finding zero points of the subdifferential mapping ∂f . Forward-backward
splitting algorithms were proposed by Lions and Mercier [], by Passty [], and, in a
dual form for convex programming, by Han and Lou []. The algorithms, which pro-
vide a range of approaches to solving large-scale optimization problems and variational
inequalities, have recently received much attention due to the fact that many nonlinear
problems arising in applied areas such as image recovery, signal processing, and machine
learning are mathematically modeled as a nonlinear operator equation, and this operator
is decomposed as the sum of two nonlinear operators. This paper concerns a forward-
backward splitting algorithm with computational errors designed to find zeros of the sum
of two accretive operators A and B.
The paper is organized in the following way. In Section , we present the preliminaries

that are needed in our work. In Section , we present a splitting algorithm for finding zeros
of the sum of two accretive operators A and B. Convergence analysis of the algorithms is
investigated. In Section , applications of our main results are provided.

2 Preliminaries
Let E be a real Banach space with the dual E∗. Given a continuous strictly increasing
function ϕ : R+ → R+, where R+ denotes the set of nonnegative real numbers, such that
ϕ() =  and limr→∞ ϕ(r) = ∞, we associate with it a (possibly multivalued) generalized

© 2014 Qin et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
mailto:wl64mail@aliyun.com
http://creativecommons.org/licenses/by/2.0


Qin et al. Fixed Point Theory and Applications 2014, 2014:166 Page 2 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/166

duality map Jϕ : E → E∗ , defined as Jϕ(x) = {x∗ ∈ E∗ : x∗(x) = ‖x‖ϕ(‖x‖),‖x∗‖ = ϕ(‖x‖)},
∀x ∈ E. In this paper, we use the generalized duality map associated with the gauge func-
tion ϕ(t) = tq– for q > . Let ρE : [,∞) → [,∞) be the modulus of smoothness of E
by ρE(t) = sup{ ‖x+y‖–‖x–y‖

 – ,x ∈ UE ,‖y‖ ≤ t}. A Banach space E is said to be uniformly
smooth if ρE(t)

t →  as t → . Let q > . E is said to be q-uniformly smooth if there exists
a fixed constant c >  such that ρE(t)≤ ctq. The modulus of convexity of E is the function
δE(ε) : (, ]→ [, ] defined by δE(ε) = inf{– ‖x+t‖

 : ‖x‖ = ‖y‖ = ,‖x– y‖ ≥ ε}. Recall that
E is said to be uniformly convex if δE(ε) >  for any ε ∈ (, ]. Let E be a smooth Banach
space, and let C be a nonempty subset of E. Let ProjC : E → C be a retraction and J be
the normalized duality mapping on E. Then the following are equivalent []: () ProjC is
sunny and nonexpansive; () 〈x – ProjC x,J(y – ProjC x)〉 ≤ , ∀x ∈ E, y ∈ C.
Let I denote the identity operator on E. An operator A ⊂ E × E with domain D(A) =

{z ∈ E : Az = ∅} and range R(A) =
⋃{Az : z ∈ D(A)} is said to be accretive iff, for t >  and

x, y ∈ D(A), ‖x – y‖ ≤ ‖x – y + t(u – v)‖, ∀u ∈ Ax, v ∈ Ay. It follows from Kato [] that A
is accretive iff, for x, y ∈ D(A), there exists jq(x – x) such that 〈u – v, jq(x – y)〉 ≥ . An
accretive operator A is said to be m-accretive iff R(I + rA) = E for all r > . In this paper,
we use A–() to denote the set of zeros of A. For an accretive operator A, we can define a
nonexpansive single-valued mapping Jr : R(I + rA) →D(A) by Jr = (I + rA)– for each r > ,
which is called the resolvent of A. Recall that a single-valued operator A : C → E is said to
be α-inverse strongly accretive if there exists a constant α >  and some jq(x–y) ∈ Jq(x–y)
such that 〈Ax –Ay, jq(x – y)〉 ≥ α‖Ax –Ay‖q, ∀x, y ∈ C.
Let T : C → C be a mapping. Recall that T is said to be κ-contractive iff there exists a

constant κ ∈ (, ) such that ‖Tx–Ty‖ ≤ κ‖x, y‖, ∀x, y ∈ C. T is said to be nonexpansive iff
κ = . T is said to be κ-strictly pseudocontractive iff there exists a constant κ ∈ (, ) such
that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – κ
∥∥(x – Tx) – (y – Ty)

∥∥q, ∀x, y ∈ C

for some jq(x – y) ∈ Jq(x – y). T is said to be pseudocontractive iff 〈Tx – Ty, jq(x – y)〉 ≤
‖x – y‖q, ∀x, y ∈ C for some jq(x – y) ∈ Jq(x – y).
In order to obtain our main results, we also need the following lemmas.

Lemma . [] Let E be a real q-uniformly smooth Banach space. Then the following
inequality holds: ‖x+y‖q ≤ ‖x‖q +q〈y,Jq(x+y)〉 and ‖x+y‖q ≤ ‖x‖q +q〈y,Jq(x)〉+Kq‖y‖q,
∀x, y ∈ E, where Kq is some fixed positive constant.

Lemma . [] Let E be a real Banach space, and let C be a nonempty closed and convex
subset of E. Let A : C → E be a single-valued operator, and let B : E → E be an m-accretive
operator. Then F(Ja(I – aA)) = (A + B)–(), where Ja(I – aA) is the resolvent of B for a > .

Lemma. [] Let E be a real Banach space, and A be anm-accretive operator. For λ > ,
μ > , and x ∈ E,we have Jλx = Jμ(μ

λ
x+(– μ

λ
)Jλx),where Jλ = (I +λA)– and Jμ = (I +μA)–.

Lemma . [] Let {an} be a sequence of nonnegative real numbers such that an+ ≤ ( –
tn)an + bn + cn, where {cn} is a sequence of nonnegative real numbers, {tn} ⊂ (, ) and {bn}
is a number sequence. Assume that

∑∞
n= tn = ∞, lim supn→∞

bn
tn ≤ , and

∑∞
n= cn < ∞.

Then limn→∞ an = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/166


Qin et al. Fixed Point Theory and Applications 2014, 2014:166 Page 3 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/166

Lemma . [] Let q > . Then the following inequality holds: ab ≤ aq
q + q–

q b
q

q– , for ar-
bitrary positive real numbers a and b.

Lemma . [] Let C be a nonempty closed convex subset of a real uniformly smooth
Banach space E. Let f : C → C be a contractive mapping, and let T : C → C be a non-
expansive mapping. For each t ∈ (, ), let xt be the unique solution of the equation x =
tf (x) + ( – t)Tx. Then {xt} converges strongly to a fixed point x̄ =QF(T)f (x̄).

3 Main results
Theorem . Let E be a real q-uniformly smooth Banach space with the constant Kq. Let
B : E → E be an m-accretive operator such that D(B) is convex. Let A : D(B) → E be an
α-inverse strongly accretive operator. Assume that (A + B)–() = ∅. Let f : D(B) → D(B)
be a fixed κ-contraction. Let {rn}, {αn}, {βn}, and {γn} be positive real number sequences,
where {αn}, {βn}, and {γn} are in (, ). Let {xn} be a sequence generated in the following
iterative process:

x ∈ C, xn+ = αnf (xn) + βnJrn (xn – rnAxn + en) + γnfn, ∀n≥ ,

where Jrn = (I + rnB)–, {en} is a sequence in E, and {fn} is a bounded sequence in D(B).
Assume that the sequences {αn}, {βn}, {γn}, {en}, and {rn} satisfy the following restrictions:
() αn + βn + γn = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()
∑∞

n= |βn – βn–| < ∞;
() lim infn→∞ rn > , rn ≤ ( qαKq

)


q– ,
∑∞

n= |rn – rn–| < ∞;
()

∑∞
n= ‖en‖ < ∞,

∑∞
n= γn < ∞.

Then the sequence {xn} converges strongly to x = Proj(A+B)–() f (x), where Proj(A+B)–() is the
unique sunny nonexpansive retraction of C onto (A + B)–().

Proof First, we show that {xn} is bounded. In view of Lemma ., we find that

∥∥(I – rnA)x – (I – rnA)y
∥∥q

≤ ‖x – y‖q – qrn
〈
Ax –Ay,Jq(x – y)

〉
+Kqrqn‖Ax –Ay‖q

≤ ‖x – y‖q – qrnα‖Ax –Ay‖q +Kqrqn‖Ax –Ay‖q

= ‖x – y‖q – (
αq –Kqrq–n

)
rn‖Ax –Ay‖q.

From restriction (), we find that I – rnA is nonexpansive. Fixing p ∈ (A + B)–(), we find
from Lemma . that p = Jrn (xn – rnAxn)p. It follows from restriction () that

‖xn+ – p‖
≤ αn

∥∥f (xn) – p
∥∥ + βn

∥∥Jrn (xn – rnAxn + en) – p
∥∥ + γn‖fn – p‖

≤ αnκ‖xn – p‖ + αn
∥∥f (p) – p

∥∥
+ βn

∥∥(xn – rnAxn + en) – (I – rnA)p
∥∥ + γn‖fn – p‖

≤ (
 – αn( – κ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ‖en‖ + γn‖fn – p‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
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≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – κ

}
+ ‖en‖ + γn‖fn – p‖

≤ max

{
‖xn– – p‖, ‖f (p) – p‖

 – κ

}
+ ‖en–‖ + ‖en‖

+ γn–‖fn– – p‖ + γn‖fn – p‖
...

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – κ

}
+

n∑
i=

‖ei‖ +
n∑
i=

γiM

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – κ

}
+

∞∑
i=

‖ei‖ +
∞∑
i=

γiM < ∞,

where M = supn≥{‖fn – p‖}. This shows that {xn} is bounded. Set yn = (I – rnA)xn + en. It
follows that

‖yn– – yn‖ ≤ ‖xn – xn–‖ + |rn – rn–|‖Axn–‖ + ‖en‖ + ‖en–‖.

Using Lemma ., we find that

‖Jrn–yn– – Jrnyn‖

=
∥∥∥∥Jrn–

(
rn–
rn

yn +
(
 –

rn–
rn

)
Jrnyn

)
– Jrn–yn–

∥∥∥∥
≤

∥∥∥∥ rn–rn
(yn – yn–) +

(
 –

rn–
rn

)
(Jrnyn – yn–)

∥∥∥∥
≤ ‖yn – yn–‖ + |rn – rn–|

rn
‖Jrnyn – yn‖

≤ ‖xn – xn–‖ + |rn – rn–|
(

‖Axn–‖ + ‖Jrnyn – yn‖
rn

)

+ ‖en‖ + ‖en–‖. (.)

On the other hand, we have

‖xn+ – xn‖ ≤ αnκ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥

+ γn‖fn – fn–‖ + |γn – γn–|‖fn–‖
+ βn‖Jrn–yn– – Jrnyn‖ + |βn – βn–|‖Jrn–yn–‖. (.)

Using (.) and (.), we find

‖xn+ – xn‖ ≤ (
 – αn( – κ)

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥

+ γn‖fn – fn–‖ + |γn – γn–|‖fn–‖

+ |rn – rn–|
(

‖Axn–‖ + ‖Jrnyn – yn‖
rn

)

+ ‖en‖ + ‖en–‖ + |βn – βn–|‖Jrn–yn–‖.
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Using restrictions (), (), and (), we obtain from Lemma . that

lim
n→∞‖xn+ – xn‖ = . (.)

On the other hand, we have

‖Jrnyn – xn‖ ≤ ‖xn+ – xn‖
βn

+
αn

βn
‖xn – f (xn)‖ + γn

βn
‖xn – fn‖.

Using restrictions () and (), we obtain from (.) that

lim
n→∞‖Jrnyn – xn‖ = . (.)

Since

∥∥Jrn (xn – rnAxn) – xn
∥∥ ≤ ∥∥Jrn (xn – rnAxn) – Jrnyn

∥∥ + ‖Jrnyn – xn‖
≤ ‖en‖ + ‖Jrnyn – xn‖,

we find from (.) and restriction () that

lim
n→∞

∥∥Jrn (xn – rnAxn) – xn
∥∥ = . (.)

Without loss of generality, let us assume that there exists a real number r such that rn ≥
r > . Since B is accretive, we have

〈
xn – Jr(I – rA)xn

r
–
xn – Jrn (I – rnA)xn

rn
,Jq

(
Jr(I – rA)xn – Jrn (I – rnA)xn

)〉 ≥ .

It follows that

∥∥Jr(I – rA)xn – Jrn (I – rnA)xn
∥∥q

≤ rn – r
rn

〈
xn – Jrn (I – rnA)xn,Jq

(
Jr(I – rA)xn – Jrn (I – rnA)xn

)〉

≤ ∥∥xn – Jrn (I – rnA)xn
∥∥∥∥Jr(I – rA)xn – Jrn (I – rnA)xn

∥∥q–.

This implies from (.) that

lim
n→∞

∥∥Jr(xn – rAxn) – xn
∥∥ = . (.)

Since Jr(I – rA) is nonexpansive and f is contractive, we find that the mapping tf + ( –
t)Jr(I – rA) is contractive. Let xt be the unique fixed point of the mapping tf + ( – t)Jr(I –
rA), that is, xt = tf (xt) + ( – t)Jr(I – rA)xt , ∀t ∈ (, ). Setting x = limt→ xt , we have x =
Proj(A+B)–() f (x), where Proj(A+B)–() is the unique sunny nonexpansive retraction from C
onto (A + B)–().
Next, we show that

lim sup
n→∞

〈
f (x) – x,Jq(xn – x)

〉 ≤ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
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Since

‖xt – xn‖q ≤ t
〈
f (xt) – xn,Jq(xt – xn)

〉
+ ( – t)

〈
Jr(I – rA)xt – xn,Jq(xt – xn)

〉
≤ t

〈
f (xt) – xt ,Jq(xt – xn)

〉
+ t

〈
xt – xn,Jq(xt – xn)

〉
+ ( – t)

〈
Jr(I – rA)xt – Jr(I – rA)xn,Jq(xt – xn)

〉
+ ( – t)

〈
Jr(I – rA)xn – xn,Jq(xt – xn)

〉
≤ t

〈
f (xt) – xt ,Jq(xt – xn)

〉
+ ‖xt – xn‖q

+
∥∥Jr(I – rA)xn – xn

∥∥‖xt – xn‖q–,

we have

〈
f (xt) – xt ,Jq(xn – xt)

〉 ≤ 
t
∥∥Jr(I – rA)xn – xn

∥∥‖xt – xn‖q–.

Fix t and let n→ ∞. It follows from (.) that

lim sup
n→∞

〈
f (xt) – xt ,Jq(xn – xt)

〉 ≤ . (.)

Since the duality map Jq is single-valued and strong-weak∗ uniformly continuous on
bounded sets of a Banach space E with a uniformly Gâteaux differentiable norm, one has

∣∣〈f (xt) – xt ,Jq(xn – xt)
〉
–

〈
f (x) – x,Jq(xn – x)

〉∣∣
=

∣∣〈f (x) – x,Jq(xn – x) – Jq(xn – xt)
〉

+
〈
f (x) – x –

(
f (xt) – xt

)
,Jq(xn – xt)

〉∣∣
≤ ∣∣〈f (x) – x,Jq(xn – x) – Jq(xn – xt)

〉∣∣
+

∥∥f (x) – x –
(
f (xt) – xt

)∥∥‖xn – xt‖q–.

Hence, ∀ε > , ∃δ >  such that t ∈ (, δ), one has

〈
f (x) – x,Jq(xn – x)

〉 ≤ 〈
f (xt) – xt ,Jq(xn – xt)

〉
+ ε.

Using (.), we see that

lim sup
n→∞

〈
f (x) – x,Jq(xn – x̄)

〉 ≤ . (.)

Using Lemma ., one has

‖xn+ – x‖q ≤ αn
〈
f (xn) – f (x),Jq(xn+ – x)

〉
+ αn

〈
f (x) – x,Jq(xn+ – x̄)

〉
+ βn

∥∥Jrn (xn – rnAxn + en) – x
∥∥‖xn+ – x‖q–

+ γn‖fn – x‖‖xn+ – x‖q–

≤ (
 – αn( – κ)

)‖xn – x‖‖xn+ – x‖q–

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
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+ αn
〈
f (x) – x,Jq(xn+ – x)

〉
+ ‖en‖‖xn+ – x‖q–

+ γn‖fn – x‖‖xn+ – x‖q–

≤ (
 – αn( – κ)

)( 
q
‖xn – x‖q + q – 

q
‖xn+ – x‖q

)

+ αn
〈
f (x) – x,Jq(xn+ – x)

〉
+ ‖en‖‖xn+ – x‖q–

+ γn‖fn – x‖‖xn+ – x‖q–.

It follows that

‖xn+ – x‖q ≤ (
 – αn( – κ)

)‖xn – x‖q

+ qαn
〈
f (x) – x,Jq(xn+ – x)

〉
+ q‖en‖‖xn+ – x‖q–

+ qγn‖fn – x‖‖xn+ – x‖q–.

Using restrictions () and (), we see from (.) that {xn} converges strongly to x. This
completes the proof. �

Remark . The framework of the space in Theorem . can be applicable to Lp, where
p > .

Corollary . Let E be a real q-uniformly smooth Banach space with the constant Kq. Let
B : E → E be an m-accretive operator such that D(B) is convex. Assume that B–() = ∅.
Let f : D(B) → D(B) be a fixed κ-contraction. Let {rn} and {αn} be positive real number
sequences, where {αn} is in (, ). Let {xn} be a sequence generated in the following iterative
process:

x ∈ C, xn+ = αnf (xn) + ( – αn)Jrnxn, ∀n≥ ,

where Jrn = (I + rnB)–.Assume that the sequences {αn} and {rn} satisfy the following restric-
tions:
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()
∑∞

n= |αn – αn–| < ∞;
() lim infn→∞ rn > ,

∑∞
n= |rn – rn–| < ∞.

Then the sequence {xn} converges strongly to x = ProjB–() f (x),where ProjB–() is the unique
sunny nonexpansive retraction of C onto B–().

Corollary . Let E be a real q-uniformly smooth Banach space with the constant Kq, and
let C be a nonempty closed and convex subset of E. Let f : C → C be a fixed κ-contraction.
Let T : C → C be an α-strictly pseudocontractive mapping with a nonempty fixed point set.
Let {rn}, {αn}, {βn}, and {γn} be positive number sequences, where {αn}, {βn}, and {γn} in
(, ). Let {xn} be a sequence generated in the following process:

x ∈ C, xn+ = αnf (xn) + βn( – rn)xn + rnβnTxn + γnfn, ∀n≥ ,

where {fn} is a bounded sequence in C. Assume that the sequences {αn}, {βn}, {γn}, and {rn}
satisfy the following restrictions:

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
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() αn + βn + γn = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()
∑∞

n= |βn – βn–| < ∞;
() lim infn→∞ rn > , rn ≤ ( qαKq

)


q– ,
∑∞

n= |rn – rn–| < ∞;
()

∑∞
n= γn < ∞.

Then the sequence {xn} converges strongly to x = ProjF(T) f (x), where ProjF(T) is the unique
sunny nonexpansive retraction of C onto F(T).

Proof Putting A = I – T , we find that A is α-inverse strongly accretive and F(T) = A–().
Notice that

xn+ = αnf (xn) + βn( – rn)xn + rnβnTxn + γnfn

= αnf (xn) + βn
(
( – rn)xn + rnTxn

)
+ γnfn

= αnf (xn) + βn
(
xn – rn(I – T)xn

)
+ γnfn

= αnf (xn) + βn(xn – rnAxn) + γnfn.

Using Theorem ., we find the desired conclusion immediately. �

4 Applications
In this section, we give some applications of our main results in the framework of Hilbert
spaces.
From now on, we always assume that C is a nonempty closed and convex subset of a real

Hilbert spaceH and PC stands for the metric projection fromH onto C. Let A : C →H be
a monotone operator. Recall that the classical variational inequality is to find x ∈ C such
that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The solution set of the variational inequality is denoted by VI(C,A).
Let iC be a function defined by

iC(x) =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.

It is easy to see that iC is a proper lower and semicontinuous convex function on H , and
the subdifferential ∂iC of iC is maximal monotone. Define the resolvent Jr := (I + r∂iC)–

of the subdifferential operator ∂iC . Letting x = Jry, we find that

y ∈ x + r∂iCx ⇐⇒ y ∈ x + rNCx

⇐⇒ 〈y – x, v – x〉 ≤ , ∀v ∈ C

⇐⇒ x = PCy,

where NCx := {e ∈H : 〈e, v – x〉,∀v ∈ C}.
Putting B = ∂iC in Theorem ., we find that Jrn = PC . Hence, the following result can be

obtained immediately.

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
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Theorem . Let f : C → C be a fixed κ-contraction. Let A : C → E be an α-inverse
strongly monotone operator with VI(C,A) = ∅. Let {rn} be a positive number sequence. Let
{αn}, {βn}, and {γn} be real number sequences in (, ). Let {xn} be a sequence generated in
the following iterative process:

x ∈ C, xn+ = αnf (xn) + βnPC(xn – rnAxn + en) + γnfn, ∀n≥ ,

where {en} is a sequence in H and {fn} is a bounded sequence in C. Assume that the se-
quences {αn}, {βn}, {γn}, {en}, and {rn} satisfy the following restrictions:
() αn + βn + γn = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()
∑∞

n= |βn – βn–| < ∞;
() lim infn→∞ rn > , rn ≤ α,

∑∞
n= |rn – rn–| < ∞;

()
∑∞

n= ‖en‖ < ∞,
∑∞

n= γn < ∞.
Then the sequence {xn} converges strongly to x = PVI(C,A)f (x), where PVI(C,A) is the unique
metric projection from C onto VI(C,A).

Next, we consider the problem of finding a solution of a Ky Fan inequality [], which is
known as an equilibrium problem in the terminology of Blum and Oettli; see [] and the
references therein.
Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall

the following equilibrium problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

The solution set of the problem is denoted by EP(F) in this section.
To study the equilibrium problem (.), we may assume that F satisfies the following

restrictions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, lim supt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.
The following lemma can be found in [].

Lemma . Let F : C × C → R be a bifunction satisfying (A)-(A). Then, for any r > 
and x ∈H , there exists z ∈ C such that F(z, y) + 

r 〈y – z, z – x〉 ≥ , ∀y ∈ C. Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all r >  and x ∈ H . Then () Tr is single-valued and firmly nonexpansive; () F(Tr) =
EP(F) is closed and convex.

Lemma . Let F be a bifunction from C×C to R which satisfies (A)-(A), and let AF be
a multivalued mapping of H into itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/166
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Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F (),

and Trx = (I + rAF )–x, ∀x ∈ H , r > , where Tr is defined as in (.).

Based on Lemmas . and ., we find from Theorem . the following immediately.

Theorem . Let F : C × C → R be a bifunction satisfying (A)-(A) such that EP(F) is
not empty. Let f : C → C be a fixed κ-contraction. Let {rn} be a positive number sequence.
Let {αn}, {βn}, and {γn} be real number sequences in (, ). Let {xn} be a sequence generated
in the following iterative process:

x ∈ C, xn+ = αnf (xn) + βnTrn (xn – rnAxn + en) + γnfn, ∀n≥ ,

where Jrn = (I + rnAF )–, {en} is a sequence in H and {fn} is a bounded sequence in C.Assume
that the sequences {αn}, {βn}, {γn}, {en}, and {rn} satisfy the following restrictions:
() αn + βn + γn = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()
∑∞

n= |βn – βn–| < ∞;
() lim infn→∞ rn > , rn ≤ α,

∑∞
n= |rn – rn–| < ∞;

()
∑∞

n= ‖en‖ < ∞,
∑∞

n= γn < ∞.
Then the sequence {xn} converges strongly to some point in EP(F).

For anymatrixD ∈ Rm×n, we denote its transpose byDT and its operator norm by ‖D‖ =
maxx∈Rn :‖x‖= ‖Dx‖.
Consider the inclusion problem []  ∈ A(x,x, y) + B(x,x, y), where A(x,x, y) =

(DTy,ETy, –Dx – Ex), B(x,x, y) = Tx ×Tx × {b} and T and T are maximal mono-
tone mappings onRn andRn , respectively, andD ∈Rm×n , E ∈Rm×n , b ∈Rm. Then, A
and B aremaximalmonotone andA is Lipschitz continuous onRm+n+n with the constant

η =
√∥∥DT

∥∥ +
∥∥ET

∥∥ + ‖D‖ + ‖E‖.

The special case where T = ∂f, T = ∂f yields the following convex program:

⎧⎨
⎩
minimize f(x) + f(x)

subject to Dx + Ex = b,

where f and f are closed proper convex functions on, respectively, Rn and Rn . The
special case where n = n, D = –E = I and b =  yields the inclusion  ∈ Tx + Tx.
Finally, we consider finding minimizers of proper lower semicontinuous convex func-

tions.
For a proper lower semicontinuous convex function h :H → (–∞,∞], the subdifferen-

tial mapping ∂h of h is defined by

∂h(x) =
{
x∗ ∈H : h(x) +

〈
y – x,x∗〉 ≤ h(y),∀y ∈H

}
, ∀x ∈H .

Rockafellar [] proved that ∂h is a maximal monotone operator. It is easy to verify that
 ∈ ∂h(v) if and only if h(v) =minx∈H h(x).
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Theorem . Let f : C → C be a fixed κ-contraction. Let h :H → (–∞, +∞] be a proper
convex lower semicontinuous function such that (∂h)–() is not empty. Let {rn} be a positive
number sequence. Let {αn}, {βn}, and {γn} be real number sequences in (, ). Let {xn} be a
sequence generated in the following iterative process:

x ∈ C, xn+ = αnf (xn) + βn argmin
z∈H

{
h(z) +

‖z – xn – en‖
rn

}
+ γnfn, ∀n≥ ,

where {en} is a sequence in H and {fn} is a bounded sequence in C. Assume that the se-
quences {αn}, {βn}, {γn}, {en}, and {rn} satisfy the following restrictions:
() αn + βn + γn = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()
∑∞

n= |βn – βn–| < ∞;
() lim infn→∞ rn > , rn ≤ α,

∑∞
n= |rn – rn–| < ∞;

()
∑∞

n= ‖en‖ < ∞,
∑∞

n= γn < ∞.
Then the sequence {xn} converges strongly to some minimizer of h.

Proof Since h :H → (–∞,∞] is a proper convex and lower semicontinuous function, we
see that the subdifferential ∂h of h is maximal monotone. Putting A =  and yn = Jrn (xn +
en), we see that

yn = argmin
z∈H

{
h(z) +

‖z – xn – en‖
rn

}

is equivalent to

 ∈ ∂h(yn) +

rn
(yn – xn – en).

It follows that

xn + en ∈ yn + rn∂h(yn).

By using Theorem ., we draw the desired conclusion immediately. �
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