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Abstract
In this paper, we propose an iterative scheme modified from the work of Ceng et al.
(Nonlinear Anal. Hybrid Syst. 4:743-754, 2010) and Plubtieng and Punpaeng (J. Math.
Anal. Appl. 336(1):455-469, 2007) to prove the strong convergence theorem for
approximating a common element of the set of fixed points of nonspreading
mappings and a finite family of the set of solutions of the equilibrium problem. Using
this result, we obtain the strong convergence theorem for a finite family of
nonspreading mappings and a finite family of the set of solutions of equilibrium
problem. Moreover, in order to compare numerical results between the combination
of the equilibrium problem and the classical equilibrium problem, some examples are
given in one- and two-dimensional spaces of real numbers.

Keywords: nonspreading mapping; quasi-nonexpansive mapping; the combination
of equilibrium problem

1 Introduction
Throughout this paper, let C be a nonempty closed convex subset of a real Hilbert space
H with the inner product 〈·, ·〉 and the norm ‖ ·‖. We denote weak convergence and strong
convergence by the notations ‘⇀’ and ‘→’, respectively. We use R to denote the set of real
numbers and Fix(T ) to represent the set of fixed points of T , where T is a mapping from
C into itself.
In , Kohsaka and Takahashi [] introduced the nonspreading mapping T in Hilbert

space H as follows:

‖T u – T v‖ ≤ ‖T u – v‖ + ‖u – T v‖, ∀u, v ∈ C. (.)

In , it was shown by Iemoto and Takahashi [] that (.) is equivalent to the follow-
ing equation:

‖T u – T v‖ ≤ ‖u – v‖ + 〈u – T u, v – T v〉, for all u, v ∈ C.

Many researchers proved the strong convergence theorem for a nonspreading mapping
and some related mappings in Hilbert space; see for example [–].
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Let B : C →H . The variational inequality problem is to find a point u ∈ C satisfying the
following inequality:

〈Bu, v – u〉 ≥ , (.)

for all v ∈ C. Moreover, VI(C,B) is used to denote the set of solutions of (.).
Let � : C × C → R be a bifunction. The classical equilibrium problem for � is to find

u ∈ C satisfying the following inequality:

�(u, v)≥ , ∀v ∈ C. (.)

We use EP(�) to represent the set of solution of (.).
Let the bifunction � satisfy the following conditions for solving the equilibrium prob-

lem.
(A) �(u,u) =  for all u ∈ C;
(A) � is monotone, i.e., �(u, v) +�(v,u)≤  for all u, v ∈ C;
(A) for each u, v,w ∈ C,

lim
t→+

�
(
tw + ( – t)u, v

) ≤ �(u, v);

(A) for each u ∈ C, v 
→ �(u, v) is convex and lower semicontinuous.
In , Blum and Oettli [] showed that the classical equilibrium problem (.) cov-

ers monotone inclusion problems, saddle point problems, variational inequality prob-
lems, minimization problems, Nash equilibria in noncooperative games, vector equilib-
rium problems, and certain fixed point problems.
Let� = {�i}i=,,...,N be a finite family of bifunctions fromC×C toR. The systemof equi-

librium problem for � is to determine common equilibrium points for � = {�i}i=,,...,N ,
that is, the set

EP(�) =
{
u ∈ C :�i(u, v) ≥ ,∀v ∈ C,∀i ∈ , , . . . ,N

}
. (.)

The problem (.) extends (.) to a system of such problems covering various forms of
feasibility problems []. Several iterative algorithms are proposed to solve the equilibrium
problems and a finite family of equilibrium problems; see, for instance, [–].

Example . Let � = {�i}i=,,...,N be a finite family of bifunctions from C×C to R, where
the bifunctions �i are defined by

�i(u, v) = i(v – u)(v + u – ), for every u, v ∈R.

For each i = , , . . . ,N , it is obvious that the �i(x, y) satisfy (A)-(A). Then we obtain

EP(�) =
N⋂
i=

EP(�i) = {}.

In , Peng et al. [] proposed the following iterative algorithm for solving a family
of infinite nonexpansive mappings and a finite family of equilibrium problems in Hilbert
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space:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z = z ∈H ,

un = TFm
βn T

Fm–
βn · · ·TF

βn T
F
βnzn,

vn = PC(I – snA)un,

zn+ = αnγ f (Wnzn) + (I – αnB)WnPC(I – rnA)vn, ∀n ∈N.

(.)

Under some appropriate conditions, they proved that {zn}, {vn}, and {un} converge strongly
to q = P�(γ f + (I – B))(q), where � =

⋂∞
i= Fix(Si)∩VI(C,A)∩ ⋂m

k= EP(Fk) and f is a con-
tractive mapping on H .
Over the past few years, many researchers have started working on the methods for

finding a common solution of a finite family of equilibrium problems in Hilbert space;
see, for instance, [–].
In , Suwannaut and Kangtunyakarn [] introduced the combination of equilibrium

problem which is to find u ∈ C such that

( N∑
i=

ai�i

)
(u, v) ≥ , ∀v ∈ C, (.)

where �i : C × C → R are bifunctions and ai ∈ (, ) with
∑N

i= ai = , for every i =
, , . . . ,N . The set of solutions (.) is denoted by EP(

∑N
i= ai�i).

If �i = �, for all i = , , . . . ,N , then the combination of equilibrium problem (.) re-
duces to the classical equilibrium problem (.).
Moreover, they obtain Lemma . as shown in the next section.

Example . For every i = , , , let the bifunctions �i :R×R →R, be given by

�(u, v) = (v – u)(v + u – ),

�(u, v) = (v – u)(v + u – ),

�(u, v) = (v – u)(v + u – ), ∀u, v ∈ R.

For all i = , , , it is obvious that the �i(u, v) satisfy (A)-(A). Let a = 
 , a =


 and

a = 
 , thus we have

∑
i=

ai�i(u, v) =



(v – u)(v + u – ).

This implies that

EP

( ∑
i=

ai�i

)
=

⋂
i=

EP(�i) = {}.

Remark . For all i = , , . . . ,N , let the mapping Ai : C → H be defined by �i(u, v) =
〈Aiu, v – u〉 for all u, v ∈ C. For each i = , , . . . ,N , if �i(u, v) = 〈Aiu, v – u〉 ≥  for all

http://www.fixedpointtheoryandapplications.com/content/2014/1/167
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u, v ∈ C, and i = , , . . . ,N , then EP(�i) =VI(C,Ai). Hence we have

EP

( N∑
i=

ai�i

)
=

N⋂
i=

EP(�i) =
N⋂
i=

VI(C,Ai).

After we have studied research related to equilibrium problems, we obtain the following
question.

Question Is it possible to prove strong convergence theorem for a finite family of equi-
librium problem using different method from the result of Peng et al. [], Piri [] and
references therein?

Inspired andmotivated by the work of Iemoto and Takahashi [], Suwannaut and Kang-
tunyakarn [] and related research, we propose an iterative scheme modified from the
work of Plubtieng and Punpaeng [] and Ceng et al. [] to prove the strong conver-
gence theorem for approximating a common element of the set of fixed points of a non-
spreadingmapping and a finite family of the set of solutions of equilibrium problems using
Lemma . and a different method from the work of Peng et al. [] and Piri [] and ref-
erences therein. Moreover, some examples are given in order to compare the numerical
results between the combination of the equilibrium problem and the classical equilibrium
problem.

2 Preliminaries
We now recall the following definition and well-known lemmas.

Definition .
(i) A is strongly positive operator on H if there exists a constant β >  such that

〈Au,u〉 ≥ β‖u‖, ∀u ∈H .

(ii) T is a nonexpansive mapping if

‖T u – T v‖ ≤ ‖u – v‖, ∀u, v ∈ C.

(iii) For every u ∈H , there is a unique nearest point PCu in C such that

‖u – PCu‖ ≤ ‖u – v‖, ∀v ∈ C.

Such an operator PC is called the metric projection of H onto C.

Lemma . ([]) For a given w ∈H and u ∈ C,

u = PCw ⇔ 〈u –w, v – u〉 ≥ , ∀v ∈ C.

Furthermore, PC is a nonexpansive mapping.

http://www.fixedpointtheoryandapplications.com/content/2014/1/167
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Lemma . ([]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence
{un} ⊂H with un ⇀ u, the inequality

lim inf
n→∞ ‖un – u‖ < lim inf

n→∞ ‖un – v‖

holds for every v ∈H with v �= u.

Lemma . ([]) Let {un} be a sequence of nonnegative real numbers satisfying

un+ ≤ ( – βn)un + ηn, ∀n≥ ,

where αn is a sequence in (, ) and {ηn} is a sequence such that
()

∑∞
n= βn =∞,

() lim supn→∞
ηn
βn

≤  or
∑∞

n= |ηn| <∞.
Then limn→∞ un = .

Lemma . ([]) Let H be a real Hilbert space. Then the following results hold:
(i) For all u, v ∈H and t ∈ [, ],

∥∥tu + ( – t)v
∥∥ = t‖u‖ + ( – t)‖v‖ – t( – t)‖u – v‖,

(ii) ‖u + v‖ ≤ ‖u‖ + 〈v,u + v〉, for each u, v ∈H .

Lemma . ([]) Let H be a Hilbert space, let C be a nonempty closed convex subset of
H and let A be a mapping of C into H . Then, for α > ,

Fix
(
PC(I – αA)

)
=VI(C,A),

where PC is the metric projection of H onto C.

Lemma . ([]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient β >  and  < δ < ‖A‖–. Then ‖I – δA‖ ≤  – δβ .

Lemma . ([]) Let C be a nonempty closed convex subset of H .Then amapping T : C →
C is nonspreading if and only if

‖T u – T v‖ ≤ ‖u – v‖ + 〈u – T u, v – T v〉, for all u, v ∈ C.

Remark . If T is a nonexpansive mapping and 〈u– T u, v– T v〉 ≥ , for every u, v ∈ C,
then T is a nonspreading mapping.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C → C be a nonspreading mapping with Fix(T ) �= ∅. Then we have the following state-
ments:

(i) Fix(T ) =VI(C, I – T );
(ii) for every u ∈ C and v ∈ Fix(T),

∥∥PC
(
I – λ(I – T )

)
u – v

∥∥ ≤ ‖u – v‖, where λ ∈ (, ).

http://www.fixedpointtheoryandapplications.com/content/2014/1/167
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Proof To prove (i), let x∗ ∈ Fix(T ). Then x∗ = T x∗. Since

〈
v – x∗, (I – T )x∗〉 = , ∀v ∈ C,

we have x∗ ∈VI(C, I – T ), from which it follows that Fix(T) ⊆VI(C, I – T ).
Next, we show VI(C, I – T )⊆ Fix(T ).
Let x̃ ∈VI(C, I – T ). This implies that

〈
v – x̃, (I – T )x̃

〉 ≥ , ∀v ∈ C. (.)

Let x∗ ∈ Fix(T ). Then, by Lemma ., we obtain

∥∥T x̃ – T x∗∥∥ ≤ ∥∥x̃ – x∗∥∥ + 
〈
x̃ – T x̃,x∗ – T x∗〉 = ∥∥x̃ – x∗∥∥. (.)

Observe that

∥∥T x̃ – x∗∥∥ =
∥∥x̃ – x∗ – (I – T )x̃

∥∥

=
∥∥x̃ – x∗∥∥ – 

〈
x̃ – x∗, (I – T )x̃

〉
+

∥∥(I – T )x̃
∥∥. (.)

From (.), (.), and (.), we get

∥∥(I – T )x̃
∥∥ ≤ 

〈
x̃ – x∗, (I – T )x̃

〉 ≤ ,

which yields x̃ ∈ Fix(T ). Therefore VI(C, I – T )⊆ Fix(T ).
To prove (ii), let u ∈ C and v ∈ Fix(T ). Since T is a nonspreading mapping and we have

Lemma ., we get

‖T u – T v‖ ≤ ‖u – v‖ + 〈u – T u, v – T v〉 = ‖u – v‖. (.)

Thus we have

‖T u – v‖ = ∥∥u – v – (I – T )u
∥∥

= ‖u – v‖ – 
〈
u – v, (I – T )u

〉
+

∥∥(I – T )u
∥∥. (.)

From (.) and (.), we obtain

∥∥(I – T )u
∥∥ ≤ 

〈
u – v, (I – T )u

〉
. (.)

From (i) and Lemma ., we have

v ∈ Fix(T ) =VI(C, I – T ) = Fix
(
PC

(
I – λ(I – T )

))
. (.)

By the nonexpansiveness of PC , (.), and (.), we get

∥∥PC
(
I – λ(I – T )

)
u – v

∥∥ =
∥∥PC

(
I – λ(I – T )

)
u – PC

(
I – λ(I – T )

)
v
∥∥

≤ ∥∥(
I – λ(I – T )

)
u –

(
I – λ(I – T )

)
v
∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/167


Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:167 Page 7 of 26
http://www.fixedpointtheoryandapplications.com/content/2014/1/167

=
∥∥(u – v) – λ

(
(I – T )u – (I – T )v

)∥∥

=
∥∥(u – v) – λ(I – T )u

∥∥

= ‖u – v‖ – λ
〈
u – v, (I – T )u

〉
+ λ∥∥(I – T )u

∥∥

≤ ‖u – v‖ – λ
∥∥(I – T )u

∥∥ + λ∥∥(I – T )u
∥∥

= ‖u – v‖ – λ( – λ)
∥∥(I – T )u

∥∥

≤ ‖u – v‖,

which implies that ‖PC(I – λ(I – T ))u – v‖ ≤ ‖u – v‖. �

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . For
i = , , . . . ,N , let �i : C ×C →R be bifunctions satisfying (A)-(A) with

⋂N
i= EP(�i) �= ∅.

Then

EP

( N∑
i=

ai�i

)
=

N⋂
i=

EP(�i),

where ai ∈ (, ) for every i = , , . . . ,N and
∑N

i= ai = .

Lemma . ([]) Let C be a nonempty closed convex subset of H and let� be a bifunction
of C×C intoR satisfying (A)-(A). Let t >  and u ∈H . Then there exists w ∈ C such that

�(w, v) +

t
〈v –w,w – u〉 ≥ , ∀v ∈ C.

Lemma . ([]) Assume that� : C×C →R satisfies (A)-(A). For t > , define amap-
ping St :H → C as follows:

St(x) =
{
w ∈ C :�(w, v) +


t
〈v –w,w – u〉 ≥ ,∀v ∈ C

}
,

for all u ∈H . Then the following hold:
(i) St is single-valued;
(ii) St is firmly nonexpansive, i.e., for each u, v ∈H ,

∥∥St(u) – St(v)
∥∥ ≤ 〈

St(u) – St(u),u – v
〉
;

(iii) Fix(St) = EP(�);
(iv) EP(�) is closed and convex.

Remark . ([]) From Lemma ., it is easy to see that
∑N

i= ai�i satisfies (A)-(A).
By using Lemma ., we obtain

Fix(St) = EP

( N∑
i=

ai�i

)
=

N⋂
i=

EP(�i),

where ai ∈ (, ), for each i = , , . . . ,N , and
∑N

i= ai = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/167
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3 Strong convergence theorem
Theorem. Let C be a nonempty closed convex subset of a real Hilbert space H . LetF be
an α-contractive mapping on H and letA be a strongly positive linear bounded operator on
H with coefficient γ̄ and  < γ < γ̄

α
. Let T : C → C be a nonspreading mapping. For every

i = , , . . . ,N , let �i : C × C → R be a bifunction satisfying (A)-(A) with � := Fix(T ) ∩⋂N
i= EP(�i) �= ∅. Let {Zn}, {Yn}, and {Vn} be sequences generated by Z ∈ H and

⎧⎪⎪⎨
⎪⎪⎩

∑N
i= ai�i(Vn, y) + 

ϕn
〈y –Vn,Vn –Zn〉 ≥ , ∀y ∈ C,

Yn = θnPCZn + ( – θn)Vn,

Zn+ = δnγF (Zn) + (I – δnA)PC(I –ψn(I – T ))Yn, ∀n ∈N,

(.)

where {δn}, {θn}, {ϕn}, {ψn} ⊂ (, ),  < ai < , for all i = , , . . . ,N . Suppose the conditions
(i)-(vi) hold.

(i) limn→∞ δn =  and
∑∞

n= δn =∞;
(ii)  < τ ≤ θn ≤ υ < , for some τ ,υ > ;
(iii)

∑∞
n= ψn <∞;

(iv)  < ε ≤ ϕn ≤ η < , for some ε,η > ;
(v)

∑N
n= ai = ;

(vi)
∑∞

n= |δn+ – δn| <∞,
∑∞

n= |θn+ – θn| <∞,
∑∞

n= |ψn+ –ψn| < ∞,∑∞
n= |ϕn+ – ϕn| < ∞.

Then the sequences {Zn}, {Yn}, and {Vn} converge strongly to q = P�(I –A + γF )q.

Proof The proof of this theorem is divided into five steps.
Step . Claim that {Zn} is a bounded sequence.
Since δn →  as n→ ∞, without loss of generality, we assume δn < 

‖A‖ , for every n ∈N.
Since

∑N
i= ai�i satisfies (A)-(A) and

N∑
i=

ai�i(Vn, y) +

ϕn

〈y –Vn,Vn –Zn〉 ≥ , ∀y ∈ C,

by Lemma . and Remark ., we have Vn = TϕnZn and Fix(Tϕn ) =
⋂N

i= EP(�i).
From Lemma . and Lemma .(i), we obtain

Fix(T ) = Fix
(
PC

(
I –ψn(I – T )

))
.

Let z ∈ �. By the nonexpansiveness of PC and Tϕn , we have

‖Yn – z‖ ≤ θn‖PCZn – z‖ + ( – θn)‖TϕnZn – z‖ ≤ ‖Zn – z‖. (.)

From Lemma ., Lemma .(ii), and (.), we obtain

‖Zn+ – z‖
≤ δn

∥∥γF (Zn) –Az
∥∥ + ‖I – δnA‖∥∥PC

(
I –ψn(I – T )

)
Yn – z

∥∥
≤ δnγ

∥∥F (Zn) –F (z)
∥∥ + δn

∥∥γF (z) –Az
∥∥ + ( – δnγ̄ )‖Yn – z‖

≤ δnγα‖Zn – z‖ + δn
∥∥γF (z) –Az

∥∥ + ( – δnγ̄ )‖Zn – z‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/167
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=
(
 – δn(γ̄ – γα)

)‖Zn – z‖ + δn
∥∥γF (z) –Az

∥∥
≤max

{
‖Z – z‖, ‖γF (z) –Az‖

γ̄ – γα

}
.

By induction, we obtain ‖Zn – z‖ ≤ max{‖Z – z‖, ‖γF (z)–Az‖
γ̄–γ α

}, ∀n ∈ N. It shows that {Zn}
is bounded and so are {Vn} and {Yn}.
Step . Show that limn→∞ ‖Zn+ –Zn‖ = .
By the definition of Zn and Lemma ., we obtain

‖Zn+ –Zn‖
≤ δnγ

∥∥F (Zn) –F (Zn–)
∥∥ + γ |δn – δn–|

∥∥F (Zn–)
∥∥

+ ‖I – δnA‖∥∥PC
(
I –ψn(I – T )

)
Yn – PC

(
I –ψn–(I – T )

)
Yn–

∥∥
+

∥∥(I – δnA)PC
(
I –ψn–(I – T )

)
Yn–

– (I – δn–A)PC
(
I –ψn–(I – T )

)
Yn–

∥∥
≤ δnγα‖Zn –Zn–‖ + γ |δn – δn–|

∥∥F (Zn–)
∥∥

+ ( – δnγ̄ )
∥∥(
I –ψn(I – T )

)
Yn –

(
I –ψn–(I – T )

)
Yn–

∥∥
+ |δn – δn–|

∥∥APC
(
I –ψn–(I – T )

)
Yn–

∥∥
≤ δnγα‖Zn –Zn–‖ + γ |δn – δn–|

∥∥F (Zn–)
∥∥ + ( – δnγ̄ )

[
θn‖Zn –Zn–‖

+ |θn – θn–|‖PCZn–‖ + ( – θn)‖Vn –Vn–‖ + |θn – θn–|‖Vn–‖
+ψn

∥∥(I – T )Yn – (I – T )Yn–
∥∥ + |ψn –ψn–|

∥∥(I – T )Yn–
∥∥]

+ |δn – δn–|
∥∥APC

(
I –ψn–(I – T )

)
Yn–

∥∥. (.)

Using the same method as in [] (Step  of Theorem .), we have

‖Vn –Vn–‖ ≤ ‖Zn –Zn–‖ + 
ε
|ϕn – ϕn–|‖Vn –Zn‖. (.)

Substitute (.) into (.) to get

‖Zn+ –Zn‖

≤ δnγα‖Zn –Zn–‖ + γ |δn – δn–|
∥∥F (Zn–)

∥∥ + ( – δnγ̄ )
[
‖Zn –Zn–‖

+ |θn – θn–|‖PCZn–‖ +  – θn

ε
|ϕn – ϕn–|‖Vn –Zn‖ + |θn – θn–|‖Vn–‖

+ψn
∥∥(I – T )Yn – (I – T )Yn–

∥∥ + |ψn –ψn–|
∥∥(I – T )Yn–

∥∥]

+ |δn – δn–|
∥∥APC

(
I –ψn–(I – T )

)
Yn–

∥∥
≤ (

 – δn(γ̄ – γα)
)‖Zn –Zn–‖ + ( + γ )|δn – δn–|K + |θn – θn–|K

+

ε
|ϕn – ϕn–|K + ψnK + |ψn –ψn–|K , (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/167


Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:167 Page 10 of 26
http://www.fixedpointtheoryandapplications.com/content/2014/1/167

where K = maxn∈N{‖Vn‖,‖F (Zn)‖,‖Vn – Zn‖,‖PCZn‖,‖(I – T )Yn‖,‖APC(I – ψn(I –
T ))Yn‖}. From (.), the conditions (i), (iii), (v), and Lemma ., we have

lim
n→∞‖Zn+ –Zn‖ = . (.)

Step . Prove that limn→∞ ‖Vn –Zn‖ = limn→∞ ‖PC(I –ψn(I – T ))Zn –Zn‖ = .
To claim this, let z ∈ �. Since Vn = TϕnZn and Tϕn is a firmly nonexpansive mapping, we

have

‖z – TϕnZn‖ = ‖Tϕnz – TϕnZn‖

≤ 〈Tϕnz – TϕnZn, z –Zn〉

=


(‖TϕnZn – z‖ + ‖Zn – z‖ – ‖TϕnZn –Zn‖

)
,

from which it follows that

‖Vn – z‖ ≤ ‖Zn – z‖ – ‖Vn –Zn‖. (.)

By the definition of Zn, Lemma ., Lemma .(ii), and (.), we get

‖Zn+ – z‖

=
∥∥δn

(
γF (Zn) –APC

(
I –ψn(I – T )

)
Yn

)
+

(
PC

(
I –ψn(I – T )

)
Yn – z

)∥∥

≤ ∥∥PC
(
I –ψn(I – T )

)
Yn – z

∥∥

+ δn
〈
γF (Zn) –APC

(
I –ψn(I – T )

)
Yn,Zn+ – z

〉
≤ ‖Yn – z‖ + δn

∥∥γF (Zn) –APC
(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖
≤ θn‖PCZn – z‖ + ( – θn)‖Vn – z‖

+ δn
∥∥γF (Zn) –APC

(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖
≤ θn‖Zn – z‖ + ( – θn)

(‖Zn – z‖ – ‖Vn –Zn‖
)

+ δn
∥∥γF (Zn) –APC

(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖
= ‖Zn – z‖ – ( – θn)‖Vn –Zn‖

+ δn
∥∥γF (Zn) –APC

(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖,

which implies that

( – θn)‖Vn –Zn‖ ≤ (‖Zn – z‖ + ‖Zn+ – z‖)‖Zn+ –Zn‖
+ δn

∥∥γF (Zn) –APC
(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖.

From (.), the conditions (i) and (ii), this yields

lim
n→∞‖Vn –Zn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/167
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By Lemma . and Lemma .(ii), we get

‖Zn+ – z‖

≤ ∥∥PC
(
I –ψn(I – T )

)
Yn – z

∥∥

+ δn
〈
γF (Zn) –APC

(
I –ψn(I – T )

)
Yn,Zn+ – z

〉
≤ ‖Yn – z‖ + δn

∥∥γF (Zn) –APC
(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖
= θn‖PCZn – z‖ + ( – θn)‖Vn – z‖ – θn( – θn)‖PCZn –Vn‖

+ δn
∥∥γF (Zn) –APC

(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖
≤ ‖Zn – z‖ – θn( – θn)‖PCZn –Vn‖

+ δn
∥∥γF (Zn) –APC

(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖,

from which it follows that

θn( – θn)‖PCZn –Vn‖ ≤ (‖Zn – z‖ + ‖Zn+ – z‖)‖Zn+ –Zn‖
+ δn

∥∥γF (Zn) –APC
(
I –ψn(I – T )

)
Yn

∥∥‖Zn+ – z‖.

From (.), the conditions (i) and (ii), this implies that

lim
n→∞‖PCZn –Vn‖ = . (.)

Since

‖PCZn –Zn‖ ≤ ‖PCZn –Vn‖ + ‖Vn –Zn‖,

using (.) and (.), we have

lim
n→∞‖PCZn –Zn‖ = . (.)

Since

‖Yn –Zn‖ ≤ θn‖PCZn –Zn‖ + ( – θn)‖Vn –Zn‖,

by (.) and (.), thus we obtain

lim
n→∞‖Yn –Zn‖ = . (.)

Observe that

∥∥Zn – PC
(
I –ψn(I – T )

)
Yn

∥∥
≤ ‖Zn –Zn+‖ +

∥∥Zn+ – PC
(
I –ψn(I – T )

)
Yn

∥∥
= ‖Zn –Zn+‖ + δn

∥∥γF (Zn) –APC
(
I –ψn(I – T )

)
Yn

∥∥,

http://www.fixedpointtheoryandapplications.com/content/2014/1/167


Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:167 Page 12 of 26
http://www.fixedpointtheoryandapplications.com/content/2014/1/167

which implies by (.) and the condition (i) that

lim
n→∞

∥∥Zn – PC
(
I –ψn(I – T )

)
Yn

∥∥ = . (.)

Since

∥∥Zn – PC
(
I –ψn(I – T )

)
Zn

∥∥
≤ ∥∥Zn – PC

(
I –ψn(I – T )

)
Yn

∥∥ +
∥∥PC

(
I –ψn(I – T )

)
Yn – PC

(
I –ψn(I – T )

)
Zn

∥∥
≤ ∥∥Zn – PC

(
I –ψn(I – T )

)
Yn

∥∥ +
∥∥(
I –ψn(I – T )

)
Yn –

(
I –ψn(I – T )

)
Zn

∥∥
≤ ∥∥Zn – PC

(
I –ψn(I – T )

)
Yn

∥∥ + ‖Yn –Zn‖ +ψn
∥∥(I – T )Yn – (I – T )Zn

∥∥,
by (.), (.), and the condition (iii), we obtain

lim
n→∞

∥∥Zn – PC
(
I –ψn(I – T )

)
Zn

∥∥ = . (.)

Step . Show that lim supn→∞〈γF (q) –Aq,Zn – q〉 ≤ , where q = P�(I –A + γF )q.
First, take a subsequence {Znk } of {Zn} such that

lim sup
n→∞

〈
γF (q) –Aq,Zn – q

〉
= lim

k→∞
〈
γF (q) –Aq,Znk – q

〉
.

Since {Zn} is bounded, we can assume that Znk ⇀ ω as k → ∞. By (.), it follows that
Unk ⇀ ω as k → ∞.
Assume ω /∈ Fix(T ). Since Fix(T ) = Fix(PC(I –ψnk (I – T ))), we have ω �= PC(I –ψnk (I –

T ))ω. By the nonexpansiveness of PC , the condition (iii), (.), and Opial’s condition, we
get

lim inf
k→∞

‖Znk –ω‖ < lim inf
k→∞

∥∥Znk – PC
(
I –ψnk (I – T )

)
ω

∥∥
≤ lim inf

k→∞
(∥∥Znk – PC

(
I –ψnk (I – T )

)
Znk

∥∥
+

∥∥PC
(
I –ψnk (I – T )

)
Znk – PC

(
I –ψnk (I – T )

)
ω

∥∥)
≤ lim inf

k→∞
(∥∥Znk – PC

(
I –ψnk (I – T )

)
Znk

∥∥
+

∥∥(
I –ψnk (I – T )

)
Znk –

(
I –ψnk (I – T )

)
ω

∥∥)
≤ lim inf

k→∞
(∥∥Znk – PC

(
I –ψnk (I – T )

)
Znk

∥∥
+ ‖Znk –ω‖ +ψnk

∥∥(I – T )Znk – (I – T )ω
∥∥)

≤ lim inf
k→∞

‖Znk –ω‖.

This is a contradiction. Then we have

ω ∈ Fix(T ). (.)

By continuing the same argument as in [] (Step  of Theorem .), we obtain

ω ∈
N⋂
i=

EP(�i). (.)
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From (.) and (.), we get ω ∈ �. Since Znk ⇀ ω as k → ∞, by Lemma . we can
conclude that

lim sup
n→∞

〈
γF (q) –Aq,Zn – q

〉
= lim

k→∞
〈
γF (q) –Aq,Znk – q

〉
=

〈
γF (q) –Aq,ω – q

〉
≤ . (.)

Step . Finally, claim that the sequence {Zn} converges strongly to q = P�(I –A+ γF )q.
By Lemma ., Lemma ., and Lemma .(ii), we obtain

‖Zn+ – q‖

=
∥∥δn

(
γF (Zn) –Aq

)
+ (I – δnA)

(
PC

(
I –ψn(I – T )

)
Yn – q

)∥∥

≤ ∥∥(I – δnA)
(
PC

(
I –ψn(I – T )

)
Yn – q

)∥∥

+ δn
〈
γF (Zn) –Aq,Zn+ – q

〉
≤ ( – δnγ̄ )‖Yn – q‖ + δnγ

∥∥F (Zn) –F (q)
∥∥‖Zn+ – q‖

+ δn
〈
γF (q) –Aq,Zn+ – q

〉
≤ ( – δnγ̄ )

(
θn‖PCZn – q‖ + ( – θn)‖Vn – q‖)

+ δnγα‖Zn – q‖‖Zn+ – q‖ + δn
〈
γF (q) –Aq,Zn+ – q

〉
≤ ( – δnγ̄ )‖Zn – q‖ + δnγα

(‖Zn – q‖ + ‖Zn+ – q‖)
+ δn

〈
γF (q) –Aq,Zn+ – q

〉
,

which implies that

‖Zn+ – q‖

≤ ( – δnγ̄ ) + δnγα

 – δnγα
‖Zn – q‖ + δn

 – δnγα

〈
γF (q) –Aq,Zn+ – q

〉

=
(
 –

δn(γ̄ – γα)
 – δnγα

)
‖Zn – q‖ + δn(γ̄ – γα)

 – δnγα

(
δnγ̄



(γ̄ – γα)
‖Zn – q‖

+


γ̄ – γα

〈
γF (q) –Aq,Zn+ – q

〉)
.

From (.), the condition (i), and Lemma ., we can conclude that {Zn} converges
strongly to q = P�(I – A + γF )q. By (.) and (.), we see that {Vn} and {Yn} converge
strongly to q = P�(I –A + γF )q. This completes the proof. �

The following corollaries are direct results from Theorem ..

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . LetF be
an α-contractive mapping on H and let A be a strongly positive linear bounded operator
on H with coefficient γ̄ and  < γ < γ̄

α
. Let T : C → C be a nonspreading mapping. Let
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� : C × C → R be a bifunction satisfying (A)-(A) with � := Fix(T ) ∩ EP(�) �= ∅. Let
{Zn}, {Yn}, and {Vn} be sequences generated by Z ∈H and

⎧⎪⎪⎨
⎪⎪⎩

�(Vn, y) + 
ϕn

〈y –Vn,Vn –Zn〉 ≥ , ∀y ∈ C,

Yn = θnPCZn + ( – θn)Vn,

Zn+ = δnγF (Zn) + (I – δnA)PC(I –ψn(I – T ))Yn, ∀n ∈N,

(.)

where {δn}, {θn}, {ϕn}, {ψn} ⊆ (, ). Suppose the conditions (i)-(vi) hold.
(i) limn→∞ δn =  and

∑∞
n= δn =∞;

(ii)  < τ ≤ θn ≤ υ < , for some τ ,υ > ;
(iii)

∑∞
n= ψn <∞;

(iv)  < ε ≤ ϕn ≤ η < , for some ε,η > ;
(v)

∑∞
n= |δn+ – δn| <∞,

∑∞
n= |θn+ – θn| <∞,

∑∞
n= |ψn+ –ψn| < ∞,∑∞

n= |ϕn+ – ϕn| < ∞.
Then the sequences {Zn}, {Yn}, and {Vn} converge strongly to q = P�(I –A + γF )q.

Proof Put � = �i, for all i = , , . . . ,N . Using Theorem ., the desired result is obtained.
�

In , Plubtieng and Punpaeng [] introduced the general iterative method for an
equilibrium problem and a nonexpansive mapping in Hilbert spaces. Let S be a nonex-
pansive mapping onH with Fix(S)∩EP(F) �= ∅. With an initial value z ∈ H , the sequences
{zn} and {vn} are generated by

⎧⎨
⎩F(vn, y) + 

ϕn
〈y – vn, vn – zn〉 ≥ , ∀y ∈ H ,

zn+ = αnγ f (zn) + (I – αnA)Svn, ∀n ∈N,
(.)

where {rn} ⊂ (,∞) and αn ⊂ [, ] satisfy some appropriate conditions. Then {zn} and
{vn} converge strongly to a point z, where z = PFix(S)∩EP(F)(I –A + γ f )(z).
Later, in , Ceng et al. [] studied the iterative scheme for equilibrium problem and

an infinite family of nonexpansive mappings. Let  < γα < γ̃ . Let {αn} and {γn} be se-
quences in (, ). Starting with z ∈ H , the sequences {zn} and {un} are generated by the
following iterative scheme:

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

rn 〈y – un,un – zn〉 ≥ , ∀y ∈ H ,

vn = ( – γn)zn + γnWnun,

zn+ = αnγ f (vn) + (I – αnA)Wnvn,

(.)

whereWn is aW -mapping generated by an infinite family of nonexpansive mappings and
infinite real numbers. Then, under some suitable conditions, the sequences {zn} and {un}
converge strongly to z∗ = P⋂∞

n= F(Tn)∩EP(φ) f̃ (z
∗), where f̃ = I – θ (A – γ f ).

Remark . For Corollary ., we prove the strong convergence theorem for equilibrium
problem and a nonspreading mapping. Motivated by the results of Ceng et al. [] and
Plubtieng and Punpaeng [], we consider the following statements, different from this
work.
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(i) We investigate the iterative algorithm for a nonspreading mapping instead of using a
nonexpansive mapping.

(ii) We study the general iterative method by using the sequence
Yn = θnPCZn + ( – θn)Vn.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F

be an α-contractive mapping on H and letA :H →H be a strongly positive linear bounded
operator with coefficient γ̄ and  < γ < γ̄

α
. Let T : C → C be a nonspreading mapping with

Fix(T ) �= ∅. Let {Zn} be the sequence generated by Z ∈H and

Zn+ = δnγF (Zn) + (I – δnA)PC
(
I –ψn(I – T )

)
PCZn, ∀n ∈N, (.)

where {δn}, {ψn} ⊆ (, ). Suppose the conditions (i)-(vi) hold.
(i) limn→∞ δn =  and

∑∞
n= δn =∞;

(ii)
∑∞

n= ψn <∞;
(iii)

∑∞
n= |δn+ – δn| <∞,

∑∞
n= |ψn+ –ψn| < ∞.

Then the sequence {Zn} converges strongly to q = PFix(T )(I –A + γF )q.

Proof Take �i = , for every i = , , . . . ,N . Then we have Vn = PCZn, for every n ∈N. The
result of Corollary . can be obtained by Theorem .. �

4 Applications
By means of our main result, we obtain the strong convergence theorem for a finite family
of nonspreading mappings and a finite family of equilibrium problems in the setting of
Hilbert space. To prove this, the following definitions, remarks, and lemmas are needed.

Definition . A mapping T is quasi-nonexpansive if

‖T x – p‖ ≤ ‖x – p‖, for every x ∈ C and p ∈ Fix(T ).

Remark . If T : C → C is nonspreadingwith Fix(T ) �= ∅, then T is quasi-nonexpansive.

Example . Let an inner product 〈·, ·〉 :R ×R
 →R be defined by 〈u, v〉 = u · v = uv +

uv and a usual norm ‖ · ‖ : R → R be given by ‖u‖ =
√
u + u, for all u = (u,u), v =

(v, v) ∈R
. Let I = [, ] and let T : I → I be defined by

T u =
(
u + 


,
u + 



)
, for all u = (u,u) ∈ I.

First, we show that T is a nonspreading mapping.
For every u, v ∈ I, we obtain

‖T u – T v‖ =
∥∥∥∥
(
u + 


,
u + 



)
–

(
v + 


,
v + 



)∥∥∥∥


=
∥∥∥∥
(


(u – v),



(u – v)

)∥∥∥∥


=


(u – v) +




(u – v)
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and

〈u – T u, v – T v〉

= 
〈
(u,u) –

(
u + 


,
u + 



)
, (v, v) –

(
v + 


,
v + 



)〉

= 
〈(

u – 


,
u – 


)
,
(
v – 


,
v – 


)〉

= 
(
u – 


,
u – 


)
·
(
v – 


,
v – 


)

= 
[(

u – 


)(
v – 


)
+

(
u – 


)(
v – 


)]

=
(u – )(v – )


+
(u – )(v – )



≥ .

This yields

‖u – v‖ + 〈u – T u, v – T v〉 ≥ ‖u – v‖

=
∥∥(u – v,u – v)

∥∥

= (u – v) + (u – v)

>


(u – v) +




(u – v)

= ‖T u – Tv‖. (.)

Then T is a nonspreading mapping and we observe that Fix(T ) = {}, where  = (, ). For
every u ∈ I × I and  ∈ Fix(T ), from (.), we have

‖T u – T ‖ ≤ ‖u – ‖ + 〈u – T u, – T 〉
= ‖u – ‖.

Therefore T is a quasi-nonexpansive mapping.

The following example shows that the converse of Remark . does not hold.

Example . Let I = [, ] and let T : I → I be defined by

T u =

⎧⎨
⎩( u+ , u+ ) if u ∈ (, ]× (, ],

( u ,
u
 ) if u ∈ [, ]× [, ].

First, show that T is quasi-nonexpansive for all u ∈ I.
Observe that Fix(T ) = {} if x ∈ (, ]× (, ] and Fix(T ) = {} if u ∈ [, ]× [, ], where

 = (, ) and  = (, ).
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For any u ∈ (, ]× (, ], we have

∥∥∥∥
(
u + 


,
u + 


)
– (, )

∥∥∥∥ =
∥∥∥∥
(
u – 


,
u – 


)∥∥∥∥
=


∥∥(u – ,u – )

∥∥
=


∥∥(u,u) – (, )

∥∥
< ‖u – ‖.

For every u ∈ [, ]× [, ], we obtain

∥∥∥∥
(
u

,
u


)
– (, )

∥∥∥∥ =
∥∥∥∥
(
u

,
u


)∥∥∥∥
=


∥∥(u,u)∥∥

< ‖u‖.

Therefore T is a quasi-nonexpansive for all u ∈ I.
Choose u = (  ,


 ) and v = (  ,


 ), we have

∥∥∥∥T

(


,



)
– T

(


,



)∥∥∥∥


=
∥∥∥∥
(


,



)
–

(


,



)∥∥∥∥


=
∥∥∥∥
(


,



)∥∥∥∥


=
(



)

+
(



)

=


.

Thus we get

‖u – v‖ + 〈u – T u, v – T v〉

=
∥∥∥∥
(


,



)
–

(


,



)∥∥∥∥


+ 
〈(



,



)
– T

((


,



))
,
(


,



)
– T

(


,



)〉

=
∥∥(, )∥∥ + 

〈(


,



)
–

(


,



)
,
(


,



)
–

(


,



)〉

=  + 
(


–


,


–



)
·
(


–


,


–



)

=  + 
(
–


,–




)
·
(


,



)

=  –


=


.

Hence we have

‖T u – T v‖ > ‖u – v‖ + 〈u – T u, v – T v〉.

By changing T from a nonspreading mapping to a quasi-nonexpansive mapping with
Fix(T ) �= ∅, we obtain the same result as shown in Lemma ..
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Remark . Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C → C be a quasi-nonexpansivemapping with Fix(T ) �= ∅. Thenwe have the following
statement:

(i) Fix(T ) =VI(C, I – T );
(ii) for every u ∈ C and v ∈ Fix(T ),

∥∥PC
(
I – λ(I – T )

)
u – v

∥∥ ≤ ‖u – v‖, where λ ∈ (, ).

Definition . ([]) Let C be a nonempty convex subset of a real Banach space. Let
{Ti}Ni= be a finite family of (nonexpansive) mappings of C into itself. For each j = , , . . . ,
let αj = (αj

,α
j
,α

j
) ∈ I × I × I where I = [, ] and α

j
 + α

j
 + α

j
 = . Define the mapping

S : C → C as follows:

U = I,

U = α
TU + α

U + α
I,

U = α
TU + α

U + α
I,

U = α
TU + α

U + α
I,

...

UN– = αN–
 TN–UN– + αN–

 UN– + αN–
 I,

S =UN = αN
 TNUN– + αN

 UN– + αN
 I.

This mapping is called the S-mapping generated by T,T, . . . ,TN and α,α, . . . ,αN .

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let {Ti}Ni= be a finite family of nonspreading mappings of C into itself with

⋂N
i= Fix(Ti) �= ∅

and let αj = (αj
,α

j
,α

j
) ∈ I × I × I where I = [, ], α

j
 + α

j
 + α

j
 = , α

j
,α

j
 ∈ (, ) for all

j = , , . . . ,N –  and αN
 ∈ (, ], αN

 ∈ [, ), αj
 ∈ (, ) for all j = , , . . . ,N . Let S be the

S-mapping generated by T,T, . . . ,TN and α,α, . . . ,αN . Then Fix(S) =
⋂N

i= Fix(Ti) and S
is a quasi-nonexpansive mapping.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → C be an α-contractive mapping, let A : C → C be a strongly positive linear
bounded operator with coefficient γ̄ and  < γ < γ̄

α
. For i = , , . . . , N̄ , let�i : C×C →R be

a bifunction satisfying (A)-(A). Let Ti : C → C, for i = , , . . . ,N be a finite family of non-
spreadingmappingswith� :=

⋂N
i= Fix(Ti)∩⋂N̄

i= EP(�i) �= ∅.Let ρj = (αj
,α

j
,α

j
) ∈ I×I×I ,

j = , , . . . ,N , where I = [, ], αj
 + α

j
 + α

j
 = , αj

,α
j
 ∈ (, ) for all j = , , . . . ,N –  and

αN
 ∈ (, ], αN

 ∈ [, ), αj
 ∈ (, ) for all j = , , . . . ,N , and let S be the S-mapping gener-

ated by T,T, . . . ,TN and ρ,ρ, . . . ,ρN . Let {Zn}, {Yn}, and {Vn} be sequences generated by
Z ∈ H and

⎧⎪⎪⎨
⎪⎪⎩

∑N̄
i= ai�i(Vn, y) + 

ϕn
〈y –Vn,Vn –Zn〉 ≥ , ∀y ∈ C,

Yn = θnPCZn + ( – θn)Vn,

Zn+ = δnγF (Zn) + (I – δnA)PC(I –ψn(I – S))Yn, ∀n ∈N,

(.)
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where {δn}, {θn}, {ϕn}, {ψn} ⊆ (, ),  < ai < , for all i = , , . . . , N̄ . Suppose the conditions
(i)-(vi) hold.

(i) limn→∞ δn =  and
∑∞

n= δn =∞;
(ii)  < τ ≤ θn ≤ υ < , for some τ ,υ > ;
(iii)

∑∞
n= ψn <∞;

(iv)  < ε ≤ ϕn ≤ η < , for some ε,η > ;
(v)

∑N̄
n= ai = ;

(vi)
∑∞

n= |δn+ – δn| <∞,
∑∞

n= |θn+ – θn| <∞,
∑∞

n= |ψn+ –ψn| < ∞,∑∞
n= |ϕn+ – ϕn| < ∞.

Then the sequences {Zn}, {Yn}, and {Vn} converge strongly to q = P�(I –A + γF )q.

Proof Using Remark ., Lemma ., and the same method as in Theorem ., we have
the desired conclusion. �

Remark . Theorem . can be considered as an improvement of Theorem . in the
result of Tian and Jin [] in the sense that some conditions are not assumed.

(i) Tω := ( –ω)I +ωT , ω ∈ (,  ),
(ii) T is demi-closed on H ,

where T is a quasi-nonexpansive mapping on H .

5 Examples for equilibrium problems and numerical results
In this section, the numerical examples are given for supporting Theorem .. Using these
examples, we see that our iteration for the combination of equilibrium problem converges
faster than our iteration for the classical equilibrium problem.

Example . Let the mappings A :R →R, F :R →R, be defined by

Ax =
x

,

F x =
x

, for all x ∈R.

For every i = , , . . . ,N , let �i : [, ] × [, ] → R and T : [, ] → [, ] be de-
fined by

T x =
x + 


,

�i(x, y) = i(y – x)(y + x – ), for all x, y ∈ [, ].

Put ai = 
i +


NN , for every i = , , . . . ,N . Let γ = 

 , δn = 
n , θn = n

n+ , ϕn = n
n+ , and

ψn = 
n for every n ∈N. Let the initial values be defined as in the following cases:

(i) Z = , N = , and n = ,
(ii) Z =  and n =N = .

Then, for both cases, the sequences {Zn}, {Yn}, and {Vn} converge strongly to .
Solution. It is obvious that T is a nonspreading mapping and Fix(T ) = {}.
Since ai = 

i +


NN , we obtain

N∑
i=

ai�i(x, y) =
N∑
i=

(

i

+


NN

)
i(y – x)(y + x – ) = μ(y – x)(y + x – ),
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where μ =
∑N

i=(

i +


NN )i. It is clear that

∑N
i= ai�i satisfies all conditions in Theorem .

and EP(
∑N

i= ai�i) =
⋂N

i= EP(�i) = {}. Then we have

Fix(T )∩
N⋂
i=

EP(�i) = {}.

Observe that

 ≤
N∑
i=

ai�i(Vn, y) +

ϕn

〈y –Vn,Vn –Zn〉

= μ(y –Vn)(y + Vn – ) +

ϕn

(y –Vn)(Vn –Zn)

⇔ ≤ μϕn(y –Vn)(y + Vn – ) + (y –Vn)(Vn –Zn)

= μϕny + (μVnϕn +Vn –Zn – μϕn)y

+ μϕnVn –V
n – μϕnV


n +VnZn. (.)

Let G(y) = μϕny + (μVnϕn + Vn – Zn – μϕn)y + μϕnVn – V
n – μϕnV


n + VnZn. G(y)

is a quadratic function of y with coefficients a = μϕn, b = μVnϕn + Vn – Zn – μϕn, and
c = μϕnVn –V

n – μϕnV

n +VnZn. Determine the discriminant � of G as follows:

� = b – ac

= (μVnϕn +Vn –Zn – μϕn) – (μϕn)
(
μϕnVn –V

n – μϕnV

n +VnZn

)
= μϕ

n – μϕnVn – μϕ
nVn +V

n + μϕnV

n + μϕ

nV

n + μϕnZn – VnZn

– μϕnVnZn +Z
n

= (Vn – μϕn + μϕnVn –Zn).

From (.), we have G(y) ≥ , for every y ∈ R. If G(y) has at most one solution in R, thus
we have � ≤ . This implies that

Vn =
Zn + μϕn

 + μϕn
, (.)

where μ =
∑N

i=(

i +


NN )i. Put δn = 

n , θn =
n

n+ , ϕn = n
n+ , ψn = 

n , ∀n ∈ N. It is clear to
see that the sequences {δn}, {θn}, {ϕn}, and {ψn} satisfy all conditions in Theorem .. For
every n ∈N, from (.), we rewrite (.) as follows:

⎧⎨
⎩

Yn = n
n+P[,]Zn + ( – n

n+ )


+μ n
n+

(Zn + μ n
n+ ),

Zn+ = 
nZn + (I – 

nA)P[,](I – 
n (I – T ))Yn, ∀n ∈ N.

(.)

FromTheorem ., we can conclude that the sequences {Zn}, {Yn}, and {Vn} generated by
(.) converge strongly to .
For case (i), with N = , we have μ = . Then (.) becomes

Vn =
Zn + ϕn

 + ϕn
. (.)
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Table 1 The values of {Vn}, {Yn}, and {Zn} with Z1 = 50

n N = 1 N = 10

Vn Yn Zn Vn Yn Zn

1 23.272727 28.618182 50.000000 20.600006 26.480004 50.000000
2 4.119192 5.455988 8.797980 3.535267 4.893445 8.288890
3 2.287423 2.989653 4.394114 1.973077 2.636539 3.963461
4 1.631883 2.025784 2.715111 1.446758 1.794880 2.404095
5 1.331444 1.556406 1.916346 1.219216 1.405203 1.702781
6 1.178502 1.307023 1.499805 1.109733 1.208492 1.356631
7 1.096153 1.168453 1.271738 1.053976 1.104708 1.177182
8 1.050342 1.089475 1.143282 1.024666 1.048632 1.081587
9 1.024377 1.043831 1.069769 1.009019 1.018015 1.030010
10 1.009539 1.017314 1.027423 1.000654 1.001320 1.002186

(a) N =  (b) N = 

Figure 1 The convergence of {Vn}, {Yn}, and {Zn} with initial value Z1 = 50.

Then we have

⎧⎨
⎩

Yn = n
n+P[,]Zn + ( – n

n+ )


+ n
n+

(Zn +  n
n+ ),

Zn+ = 
nZn + (I – 

nA)P[,](I – 
n (I – T ))Yn, ∀n ∈ N.

(.)

From Corollary ., we can conclude that the sequences {Zn}, {Yn}, and {Vn} generated
by (.) converge strongly to .
Table  and Figure  show the values of sequences {Zn}, {Yn}, and {Vn} in two cases.

Remark .
(i) From Table  and Figure , the sequences {Zn}, {Yn}, and {Vn} converge to , where

{} = Fix(T )∩ ⋂N
i= EP(�i).

(ii) For case (i), Corollary . guarantees the convergence of {Zn}, {Yn}, and {Vn}.
(iii) For case (ii), the convergence of {Zn}, {Yn}, and {Vn} can be guaranteed by

Theorem ..
(iv) The iteration (.) for the combination of equilibrium problem converges faster

than the iteration (.) for the classical equilibrium problem.

Finally, we give the numerical example for our main theorem in two-dimensional space
of real numbers.
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Example . LetR be the two-dimensional space of real numbers with an inner product
〈·, ·〉 : R ×R

 → R defined by 〈u, v〉 = u · v = uv + uv and a usual norm ‖ · ‖ : R → R

given by ‖u‖ =
√
u + u, for all u = (u,u), v = (v, v) ∈ R

. Let the mappings A : R →
R

, F :R →R
 be defined by

Au =
(
u

,
u


)
,

F u =
(
u

,
u


)
, for all u = (u,u) ∈R

.

For every i = , , . . . ,N and I = [, ], let �i : I × I →R and T : I → I be defined by

T u =
(
u + 


,
u + 



)
,

�i(u, v) = i(v – u) · (v + u – ), for all u = (u,u), v = (v, v) ∈ I,

where  = (, ). Let γ = 
 , δn =


n , θn =

n
n+ , ϕn = n

n+ , and ψn = 
n for every n ∈N.

It is clear that T is a nonspreading mapping and Fix(T ) = {}, where  = (, ).
Put ai = 

i +


NN , for every i = , , . . . ,N . It is obvious that
∑N

i= ai�i satisfies all con-
ditions in Theorem . and EP(

∑N
i= ai�i) =

⋂N
i= EP(�i) = {}, where  = (, ). Then we

have

Fix(T )∩
N⋂
i=

EP(�i) = {}.

Then, by Theorem ., the sequencesZn = (Z
n,Z

n),Yn = (Y
n,Y

n), andVn = (V
n,V

n) con-
verge strongly to {}.

Remark . From Example ., putting ρ =
∑N

i=(

i +


NN )i, we obtain

 ≤
N∑
i=

ai�i(Vn, y) +

ϕn

〈y –Vn,Vn –Zn〉

= ρ(y –Vn) ·
(
y + Vn – (, )

)
+


ϕn

(y –Vn) · (Vn –Zn)

= ρ
(
y –V

n, y –V
n
) · (y + V

n – , y + V
n – 

)
+


ϕn

(
y –V

n, y –V
n
) · (V

n –Z
n,V


n –Z

n
)

= ρ
((
y –V

n
)(
y + V

n – 
)
+

(
y –V

n
)(
y + V

n – 
))

+

ϕn

((
y –V

n
)(

V
n –Z

n
)
+

(
y –V

n
)(

V
n –Z

n
))

=
(

ρ
(
y –V

n
)(
y + V

n – 
)
+


ϕn

(
y –V

n
)(

V
n –Z

n
))

+
(

ρ
(
y –V

n
)(
y + V

n – 
)
+


ϕn

(
y –V

n
)(

V
n –Z

n
))

⇔ ≤ (
ρϕn

(
y –V

n
)(
y + V

n – 
)
+

(
y –V

n
)(

V
n –Z

n
))
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+
(
ρϕn

(
y –V

n
)(
y + V

n – 
)
+

(
y –V

n
)(

V
n –Z

n
))

=
(
ρϕn(y) +

(
ρV

nϕn +V
n –Z

n – ρϕn
)
y

+ ρϕnV

n –

(
V

n
) – ρϕn

(
V

n
) +V

nZ

n
)

+
(
ρϕn(y) +

(
ρV

nϕn +V
n –Z

n – ρϕn
)
y

+ ρϕnV

n –

(
V

n
) – ρϕn

(
V

n
) +V

nZ

n
)

=G(y) +G(y), (.)

where G(y) = ρϕn(y) + (ρV
nϕn + V

n – Z
n – ρϕn)y + ρϕnV


n – (V

n) – ρϕn(V
n) +

V
nZ


n andG(y) = ρϕn(y)+(ρV

nϕn+V
n –Z

n–ρϕn)y+ρϕnV

n –(V

n)–ρϕn(V
n)+

V
nZ


n. Then G(y) and G(y) are quadratic functions with coefficients a = ρϕn, b =

ρV
nϕn + V

n – Z
n – ρϕn, and c = ρϕnV


n – (V

n) – ρϕn(V
n) + V

nZ

n, and a = ρϕn,

b = ρV
nϕn +V

n –Z
n –ρϕn, and c = ρϕnV


n –(V

n ) –ρϕn(V
n) +V

nZ

n, respectively.

Determine the discriminant � of G as follows:

� = (b) – ac

=
(
ρV

nϕn +V
n –Z

n – ρϕn
) – ρϕn

(
ρϕnV


n –

(
V

n
) – ρϕn

(
V

n
) +V

nZ

n
)

=
(
V

n – ρϕn + ρϕnV

n –Z

n
).

From (.), if G(y) ≥ , ∀y ∈ R, it has at most one solution in R, thus � ≤ . It follows
that

V
n =

Z
n + ρϕn

 + ρϕn
. (.)

Next, we determine the discriminant � of G as follows:

� = (b) – ac

=
(
ρV

nϕn +V
n –Z

n – ρϕn
) – ρϕn

(
ρϕnV


n –

(
V

n
) – ρϕn

(
V

n
) +V

nZ

n
)

=
(
V

n – ρϕn + ρϕnV

n –Z

n
).

From (.), if G(y) ≥ , ∀y ∈ R and it has at most one solution in R, then � ≤ . This
yields

V
n =

Z
n + ρϕn

 + ρϕn
. (.)

Put δn = 
n , θn =

n
n+ , ϕn = n

n+ ,ψn = 
n , for all n ∈ N. It is obvious that the sequences {δn},

{θn}, {ϕn}, and {ψn} satisfy all conditions in Theorem .. For every n ∈ N, from (.) and
(.), the iterative scheme (.) becomes

⎧⎨
⎩Yn = n

n+PCZn + ( – n
n+ )Un,

Zn+ = 
nZn + (I – 

nA)PC(I – 
n (I – T ))Yn, ∀n ∈N,

(.)

where Zn = (Z
n,Z

n), Yn = (Y
n,Y

n), and Vn = (V
n,V

n) = (Z
n+ρϕn
+ρϕn

, Z
n+ρϕn
+ρϕn

).
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Let the initial values be defined as in the following cases.
(i) Z = (Z

,Z
 ) = (–, ), N = , and n = ,

(ii) Z = (Z
,Z

 ) = (–, ) and n =N = .
For case (i), with N = , we have ρ = . Then, from (.) and (.), we obtain

V
n =

Z
n + ϕn

 + ϕn

and

V
n =

Z
n + ϕn

 + ϕn
.

Then we have⎧⎨
⎩Yn = n

n+PCZn + ( – n
n+ )Vn,

Zn+ = 
nZn + (I – 

nA)PC(I – 
n (I – T ))Yn, ∀n ∈N,

(.)

where Zn = (Z
n,Z

n), Yn = (Y
n,Y

n), and Vn = (V
n,V

n) = (Z
n+ϕn
+ϕn , Z

n+ϕn
+ϕn ).

Tables  and  and Figure  show the values of the sequences {Zn}, {Yn}, and {Vn} in the
two cases.

Table 2 The values of {Vn}, {Yn}, and {Zn} with Z1 = (–1, 0) and N = 1

n Vn = (V1
n ,V

2
n ) Yn = (Y1

n,Y
2
n) Zn = (Z1

n,Z
2
n)

1 (0.473684, 0.736842) (0.178947, 0.589474) (–1.000000, 0.000000)
2 (0.880767, 0.899610) (0.761533, 0.799220) (0.463450, 0.548246)
3 (0.944343, 0.947678) (0.873506, 0.881086) (0.731833, 0.747902)
4 (0.967678, 0.968228) (0.920665, 0.922015) (0.838391, 0.841141)
5 (0.978604, 0.978548) (0.944718, 0.944575) (0.890502, 0.890217)
...

...
...

...
10 (0.992787, 0.992723) (0.979067, 0.978881) (0.961231, 0.960887)
...

...
...

...
16 (0.995890, 0.995878) (0.987473, 0.987437) (0.977477, 0.977412)
17 (0.996158, 0.996149) (0.988232, 0.988203) (0.978908, 0.978856)
18 (0.996393, 0.996386) (0.988903, 0.988879) (0.980164, 0.980121)
19 (0.996601, 0.996595) (0.989499, 0.989479) (0.981276, 0.981241)
20 (0.996785, 0.996780) (0.990033, 0.990017) (0.982268, 0.982239)

Table 3 The values of {Vn}, {Yn}, and {Zn} with Z1 = (–1, 0), N = 20

n Vn = (V1
n ,V

2
n ) Yn = (Y1

n,Y
2
n) Zn = (Z1

n,Z
2
n)

1 (0.518072, 0.759036) (0.214458, 0.607229) (–1.000000, 0.000000)
2 (0.894328, 0.911003) (0.775448, 0.810881) (0.478246, 0.560576)
3 (0.951505, 0.954360) (0.882070, 0.889012) (0.743199, 0.758316)
4 (0.972025, 0.972470) (0.926247, 0.927421) (0.846135, 0.848585)
5 (0.981489, 0.981428) (0.948508, 0.948339) (0.895738, 0.895396)
...

...
...

...
10 (0.993655, 0.993602) (0.980077, 0.979909) (0.962426, 0.962110)
...

...
...

...
16 (0.996360, 0.996351) (0.987975, 0.987942) (0.978017, 0.977957)
17 (0.996597, 0.996589) (0.988698, 0.988671) (0.979405, 0.979357)
18 (0.996804, 0.996798) (0.989336, 0.989315) (0.980624, 0.980585)
19 (0.996987, 0.996982) (0.989905, 0.989888) (0.981706, 0.981673)
20 (0.997150, 0.997146) (0.990416, 0.990401) (0.982671, 0.982644)
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(a) N =  (b) N = 

Figure 2 The convergence of {Vn}, {Yn}, and {Zn} with initial value Z1 = (–1, 0) for both cases.

Remark .
(i) Tables  and , and Figure  show that the sequences {Zn}, {Yn}, and {Vn} converge

to , where {} = {(, )} = Fix(T )∩ ⋂N
i= EP(�i).

(ii) For case (i), Corollary . guarantees the convergence of {Zn}, {Yn}, and {Vn}.
(iii) For case (ii), the convergence of {Zn}, {Yn}, and {Vn} can be guaranteed by

Theorem ..
(iv) The iteration (.) for the combination of equilibrium problem converges faster

than the iteration (.) for the classical equilibrium problem.
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