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Faecifgrgfegggmstmirgni;gigkut,s In this paper, we propose an iterative scheme modified from the work of Ceng et al.
Institute of Technology Ladkrabang, (Nonlinear Anal. Hybrid Syst. 4:743-754, 2010) and Plubtieng and Punpaeng (J. Math.

Bangkok 10520, Thailand Anal. Appl. 336(1):455-469, 2007) to prove the strong convergence theorem for

approximating a common element of the set of fixed points of nonspreading
mappings and a finite family of the set of solutions of the equilibrium problem. Using
this result, we obtain the strong convergence theorem for a finite family of
nonspreading mappings and a finite family of the set of solutions of equilibrium
problem. Moreover, in order to compare numerical results between the combination
of the equilibrium problem and the classical equilibrium problem, some examples are
given in one- and two-dimensional spaces of real numbers.
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1 Introduction
Throughout this paper, let C be a nonempty closed convex subset of a real Hilbert space
H with the inner product (-, -) and the norm || - ||. We denote weak convergence and strong
convergence by the notations ‘—’ and ‘— respectively. We use R to denote the set of real
numbers and Fix(7) to represent the set of fixed points of 7, where 7 is a mapping from
C into itself.

In 2008, Kohsaka and Takahashi [1] introduced the nonspreading mapping 7 in Hilbert

space H as follows:
WTu-TvI><|Tu-v|*+|lu-Tv|*> VuveC. (1.1)

In 2009, it was shown by Iemoto and Takahashi [2] that (1.1) is equivalent to the follow-

ing equation:
1Tu-Tv|> <u-v|*>+2u—-Tu,v-Tv), forallu,veC.

Many researchers proved the strong convergence theorem for a nonspreading mapping

and some related mappings in Hilbert space; see for example [3—6].
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Let B: C — H. The variational inequality problem is to find a point u € C satisfying the
following inequality:

(Bu,v—u) >0, 1.2)

for all v € C. Moreover, VI(C, B) is used to denote the set of solutions of (1.2).
Let @ : C x C — R be a bifunction. The classical equilibrium problem for ® is to find
u € C satisfying the following inequality:

®(u,v) >0, VveC. (1.3)

We use EP(®) to represent the set of solution of (1.3).

Let the bifunction & satisfy the following conditions for solving the equilibrium prob-
lem.

(A1) ®(u,u)=0forall u € C;

(A2) ® is monotone, i.e., ®(u,v) + ®(v,u) <0 for all u,v € C;

(A3) foreach u,v,weC,

tl_i)r(r)g CID(tw + (1 -1t)u, V) < ®(u,v);

(A4) foreach u € C, vi—> ®(u,v) is convex and lower semicontinuous.

In 1994, Blum and Oettli [7] showed that the classical equilibrium problem (1.3) cov-
ers monotone inclusion problems, saddle point problems, variational inequality prob-
lems, minimization problems, Nash equilibria in noncooperative games, vector equilib-
rium problems, and certain fixed point problems.

Let W = {®;};1,. n be afinite family of bifunctions from C x C to R. The system of equi-

.....

that is, the set
EP(V) = {u e C: ®;(u,v) > 0,Vve C,Vi€L,2,...,N}. (1.4)

The problem (1.4) extends (1.3) to a system of such problems covering various forms of
feasibility problems [8]. Several iterative algorithms are proposed to solve the equilibrium
problems and a finite family of equilibrium problems; see, for instance, [8-14].

Example 1.1 Let ¥ = {®;},.1,, n be a finite family of bifunctions from C x C to R, where
the bifunctions ®; are defined by

Di(u,v) =i(v—u)(v+2u-3), foreveryu,veR.

Foreachi=1,2,...,N, it is obvious that the ®;(x, y) satisfy (A1)-(A4). Then we obtain
N
EP(V) = ﬂ EP(®,) = {1}.
i=1

In 2010, Peng et al. [15] proposed the following iterative algorithm for solving a family
of infinite nonexpansive mappings and a finite family of equilibrium problems in Hilbert
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space:

znn=z€H,
u, = TFmTFm—l . TFZTFIZ ,
n Bn = Bn Bn = B (15)
Vy=Pc(l - s,A)uy,
Zns1 = A Vf(Wyzy) + ( — ayBYW,, Pc(I - 1,A)v,, VYneN.

Under some appropriate conditions, they proved that {z,}, {v,}, and {u,,} converge strongly
to g = Po(yf + (I - B))(q), where Q = (22, Fix(S;) N VI(C,A) N, EP(Fk) and f is a con-
tractive mapping on H.

Over the past few years, many researchers have started working on the methods for
finding a common solution of a finite family of equilibrium problems in Hilbert space;
see, for instance, [16—18].

In 2013, Suwannaut and Kangtunyakarn [12] introduced the combination of equilibrium
problem which is to find u € C such that

N
(Z a,«b,-) (u,v) >0, VvecC, (1.6)
i=1

where ®; : C x C — R are bifunctions and a; € (0,1) with Zﬁl a; =1, for every i =
1,2,...,N. The set of solutions (1.6) is denoted by EP(Z?:[1 a; ;).

If ®; =@, foralli=1,2,...,N, then the combination of equilibrium problem (1.6) re-
duces to the classical equilibrium problem (1.3).

Moreover, they obtain Lemma 2.10 as shown in the next section.

Example 1.2 For every i =1,2, 3, let the bifunctions ®; : R x R — R, be given by

O1(u,v)=(v—u)v+u-2),
@Dy (u,v) = (v—u)(3v+5u-38),

DO3(u,v) =(v-u)9v+12u—-21), Vu,veR.

For all i = 1,2,3, it is obvious that the ®;(u,v) satisfy (Al)-(A4). Let a; = %, as = % and
7

as = ig, thus we have
> 1
> a®i(u,v) = — (v - u)(78v + 103u - 181).
= 18
This implies that

3 3
EP(Z@;‘Q’) = mEP(CD,') = {1}.
i-1 i-1

Remark 1.3 For all i = 1,2,...,N, let the mapping 4, : C — H be defined by ®;(x,v) =
(Aju,v — u) for all u,v € C. For each i = 1,2,...,N, if ®;(u,v) = (A;u,v — u) > 0 for all
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u,veC,andi=1,2,...,N, then EP(®;) = VI(C, ;). Hence we have

i=1 i=1

N N N
EP(Z@@) - ﬂEP(dD,-) - ﬂVI(C, A;).
i=1

After we have studied research related to equilibrium problems, we obtain the following

question.
Question Is it possible to prove strong convergence theorem for a finite family of equi-
librium problem using different method from the result of Peng et al. [15], Piri [17] and

references therein?

Inspired and motivated by the work of Ilemoto and Takahashi [2], Suwannaut and Kang-
tunyakarn [12] and related research, we propose an iterative scheme modified from the
work of Plubtieng and Punpaeng [19] and Ceng et al. [11] to prove the strong conver-
gence theorem for approximating a common element of the set of fixed points of a non-
spreading mapping and a finite family of the set of solutions of equilibrium problems using
Lemma 2.10 and a different method from the work of Peng et al. [15] and Piri [17] and ref-
erences therein. Moreover, some examples are given in order to compare the numerical
results between the combination of the equilibrium problem and the classical equilibrium

problem.

2 Preliminaries
We now recall the following definition and well-known lemmas.

Definition 2.1
(i) A is strongly positive operator on H if there exists a constant 8 > 0 such that

(Au,u) > Bllul>, YueH.

(ii) 7 is a nonexpansive mapping if
|Tu-Tv|<|lu-v|, VuvecC.

(iii) For every u € H, there is a unique nearest point Pcu in C such that
lu-Pcul <|lu-v|, VveC.

Such an operator P is called the metric projection of H onto C.
Lemma 2.1 ([20]) For a givenw € H and u € C,
u=Pcw < (u-w,v—u)>0, VveC.

Furthermore, Pc is a nonexpansive mapping.
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Lemma 2.2 ([21]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence
{u,} C H with u, — u, the inequality

liminf ||z, — u|| < liminf ||z, — V||
=00 n—00
holds for every v e H with v # u.
Lemma 2.3 ([22]) Let {u,} be a sequence of nonnegative real numbers satisfying
Unit < (1= Bu)itn + My V1 20,
where w,, is a sequence in (0,1) and {n,} is a sequence such that

1 221 Bn =00,

(2) limsup,_, o g <0 0r 327 [nal < cc.

Then lim,—, o #, = 0.

Lemma 2.4 ([4]) Let H be a real Hilbert space. Then the following results hold:
(i) Forallu,v € H and t € [0,1],

2
|tw+ @ =t)v||” = tllul® + A=) IVI* =t = )| = v]]?,
() [loe + v||® < lul|® + 2(v,u +v), for each u,v € H.

Lemma 2.5 ([20]) Let H be a Hilbert space, let C be a nonempty closed convex subset of
H and let A be a mapping of C into H. Then, for o > 0,

Fix(Pc(I - a)) = VI(C, A),
where Pc is the metric projection of H onto C.

Lemma 2.6 ([23]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient B > 0 and 0 < § < ||| Then ||I - 84| <1-88.

Lemma 2.7 ([2]) Let C be a nonempty closed convex subset of H. Then a mapping T : C —
C is nonspreading if and only if

1 Tu—-TvI*<lu—-v|®+2u-Tuv-Tv), forallu,vecC.

Remark 2.8 If 7 is a nonexpansive mapping and (u — 7 u,v— T v) > 0, for every u,v € C,
then 7 is a nonspreading mapping.

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C — C be a nonspreading mapping with Fix(T) # . Then we have the following state-
ments:

(i) Fix(7)=VI(C,I-T);

(i) for every u € C and v € Fix(T),

”PC(I— A - T))u - V” <\lu-v|, whereke(0,1).
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Proof To prove (i), let x* € Fix(7). Then x* = T'x*. Since
(v—a",U-T)x*)=0, VveC,
we have x* € VI(C,I - T), from which it follows that Fix(T) € VI(C, - T).
Next, we show VI(C,I — 7) € Fix(T).
Let & € VI(C,I - 7). This implies that
(v-xU-7)x)>0, WveC. (2.1)
Let x* € Fix(7). Then, by Lemma 2.7, we obtain
|75 -7 |" < |&—a|° + 25 - THa* - To*) = |2 —2*|". (2.2)
Observe that
|T&—a | = |- - (1 - T)z|”
= & -] - 20F -2, 1 - T)E) + |- 7| (2.3)
From (2.1), (2.2), and (2.3), we get
|- 7)z|* <2(F -2, -T)F) <0,

which yields x € Fix(7"). Therefore VI(C,I — 7) € Fix(7").
To prove (ii), let u € C and v € Fix(T"). Since T is a nonspreading mapping and we have
Lemma 2.7, we get
NTu-TvI><lu-v|*+2u—-Tu,v—Tv) = |lu-v|> (2.4)

Thus we have

1T w—v|® = |u-v—(-T)u|’

== vl = 2w —v, (I = T)u) + | (T = T (2.5)
From (2.4) and (2.5), we obtain
(= Tu|® < 2{u—v,(I - 7)), (2.6)
From (i) and Lemma 2.5, we have
v € Fix(T) = VI(C,I = 7) = Fix(Pc(I - A(I = 7))). (2.7)
By the nonexpansiveness of P¢, (2.6), and (2.7), we get

|Pc(l =21 = T))u=v|? = |Pe(l - A = T))u— Pc(I -2 - T))v|?

<| (-2 -T))u-(I-2d-T)|
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= =v) =T - TYu—T-TW)|’

= [ =v) =2 = Tu

= Nl =vI? =24 — v, (I = T)ua) + 22| (L = T )|

<llu—vI? = A (= Tyu|® + 22| (1 = T)ue|?

= Ju—vI? =20 = )| - T)u”

<llu—-v|?
which implies that |Pc({ = A(I - T))u—v| < |lu-v|. |
Lemma 2.10 ([12]) Let C be a nonempty closed convex subset of a real Hilbert space H. For

i=12,...,N,let ®;: C x C— R be bifunctions satisfying (Al)-(A4) with ﬂﬁl EP(®;) # 0.
Then

N N
EP(Z ai<1>i) =[EP(®)),
i=1 i=1

where a; € (0,1) foreveryi=1,2,...,N and Zf\il a; = 1.

Lemma 2.11 ([7]) Let C be a nonempty closed convex subset of H and let ® be a bifunction
of C x C into R satisfying (A1)-(A4). Let t > 0 and u € H. Then there exists w € C such that

1
¢(w,v)+z(v—w,w—u) >0, VveC.

Lemma 2.12 ([8]) Assume that ® : C x C — R satisfies (A1)-(A4). For t > 0, define a map-
ping S; : H— C as follows:

1
Si(x) = {weC:CD(w,v)+ E(v—w,w—u) ZO,VVGC},

forall u € H. Then the following hold.:
(i) S; is single-valued,;
(i) S; is firmly nonexpansive, i.e., for each u,v € H,

|Su) = S, |* < (Selw) = S,(w), e — V)

(iii) Fix(S;) = EP(®);
(iv) EP(®) is closed and convex.

Remark 2.13 ([12]) From Lemma 2.10, it is easy to see that Zf\il a;d; satisfies (Al)-(A4).
By using Lemma 2.12, we obtain

N N
Fix(S;) = EP (Z ﬂiq)z) = ﬂ EP(®)),
i=1

i=1

where a; € (0,1), for eachi=1,2,...,N, and Zﬁl a;=1.
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3 Strong convergence theorem

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¥ be
an a-contractive mapping on H and let A be a strongly positive linear bounded operator on
H with coefficient y and 0 < y < g Let T : C — C be a nonspreading mapping. For every
i=12,...,N, let ®;: C x C — R be a bifunction satisfying (Al)-(A4) with Q:=Fix(7) N
ﬂf\il EP(®;) #0. Let {Z,,}, {Yn}, and {V,} be sequences generated by Z, € H and

Zﬁlaiq}i(vn’y) + w%(y_vmvn_zn) >0, Vyed(,
yn = GnPCZn + (1 - Hn)vm (31)
Zy1 =8,y F(Z,) + ([ =8,A)Pc(I - V,(I-TNY,, Vnel,

where {8,,},{6,}, {on}, {¥n} € (0,1),0<a; <1, foralli=1,2,...,N. Suppose the conditions
(i)-(vi) hold.
(i) limy— 08, =0and ) oo 8, =00;

(i) 0<7 <6, <v<l,forsomet,v>0;

(iif) Y2y ¥u < 005

(iv) 0<e <¢, <n<l,forsomee,n>0;

W) Y=l

V) D0 1841 = 8l <00, Y021 1Bt — Ol < 00, D0y [Wna1 — Wl < 00,

Y1 [@na1 = @ul < 00

Then the sequences {Z,}, {%,}, and {'V,;} converge strongly to q = Po(I — A + y F)q.

Proof The proof of this theorem is divided into five steps.

Step 1. Claim that {Z,} is a bounded sequence.

1

TAT? for every n € N.

Since 8, — 0 as n — oo, without loss of generality, we assume §,, <
Since ZZI a;®; satisfies (A1)-(A4) and
l 1
> @iV y) + SOV Va=Z,) 20, VreC,

i=1 "

by Lemma 2.12 and Remark 2.13, we have 'V, = T, Z,, and Fix(T,,) = ﬂﬁl EP(®;).
From Lemma 2.5 and Lemma 2.9(i), we obtain

Fix(7) = Fix(Pc(I = (I - 7))).
Let z € Q. By the nonexpansiveness of P¢ and T,,,, we have

1% =2l < OullPcZy -zl + (1= O Ty, Zn — 2ll < 120 —z|l. (3.2)
From Lemma 2.6, Lemma 2.9(ii), and (3.2), we obtain

||Zn+1 _Z”
<8u|y F(Z) = Az| + I = 8, Al||Pc(I = Yul = T)) Y — 2|,
<8y |F(Zn) = F@| + 8]y F (@) — Az| + 1= 8, 7)Y — 2|l

<8yl Zy —zll + 8,y F (2) — Az|| + (1= 8,7)1Z — 2l
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= (1=8,(7 = y@))1Zs — 2ll + 84| ¥ F (2) - Az]

lly F(2) — Azl }

< maX{ | Z1 - zll, =
yo

By induction, we obtain ||Z, — z|| < max{||Z; —z||, W}, Vn € N. It shows that {Z,,}
is bounded and so are {V,} and {Y,}.

Step 2. Show that lim,,_, oo | Z,s1 — Z,|| = 0.

By the definition of Z,, and Lemma 2.6, we obtain

1Z 1 = Zul

<8, | F(Z) = F (Znd) | + V180 = S| | F (Z)|
+ 1 = 8, AN [ Pe(l = Yl = 7)) Yo = Pc(I = Y (I = 7)) Y|
+ [ (I = 84 A)PC(I = Yua (T = T)) Yina
— (I =8, AP (I = Yrua (I = T)) Yo

<8yl Zy = Zuall + ¥18, = 85t || F (Zd)
+ (L= 8,0 (I =¥l = T)) You = (I = Y (I = 7)) Yo |
+ 185 = 8ua || AP (I = Yrua (T = T)) Your |

<8uyalZu— Zyaall + Y180 = 8pal | F (Zn) | + (1= 8,7) [0l Z1 = Ziia |
+ 10 = Ona 1PcZua || + (L= 0,) 1 Vi = Vit | + 165 = O | Vi
+ Y| (L= T Yo = I = T)Yua || + W0 = Y| | (T = T) Yua | ]
+ 185 = 8ua || APC(L = Yruea ([ = T)) Yua |- (33)

Using the same method as in [12] (Step 2 of Theorem 3.1), we have
1
Vi =Voall SN2y - Zyall + < |00 = @u-1lll Vi = Znl- (3.4)
Substitute (3.3) into (3.4) to get

”zn+1 - Zn”

<8uyallZy = Zu-all + 7185 = 8pal | F (Zpr) || + (1 - 6nf)[||zn ~Zu4|

1-6,
€

+ 1600 = Opa||PcZpa |l + 19n = @n1llVi = Znll + 160 = Opa || Vir

| U= TV = U= T)Yos | + 10 1//,,_1|||<1—myn_1||}

+ |8n - an—ll || rA’PC(I_ wn—l(l_ 7))%1—1 ”

< (18,7 = y))1Z = Zopct Il + (L4 )18, = 851K + 216, — O, K

1
t |90 = Pna|K + 29K + |V — Y K, 3.5)
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where K = maxen{l|Vull, |F (Z)I 1V = Zull, IPcZull, 1T = T)Yull, AP — Yl -
T)Y.|}. From (3.5), the conditions (i), (iii), (v), and Lemma 2.3, we have

lim [|Z,.1 - Z4| = 0. (3.6)

Step 3. Prove that lim, o |V, — Z,|| = lim,— 0 ||Pc( = ¥,(I = T))Z,, — Z,]| = 0.
To claim this, let z € Q. Since V,, = T, Z,, and T, is a firmly nonexpansive mapping, we
have
Iz = Ty, Zull? = 1 Ty, 2 = Ty, Zal®

<ATy,z—Tp,Zy,z2—2Zy)

= %(”Twnzn —zl? +11Zn = 211> = 1Ty, Zn = Zull®),
from which it follows that
1V = 2l* <120 =201 = | Vi = Zall*. 3.7)
By the definition of Z,, Lemma 2.6, Lemma 2.9(ii), and (3.7), we get

[Z s -2l
= 8 (y F (Z) = APC(L = ull = ) Yo) + (Pl =l = T)) Y~ 2) |
< |Pc(l -yl = 7)) Y~ 2|
+ 28,y F (Z) = APC(I = Yl = T)) Yon, Zyi1 — 2)
< 1Y =2l + 28, ]|y F(Z0) = APC(L = Yl = T)) You | [ Z 1 — 2l
<OulPcZy—zl* + (1= 6,)| Vu -2l
+ 28,y F (Z) = APC(I = Yull = 7)) You || Zna1 - 2
<O0ul1Zn = 2l” + (1= 0) (12 = 2II* = [ Vi = Zull?)
+ 28,y F (Zn) = APC(I = Yull = 7)) You |1 Za1 - 2
=1Zy = 2l” = (1= 0] Ve — Zul?

+ 28, |y F(Zn) = APC(I = Yl = T)) You | 1 Z 01 — 21,
which implies that

(L= 0)1Vi = Zull® < (120 = 2]l + 1 Z1 = 201) [ Z1 = Z|

+28, )y F(Z) = APC(I = Yul = T)) You || Zn1 — 2lI.
From (3.6), the conditions (i) and (ii), this yields

lim [|'V, — Z.| = 0. (3.8)
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By Lemma 2.6 and Lemma 2.9(ii), we get

1Z i1 — 211
< |[Pc(l - vull = 7)) Y — 2|
+ 28,y F (Zn) = APC(I = YulI = T)) Yins Zns1 — 2)
< 1Y —2l” + 28, ||y F(Zu) = APC(I = Yl = T)) You | 1 Zs1 - 2|
= 0ulPcZn — 21> + A= 0,) | Vi — 2> = 6,(1 = 6,) | PcZ — Vi)
+ 28, ¥ F () = APC(I = Yull = T)) You | 1 Z11 - 2]
<11Zy —2|* = 6u(1 = 6,)|IPc Zyy = Vil

+ 28, ||y F(Zn) = APC(I = Yl = T)) You | |1 Z i1 — 21,
from which it follows that

0,1 = 0)IIPcZy = Vull® < (12 = 2ll + 1 Zs1 = 201) 1 Z1 = Zl

+28, ||y F(Zn) = APC(I = Yul = T)) Yo [ 1 Zrss1 = 2.

From (3.6), the conditions (i) and (ii), this implies that

Him [[PcZ, = Vyll = 0. 3.9)
Since

I1PcZy — Zull < 1PcZy = Vull + Vi — Zulls
using (3.8) and (3.9), we have

lim [[PcZ, — Z,|| = 0. (3.10)
Since

%0 = Znll < OlIPcZy — Zyll + 1= 0)'Vi = Zall,
by (3.8) and (3.10), thus we obtain

lim (| Y, — Zu|l = 0. (3.11)

n>00
Observe that

||zn _PC(I_ wn(l_ T))yn”
<NZw = Znaall + || Zwir = Pc(I = ¥uI = 7)) Y|

=1Zy = Zyall +5n||3/?(zn) _fA’PC(I_ Vull - T))yn

’
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which implies by (3.6) and the condition (i) that
lim [|Z, — Pc(I =l = 7)) Y| = 0. (312)
Since

|Zn = Pc(I = Yull - 7)) Z4||
< |2 = Pc(I = YulT = T)) Y| + | Pe(T = Yull = 7)) Yo = Pc(I = Yull = 7)) Z4|
<|Zs = Pc(I = Yul = T)You || + [ (I = ¥ulT = T)) Yo = (I = ¥ = T)) Z,
< |20 =Pc(I = ¥ul =T )Y || + 1%n = Zoll + V| (T = T) Yoo = (I = T) Z,

’

by (3.11), (3.12), and the condition (iii), we obtain
Jlim 12 = Pc(I = ¥uI - T))Z,| =0. (3.13)

Step 4. Show that limsup,,_, . (v F(q) - Aq, Z, — q) <0, where g = Po(l - A +y F)q.
First, take a subsequence {Z,, } of {Z,} such that

lim sup(y?(q) - Ag, L, — q) = kILIgO(V?(Q) — AG, Zy, — ‘1)‘

n—o0

Since {Z,} is bounded, we can assume that Z,, — w as k — co. By (3.8), it follows that
Uy, — was k— oo.

Assume w ¢ Fix(7"). Since Fix(7") = Fix(Pc(I = ¥, (I — 7))), we have @ # Pc(I — ¥, (I -
T))w. By the nonexpansiveness of Pc, the condition (iii), (3.13), and Opial’s condition, we
get

1ikrgior01f 1Z,, - wll < likrggf” Zyy, = Pc(I = (I - T))o|
= likrg(i)rgf(”an - PC(I - w”k(l - T))Z”’k ”

+ [Pl = v (= 7)) Zoy = Pe(l = Y (T = D)) o)

= likfgg}f(ﬂznk - PC(I ~ Y = 7)) Z “

+ H (1 ~ VY (I - 7))an - (1_ Y (I - 7))“)”)
< (124, ~ Pl o1~ 7))

+1Z, = 0l + Yy [ ([ = T)Zy = U= T

< Timi B
< hkrgg.gfllznk ol
This is a contradiction. Then we have
w € Fix(T). (3.14)

By continuing the same argument as in [12] (Step 4 of Theorem 3.1), we obtain

w e[ |EP(®;). (3.15)
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From (3.14) and (3.15), we get @ € Q. Since Z,, — w as k — oo, by Lemma 2.1 we can

conclude that

lim sup(yf‘“(q) - Ag Z, — q) = klirglo(y?(q) - AG, Zyy — q)

n—00

=(yFlq) - Aq,»-q)
<o0. (3.16)

Step 5. Finally, claim that the sequence {Z,} converges strongly to g = Po(I — A + y F)q.

By Lemma 2.4, Lemma 2.6, and Lemma 2.9(ii), we obtain

1Z - qll®
= (180 (v F (Z) — Aq) + (U = 8,4) (P (I = YT = T)) Yo — 9)|
< (=80 APl -9l - 7)) Y - ) |
+28,(y F(Z) - AG, Zi1 — q)
< (=87 1Yn —ql® + 28,7 | F(Z0) - F (@) | 1Z 1 -l
+28,(y F (q) - AG, Zi1 — q)

<A =87 (0ullPcZy — ql* + (1= 0,)Vs — qll?)

2

+28, 1 Zy = gl Zni1 — qll + 28,(y F (q) — AG, Z1 — q)
< (=87 11Zn - ql” + 8uya(l1Zs - qlI* + | Zna1 — ql%)

+ 25;«()/37(@ - =>4>6], Zn+1 - q),
which implies that

”Zn+l —61||2

(1-6,7)*+8,ya
< 1Zy—ql + ——
1-6,ya 1-6,ya

25;'1(]7 - )/Ol) 28;1()7 - ]/Ol) (Sn);z
=1-=——)1Z,—ql*+ = 1Z, - ql*
1-8,y«a 1-8,ya \2(y —ya)

Vf(q) - Aq, Zn+1 - q)

+

- (Vj:(q) = AG L1 — q>)

Yy -—ro

From (3.16), the condition (i), and Lemma 2.3, we can conclude that {Z,} converges
strongly to g = Pq(I — A + y F)q. By (3.8) and (3.11), we see that {V,} and {Y,} converge
strongly to g = Po(I — A + y F )g. This completes the proof. O

The following corollaries are direct results from Theorem 3.1.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¥ be
an a-contractive mapping on H and let A be a strongly positive linear bounded operator
on H with coefficient y and 0 <y < % Let T : C — C be a nonspreading mapping. Let
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®: C x C — R be a bifunction satisfying (Al)-(A4) with Q := Fix(7) N EP(®) # #. Let
{Z,}, {Yu), and {V,} be sequences generated by Z, € H and

PV )+ 0=V Vi = Zy) 20, VyeC,
Y,=60,PcZ,+1-6,)V,, (3.17)
Zn+1 = ‘Sny?(zn) + (I_ SWA)PC(I_ Wn([_ 7))%,, Vn e N;

where {8,},{0,}, {¢n}, {¥n} € (0,1). Suppose the conditions (i)-(vi) hold.

(i) limy oo 8, =0andy o) 8, = 00;

(i) 0<t <6, <v<l,forsomet,v>0;

(iii) Doy ¥u < 00;

(iv) 0<e <¢, <n<l,forsomee,n>0;

(V) 20021 181 = 8l < 00, D202 161 = Ol < 00, 3002 W1 = Yiul < 00,

Yoot @1 — @l < 00,

Then the sequences {Z,}, {%,}, and {'V,;} converge strongly to q = Po(I — A + y F)q.

Proof Put ® = &;, foralli=1,2,...,N. Using Theorem 3.1, the desired result is obtained.
O

In 2007, Plubtieng and Punpaeng [19] introduced the general iterative method for an
equilibrium problem and a nonexpansive mapping in Hilbert spaces. Let S be a nonex-
pansive mapping on H with Fix(S) NEP(F) # @. With an initial value z; € H, the sequences
{z,} and {v,} are generated by

F(vp,y) + win(y— ViV —2,) >0, VyeH,
Zns1 = AV f(zy) + [ — 0y A)Svy, VmEN,

(3.18)

where {r,} C (0,00) and «, C [0,1] satisfy some appropriate conditions. Then {z,} and
{vi} converge strongly to a point z, where z = Priys)nepir)({ — A + vf)(2).

Later, in 2010, Ceng et al. [11] studied the iterative scheme for equilibrium problem and
an infinite family of nonexpansive mappings. Let 0 < yo < y. Let {«,} and {y,} be se-
quences in (0,1). Starting with z; € H, the sequences {z,} and {u,} are generated by the
following iterative scheme:

F(”nry)+i(y—umun—2n)20, VyGH,
Vi = (L= Vu)zn + Yu Wity (3.19)
Zp+1 = Oanf(Vn) + (I - anA) anm

where W, is a W-mapping generated by an infinite family of nonexpansive mappings and
infinite real numbers. Then, under some suitable conditions, the sequences {z,} and {u,,}
converge strongly to z* = Py, F(Tn)mEp(¢f (z*), where f =1 - 6(A — yf).

Remark 3.3 For Corollary 3.2, we prove the strong convergence theorem for equilibrium
problem and a nonspreading mapping. Motivated by the results of Ceng et al. [11] and
Plubtieng and Punpaeng [19], we consider the following statements, different from this

work.
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(i) We investigate the iterative algorithm for a nonspreading mapping instead of using a
nonexpansive mapping.

(ii) We study the general iterative method by using the sequence
Yn=0,PcZy+ (1 =6,)Vy.

Corollary 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¥
be an a-contractive mapping on H and let A : H — H be a strongly positive linear bounded
operator with coefficient y and 0 < y < g Let T : C — C be a nonspreading mapping with
Fix(T) # 0. Let {Z,,} be the sequence generated by Z, € H and

Zyi1 =8,y F(Zy) + U = 8y A)Pc(I = Yy - T))PcZy, VneN, (3.20)

where {8,}, {¥,} € (0,1). Suppose the conditions (i)-(vi) hold.
(i) limy—oo 8, =0andy o2, 8, = 00;
(i) Y%, ¥ < 003
(i) Y052y 18mer = 8l < 00, o0, [¥mer = Yl < 00
Then the sequence {Z,} converges strongly to q = Prixiry(l — A + Yy F)q.

Proof Take ®; =0, foreveryi=1,2,...,N. Then we have V, = PcZ,, for every n € N. The
result of Corollary 3.4 can be obtained by Theorem 3.1. O

4 Applications

By means of our main result, we obtain the strong convergence theorem for a finite family
of nonspreading mappings and a finite family of equilibrium problems in the setting of
Hilbert space. To prove this, the following definitions, remarks, and lemmas are needed.

Definition 4.1 A mapping 7 is quasi-nonexpansive if

|1T7x-pl|l <|lx-pl, foreveryxe Candp eFix(T).
Remark 4.1 If7 : C — Cisnonspreading with Fix(7) # @, then 7 is quasi-nonexpansive.
Example 4.2 Let an inner product {-,-) : R? x R2 — R be defined by (u,v) = u-v = uyv; +

v and a usual norm || - || : R? — R be given by |lu|| = v/u? + u3, for all u = (uy,u,),v =
(v1,v2) € R%. Let I = [1,100] and let 7 : I*> — I? be defined by

= ’

7 ur+1 5up +1
2 6

), for all u = (uy, uy) € I2.

First, we show that 7 is a nonspreading mapping.
For every u,v € I?, we obtain

(T T2 H<u1+1 5u2+1> <V1+1 5vz+l>
u—TJv|?*= - ,

2

27 6 2 6

(s )

2

2

1 5 25
= Z(Ml )+ %(uz —17)


http://www.fixedpointtheoryandapplications.com/content/2014/1/167

Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:167
http://www.fixedpointtheoryandapplications.com/content/2014/1/167

and

2<(u1,u2 <u1+1,5u26+1>’(w,v2)_<V12+1’51/26+1>>
<< -1 uz— ) (v1—1 v2—1>>
2 '\ 27 6
U — 1 Uy — ).<V1—1 V2—1)
2 27 6
[(”“1)(”‘1)+(”2‘1)(”‘1)}
2 2 6 6

- -1 (w2 =1)(vp - 1)
- 2 18

Il
[\~

2

=2
(

> 0.
This yields

Nl =vi> +2(u—Tu,v—Tv) > |lu—v|?
2
= ||(M1—V1,M2—V2)||
= (w1 =) + (up — 1)?
1 2 5 2
> —\U -V + — Uy —V
4( 1—"1) 36( 2= V2)
=|Tu-"Tv|> (4.1)

Then 7 is a nonspreading mapping and we observe that Fix(7") = {1}, where 1 = (1,1). For
every u € I x I and 1 € Fix(7"), from (4.1), we have

NTu-T1? < |lu-1|>+2(u—-Tul-T1)

= Jlu-1|%
Therefore T is a quasi-nonexpansive mapping.

The following example shows that the converse of Remark 4.1 does not hold.

Example 4.3 Let [ = [0,2] and let 7 : I?> — I? be defined by

oAy ifue (1,2] x (1,2],
u =

(5% if u € [0,1] x [0,1].
First, show that 7 is quasi-nonexpansive for all u € I2.

Observe that Fix(77) = {2} ifx € (1,2] x (1,2] and Fix(7") = {0} if # € [0,1] x [0, 1], where
2=(2,2)and 0 = (0,0).
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For any u € (1,2] x (1,2], we have

(%32 55%) el -] (%52 557)

(ul - 2; us _2) ||

=

= % || (er MZ) - (21 2) ||

<l|lu-2|.
For every u € [0,1] x [0,1], we obtain

|(35)-00]-[(3-3)]
2’2 2'2

1
= E ”(Ml;uz)”

<l

Therefore T is a quasi-nonexpansive for all u € I°.

Choose u = (%, %) and v = %, %), we have

)G -IGD)-G
G- )3

Thus we get

Nl =vII® +2(u—Tu,v—Tv)
1G3)-Ga)l G2 -7(G3)(63) ()
= =~ \~ = +2 ) T R '\ = % -7 =
2’2 2’2 2’2 2'2 2'2 2°2
33 7 7 11 11
Aol (55)- () (3)- (63))
<3 73 7> (1 11 1>
=2+2(Z-2, 22 ). (=2-2,=-Z
2 4’2 4 2 4’2 4

Hence we have
N1Tu=TvI*> u—-v|*+2wm—-Tuv-Tv).

By changing 7 from a nonspreading mapping to a quasi-nonexpansive mapping with

Fix(7") # ¥, we obtain the same result as shown in Lemma 2.9.

Page 17 of 26
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Remark 4.4 Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C — Cbea quasi-nonexpansive mapping with Fix(7") # . Then we have the following
statement:

(i) Fix(7)=VI(C,I-T);

(ii) foreveryu e C and v € Fix(7),

[Pc(I-AI-T))u—v| <llu-vl, wherexe(0,1).

Definition 4.2 ([24]) Let C be a nonempty convex subset of a real Banach space. Let
{T:}¥, be a finite family of (nonexpansive) mappings of C into 1tse1f Foreachj=1,2,.

let o = (o/l,ozz,%) €1 x I x I where I =[0,1] and Otl + 012 + 013 = 1. Define the mapping
§:C— Cas follows:

UO :1)
Uy =i ThlUo + ayUy + 3],
Uy = o} Tolh + a3 Uy + 031,

Us = o} T3l + a3y + a3,

-1 N-1
UN_l—Oll TN 1UN 2+(¥2 UN 2 + 03 [,

S=Uy=a)TxUy 1+ Uy +ad'1.

This mapping is called the S-mapping generated by T1, T5,..., Ty and oy, o, ..., oty

Lemma 4.5 ([25]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let {T;}Y, be aﬁmtefamtly of nonspreading mappmgs of C into itself with ﬂ; LFix(T;) #9
and let oj = (al,az,%) €l x1x1wherel = [0 1], o + o/ +o/3 =1, otl,o/ € (0,1) for all
j=12,....N —1land ol € (0,1], & € [0,1), &, € (0,1) forall j = 1,2,...,N. Let S be the
S-mapping generated by Ty, Ts, ..., Ty and oy, o, ..., an. Then Fix(S) = ﬂf\il Fix(T;) and S

is a quasi-nonexpansive mapping.

Theorem 4.6 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C— C be an a-contractive mapping, let A : C — C be a strongly positive linear
bounded operator with coefficient y and 0 < y < g.Fori =1,2,...,N,let ®;: Cx C — Rbe
a bifunction satisfying (A1)-(A4). Let T;: C — C, fori=1,2,...,N be aﬁnitefamily of non-
spreading mappings with Q := ﬂl 1 le(?‘)ﬂﬂl LEP(®;) # 0. Letp, = (al,az,as) elIxIxl,
j=12,...,N, where I = [01] oz1+o/+o/3—1 o/l,otge(Olforall] 1,2,....N-1and
ol €(0,1], o €10,1), o, € (0,1) forall j=1,2,...,N, and let S be the S- mappinggener-
ated by 71, T2,..., Tn and p1, p2, ..., pn- Let {Z,}, {yn}, and {'V,} be sequences generated by
Z, € H and

S ai®i(Viy) + wl—n(y—"Vn,'Vn—Zn) >0, VyeC,
%1 =0,PcZ, + (1 - Hn)'vm (42)
Zy1 =8,y F(Z,) + (I = 8,A)Pc(I —V,(I-8)Y,, VneN,
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where (8,}, (0.}, {@n), (¥} €(0,1),0 <a; <1, forall i =1,2,...,N. Suppose the conditions
(i)-(vi) hold.
(i) limy— o8, =0and ) -, 8, =00;

(i) 0<7 <6, <v<1f0rs0mer v >0;

(i) Y07 Y < 00;

(iv) 0<e <@, <n<l,forsomee,n>0;

v) Zn 14i=1;

(Vi) D21 18001 = 8l < 00, 302y 1One1 — Ol < 00, 302y |Wne1 — Yul < 00,

> et |91 = @l < 0.

Then the sequences {Z,}, {%,}, and {'V,} converge strongly to q = Po(I — A + y F)q.

Proof Using Remark 4.4, Lemma 4.5, and the same method as in Theorem 3.1, we have
the desired conclusion. O

Remark 4.7 Theorem 4.6 can be considered as an improvement of Theorem 3.1 in the
result of Tian and Jin [26] in the sense that some conditions are not assumed.

(i) To=01-o)+wT, 0c(0,d),

(ii) T is demi-closed on H,
where T is a quasi-nonexpansive mapping on H.

5 Examples for equilibrium problems and numerical results
In this section, the numerical examples are given for supporting Theorem 3.1. Using these
examples, we see that our iteration for the combination of equilibrium problem converges

faster than our iteration for the classical equilibrium problem.

Example 5.1 Let the mappings 4 :R — R, ¥ : R — R, be defined by

, forallxeR.

For every i=1,2,...,N, let ®;:[1,100] x [1,100] — R and 7 : [1,100] — [1,100] be de-
fined by

2x+5
7 ’
x,9) =iy —x)(y+2x-3), forallx,ye[1,100].

Tx=

Put a; = E + W’ for every i =1,2,...,N. Let y = %, 8, = ﬁ, 0, = ﬁ, On = %, and
Yy = niz for every n € N. Let the initial values be defined as in the following cases:
(i) Z;=50,N=1,and n=10,
(if) Z;=50and n=N =10.
Then, for both cases, the sequences {Z,}, {¥,}, and {V,} converge strongly to 1.
Solution. It is obvious that 7 is a nonspreading mapping and Fix(7") = {1}.

Since a; = 5 + W’ we obtain

N

N
Zai<l>i(x,y)-z<4 )(y X)(y+2x—3) = u(y —x)(y + 2x - 3),
i=1

5{  N5N
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where jt = YN (% 5t W)l It is clear that Y\, 4;®; satisfies all conditions in Theorem 3.1
and EP(Y N, 4;®;) = (Y, EP(®;) = {1}. Then we have

N
Fix(7) N () EP(®;) = {1}.

i=1
Observe that
N 1
0 S Zaiq)i('vmy) + —()’— vnr vn - Zn>

- Pn

i=1
1

= IL()’ - Vn)()’ +2V,-3)+ —()/— V)V, - Z,)

@n

< 0=<p@(y =V +2V, =3)+ (- V) (Vs - Z,)
= 1Py + (WY + Vi = Zy = Bugn)y
+3U0u Vi = Vi = 200, Vi + Vi Zop. (5.1)
Let G(9) = 1@y’ + (WVnn + Vi = Zu = 3U9n)y + 3100u Vi = Vyi = 20, V] + VuZy. G(y)
is a quadratic function of y with coefficients a = ug,, b = uV, 0, + V, — Z, — 3¢y, and
c=3up,V,— V2 -2u9, V> +V,Z,. Determine the discriminant A of G as follows:
A = b* - dac
= (WY@ + Vi = Zn = 3110n)* = 4(19n) B1t@n Ve = Vs = 2040,V + Vu Zyr)
= 9120 — 610 Vi = 18103 Vi + Vi + 610 Vit + O Vi + 6104 Z = 2V 2
6110,V 2 + 2,
= (Vi = 36 + 3149, Vi = Z)".

From (5.1), we have G(y) > 0, for every y € R. If G(y) has at most one solution in R, thus
we have A < 0. This implies that

_ Zy+31¢n

= , 5.2
1+3ne, (52)

where p = Zﬁl(sl NSN)l Put §,, = E 0, = ﬁ, On = %, Y= n%, Vn € N. It is clear to
see that the sequences {3,}, {6,}, {¢x}, and {v,,} satisfy all conditions in Theorem 3.1. For
every n € N, from (5.2), we rewrite (3.1) as follows:

y”’ - 2;f1+3P[1 IOO]Z + ( 2nn+3)1+3; 2" (Z + BM 3i22)
Zn+1 = @Zn + (I - %A)P[LIOO] (1_ n_z(l - 7))%’, VneN.

(5.3)

From Theorem 3.1, we can conclude that the sequences {Z,}, {%,}, and {V,} generated by
(5.3) converge strongly to 1.
For case (i), with N = 1, we have u = 1. Then (5.2) becomes
Z, + 3¢,

VvV, = -"—=, 5.4
1+ 3¢, (5.4)
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Table 1 The values of {V,,}, {Y,}, and {Z,} with Z, =50

n N=1 N=10
Vn Yn Zn Vn Yn Zy

123272727 28618182 50.000000 20.600006 26.480004 50.000000
2 4119192 5455988 8797980  3.535267  4.893445  8.288890
3 2287423 2989653 4394114 1973077 2636539  3.963461
4 1.631883  2.025784 2715111 1446758  1.794880  2.404095
5 1331444 1556406 1916346  1.219216 1405203 1.702781
6 1.178502 1.307023 1.499805 1.109733 1.208492  1.356631
7 1.096153  1.168453 1271738 1.053976  1.104708  1.177182
8 1.050342 1.089475 1.143282 1.024666  1.048632  1.081587
9 1.024377  1.043831 1.069769  1.009019  1.018015 1.030010

10 1.009539  1.017314  1.027423 1.000654  1.001320  1.002186

n

n

n

n

n

oo YoEnd

ok
sommie

0 i i f

-_—_'mmlt_r.___'___‘

1 2 3 4 2 B
n

QN =1

7 g

9 iy

u L and x

- : H
—--_’—.—-f:‘.s----—-n—_-—_.r___'___.

4 B B 7 g 9
n

(b) N =10

Figure 1 The convergence of {V,}, {%n}, and {Z,} with initial value Z; = 50.

10

Then we have

_ . n n 1 2n
Yn = 515 P1001Zs + (1 - m)@(zn +33575),

(5.5)
Zui1 = 56 %n + ([ = 3;A)Piool — (I =T )Y, VneN.

From Corollary 3.2, we can conclude that the sequences {Z,}, {%,}, and {V,} generated

by (5.5) converge strongly to 1.

Table 1 and Figure 1 show the values of sequences {Z,}, {%,}, and {V,} in two cases.

Remark 5.2

(i)

(ii)
(i)

(iv)

From Table 1 and Figure 1, the sequences {Z,}, {Y,}, and {V,} converge to 1, where
{1} = Fix(7) N Y, EP(®;).

For case (i), Corollary 3.2 guarantees the convergence of {Z,}, {Y,}, and {V,}.

For case (ii), the convergence of {Z,}, {%,}, and {V,} can be guaranteed by
Theorem 3.1.

The iteration (5.3) for the combination of equilibrium problem converges faster
than the iteration (5.5) for the classical equilibrium problem.

Finally, we give the numerical example for our main theorem in two-dimensional space

of real numbers.
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Example 5.3 Let R? be the two-dimensional space of real numbers with an inner product
(-,-) : R? x R? — R defined by (#,v) = u- v = ujv; + upv, and a usual norm || - | : R? - R
given by |lu|| = /ui + u3, for all u = (u1,uz),v = (v1,v2) € R%. Let the mappings 4 : R? —
R?, F : R? — R? be defined by

Au = ﬂ)ﬂ )
272

Fu- (%, %), for all u = (u1, up) € R%.

Foreveryi=1,2,...,Nand I =[0,1], let ®;:1?> x I> - R and 7 :I*> — I be defined by

- ur+1 5up +1
Ju= ) )
2 6

D, v)=i(v—u)-(v+6u-7), forallu=(u,u),v=1,v) €l

where 7 = (7,7). Let y = %, 8, = %, On =503 Pn = %, and ¥, = niz for every n € N.
It is clear that 7 is a nonspreading mapping and Fix(7") = {1}, where 1 = (1,1).

Put g; = % + ﬁ, for every i =1,2,...,N. It is obvious that Zf\il a; P, satisfies all con-
ditions in Theorem 3.1 and EP(Z?:[1 a;®;) = ﬂf\il EP(®;) = {1}, where 1 = (1,1). Then we

have
N
Fix(7) N () EP(®;) = {1}.
i=1

Then, by Theorem 3.1, the sequences Z,, = (Z., Z2), Y, = (4}, Y2),and 'V, = (V}, V2) con-
verge strongly to {1}.

Remark 5.4 From Example 5.3, putting p = Zé\il(% + ﬁ)i’ we obtain

N
0 =< Zﬂiq)i(vn;y) + %()’— vnr vn - Zn>
i=1 n
1

= P(y— vn) : (y+6vn - (7,7)) + ;(Y—Vn) : (vn _Zn)
=pn=Vpy2=V)) 0 +6V, =792 +6V; -7)

b =V =VY) - (Vi- 2, V2 - Z2)

n

=p((n = V) 01 +6V,=7) + (42 = V) (2 + 6V} = 7))

. i((yl — VY (VE=ZL) + (7, - V2) (V2 - Z2))

~(Pbr= V)0 v 62 -7) ¢ (- V(¥ -2 )

(pn =)0 6% -7) ¢ 2 (n - V) (92 - 23) )

& 0= (pga(yn - VY (1 +6VE=7) + (3 - VI) (V! - Z1))
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+(00n (32 = V) (02 + 6V =7) + (32 = V) (Vs - Z7))
= (0@a)* + (50 Vy0u + Vi = Z,, — 7p0u) 01
2 2
+ 709V, = (V) = 6004(V,)" + V,Z,)
+(0@n(02)? + (5pV20u + Vi = Z2 — 7 pgy)ys
2 2
+ 709V = (V3)" = 6p9u(Vy)" + Vi Z3)
= Gi1(n) + G2(92), (5.6)
where Gi1(31) = p@u(1)* + GpVin + V), — Z) = Tp00 + 7p0 Vi — (V32 = 6p0u(V1)? +
Vi Z, and Ga(y2) = p@u(y2)* + (5o V20, + V2= Z2 =7 p0n)y2 +7p@uVE— (VI =6 p@u(VE)* +
VﬁZfl Then G;(y1) and G,(y,) are quadratic functions with coefficients a1 = pg,, by =
50Vagn + Vi — Z), — 7p@n, and ¢1 = 7p, Vi — (V3)? = 6p9,(V2)* + Vi Z,, and a3 = p@y,

by =5pV20,+V2—Z%-7pp,, and c; = 7p@, V2 - (V2)? - 60¢,(V2)? + V2Z2, respectively.
Determine the discriminant A; of G; as follows:

A1 = (0)? - daiq

2 2 2
(5pVin + Vi = Z ~7p0,)" — 4p0u(700xVE — (V1)) —6p0,(V2)" + VIZL)
2
= (V,ll - 700, + 7,090”17?11 — ZL) .
From (5.6), if G1(y1) > 0, Vy; € R, it has at most one solution in R, thus A; < 0. It follows

that

Zh+7
ylL o Znt 0P (57)
1+7p¢y

Next, we determine the discriminant A, of G, as follows:

Ay = (by)* - dazcs
= (50V20u + V2 = Z2=7p@,)’ — 4p@u (700, V2 - (V2)? = 600, (V2) + V2Z2)

2
= ('Vﬁ 700, + 7p<pn"V5 - Zfl) .

From (5.6), if Go(y2) > 0, V¥, € R and it has at most one solution in R, then A, < 0. This
yields
Z2+7
y2 o Zn PO (5.8)
1+7p¢n

Put$, = %, 0, = ﬁ, On = 33,%, Yy = niz, for all » € N. It is obvious that the sequences {§,,},
{64}, {¢n}, and {¥,} satisfy all conditions in Theorem 3.1. For every # € N, from (5.7) and
(5.8), the iterative scheme (3.1) becomes

yn = JTPCZn + (1 - z,fﬁ)um

(5.9)
Zpt = 36:Zn + ([ = 5, AP = 5L =T)Yy VneNl,

1 2
where Z,, = (2}, Z2), Y = (YL, Y2), and V,, = (V}, V2) = (Fuln, Zuibin),



http://www.fixedpointtheoryandapplications.com/content/2014/1/167

Suwannaut and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:167
http://www.fixedpointtheoryandapplications.com/content/2014/1/167

Let the initial values be defined as in the following cases.
(i) Z,=(2!,Z?) =(-1,0), N =1,and n = 20,
(i) Z;=(Z},2%) =(-1,0)and n =N = 20.

For case (i), with N = 1, we have p = 1. Then, from (5.7) and (5.8), we obtain

VI_ZL+3¢W
i i
1+7¢,

and
v2_231+3(pn
n=- 1 = _ -
1+7¢,

Then we have

Y= gz lcZn+ (1= 555) Ve,

Zn+1 =

where Z,,

@Znﬁ'(l—g

=(Z,,Z}), Yn = (

A)Pc(I -

2 =T) Y,

1,Y2%),and V, =

(‘v;}p 'vs) =

VneN,

ZL 430, Z2+3¢n )

147¢n 7 1479y

(5.10)

Tables 2 and 3 and Figure 2 show the values of the sequences {Z,}, {},}, and {V,} in the

two cases.

Table 2 The values of {Vy}, {Yn}, and {Z,} with Z; =(-1,0)and N=1

n

Va=(V3, V)

Yn = (Yr Y2)

Zn=(Z},Z2)

A wN =

16
17
18
19
20

(0473684, 0.736842)
(0.880767,0.899610)
(0.944343,0.947678)
(0.967678,0.968228)
(0.978604,0.978548)

(0.992787, 0.992723)

(O 995890,0.995878)
(0.996158,0.996149)
(0.996393,0.996386)
(0.996601,0.996595)
(0.996785,0.996780)

(0.178947,0.589474)
(0.761533,0.799220)
(0.873506,0.881086)
(0.920665,0.922015)
(0.944718,0.944575)

(0.979067,0.978881)

(O 987473,0.987437)
(0.988232,0.988203)
(0.988903,0.988879)
(0.989499,0.989479)
(0.990033,0.990017)

(~1.000000,0.000000)
(0.463450,0.548246)
(0.731833,0.747902)
(0.838391,0.841141)
(O 890502,0.890217)

(0.961 231,0.960887)

(O 977477,0.977412)
(0.978908,0.978856)
(0.980164,0.980121)
(0.981276,0.981241)
(0.982268,0.982239)

Table 3 The values of {V,}, {Yn}, and {Z,,} with Z; =(-1,0), N=20

Vo =(V,,V2)

Yo = (Y, Y2)

Z, = (%), Z2)

oA wN =

16
17
18
19
20

(0.51 8072, 0.759036)
(0.894328,0.911003)
(0.951505,0.954360)
(0.972025,0.972470)
(0.981489,0.981428)

(0.993655, 0.993602)

(O 996360,0.996351)
(0.996597,0.996589)
(0.996804,0.996798)
(0.996987,0.996982)
(0.997150,0.997146)

(0.214458,0.607229)
(0.775448,0.810881)
(0.882070,0.889012)
(0.926247,0.927421)
(0.948508,0.948339)

(0.980077,0.979909)

(O 987975,0.987942)
(0.988698,0.988671)
(0.989336,0.989315)
(0.989905,0.989888)
(0.990416,0.990401)

(-1.000000,0.000000)
(0.478246,0.560576
(0.743199,0.758316
(0.846135,0.848585

(O 895738,0.895396

(0.962426,0.9621 10)

(O 978017,0.977957)
(0.979405,0.979357)
(0.980624,0.980585)
(0.981706,0.981673)
(0.982671,0.982644)
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Figure 2 The convergence of {V,,}, {Yn}, and {Z,} with initial value Z = (-1, 0) for both cases.

Remark 5.5

(i) Tables 2 and 3, and Figure 2 show that the sequences {Z,}, {},}, and {V,,} converge

to 1, where {1} = {(1,1)} = Fix(7) N (Y, EP(®).

(i) For case (i), Corollary 3.2 guarantees the convergence of {Z,}, {Y,}, and {V,}.

(iii) For case (ii), the convergence of {Z,}, {Y,}, and {V,} can be guaranteed by
Theorem 3.1.

(iv) The iteration (5.9) for the combination of equilibrium problem converges faster
than the iteration (5.10) for the classical equilibrium problem.
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