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Abstract

We study the viscosity approximation method due to Moudafi for a fixed point
problem of quasinonexpansive mappings in a Hilbert space. First, we establish a
strong convergence theorem for a sequence of quasinonexpansive mappings. Then
we employ our result to approximate a solution of the variational inequality problem
over the common fixed point set of the sequence of quasinonexpansive mappings.
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1 Introduction

Let C be a nonempty closed convex subset of a Hilbert space. This paper is devoted to the
study of strong convergence of a sequence {x,} in C defined by an arbitrary point x; € C
and

K1 = U f () + (1 — 00) Tty (1.1)

for n € N, where «,, is a real number in [0,1], f, is a contraction-like mapping on C, and
T, is a quasinonexpansive mapping on C. This iterative method (1.1) is called the viscosity
approximation method [1]. In Section 3, we establish that, under some appropriate as-
sumptions, the sequence {x,} converges strongly to a certain common fixed point of {7}
by using the technique developed in [2]. Then, in Section 4, we apply our result to ap-
proximate a solution of a variational inequality problem over the common fixed point set
of {T,}.

The viscosity approximation method (1.1) is based on the study of Moudafi [1], who
considered a fixed point problem of a single nonexpansive mapping and proved strong
convergence of sequences generated by the method. After that, Xu [3] extended Moudafi’s
results [1] in the framework of Hilbert spaces and Banach spaces; Suzuki [4] gave simple
proofs of Xu’s results [3]; Aoyama and Kimura [5] investigated a relationship between
viscosity approximation methods and Halpern [6] type iterative methods for a sequence
of nonexpansive mappings.

On the other hand, Maingé [7] adopted the viscosity approximation method for a fixed
point problem of a single quasinonexpansive mapping; Wongchan and Saejung [8] ex-
tended Maingé’s result [7]. Our main result (Theorem 3.1) is a generalization of Wongchan
and Saejung’s result [8] and is closely related to the study in [5]. Moreover, it is also appli-
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cable to an approximation method, which is called the hybrid steepest descent method [9,
10], for a variational inequality problem over the common fixed point set of a sequence of

quasinonexpansive mappings.

2 Preliminaries
Throughout the present paper, H denotes a real Hilbert space, (-,-) the inner product of
H, || - || the norm of H, C a nonempty closed convex subset of H, I the identity mapping
on H, R the set of real numbers, and N the set of positive integers. Strong convergence of
a sequence {x,} in H to x € H is denoted by x,, — x and weak convergence by x,, — x.

Let T : C — H be a mapping. The set of fixed points of T is denoted by Fix(7T'). A map-
ping T is said to be quasinonexpansive if Fix(T) # @ and | Tx - p|| < ||x—p| forallx € Cand
p € Fix(T); T is said to be nonexpansive if || Tx — Ty|| < ||x —y|| for all x,y € C; T is said to
be strongly quasinonexpansive if T is quasinonexpansive and Tx, — x,, — 0 whenever {x,}
is a bounded sequence in C and ||x,, — p|| — || Tx,, — p|| — O for some point p € Fix(T); T is
demiclosed at 0 if Tp = 0 whenever {x,} is a sequence in C such that x, — p and Tx,, — 0.
We know that if T: C — H is quasinonexpansive, then Fix(T) is closed and convex; see
[11, Theorem 1].

It is known that, for each x € H, there exists a unique point xy € C such that

[l = x| = min{[lx —y]| :y € C}.

Such a point % is denoted by Pc(x) and Pc is called the metric projection of H onto C. It
is known that the metric projection P¢ is nonexpansive; see [12].

Let f: C — C be a mapping, F a nonempty subset of C, and 6 a real number in [0,1).
A mapping f is said to be a 0-contraction with respect to F if ||f(x) — f(2)|| < 6|x — z]| for
allx € Cand z € F; f is said to be a 6-contraction if f is a 6-contraction with respect to C.
By definition, it is easy to check the following results.

Lemma 2.1 Let F be a nonempty subset of C and f : C — C a 0-contraction with respect
to F, where 0 <0 < 1. If F is closed and convex, then Pr o f is a 0-contraction on F, where
Pr is the metric projection of H onto F.

Lemma 2.2 Let f: C — C be a 0-contraction, where 0 <0 <1land T : C — C a quasi-
nonexpansive mapping. Then f o T is a 0-contraction with respect to Fix(T).

Let D be a nonempty subset of C. A sequence {f,;} of mappings of C into H is said to be
stable on D [5] if {f,(z) : n € N} is a singleton for every z € D. It is clear that if {f,} is stable
on D, then f,(z) =fi(z) forallm e Nand z € D.

A function 7 : N — N is said to be eventually increasing [2] if lim,_, (1) = 0o and
7(n) < t(n+1) for all n € N. By definition, we easily obtain the following.

Lemma2.3 Lett: N — N bean eventually increasing function and {&,} a sequence of real
numbers such that &, — &. Then &) — &.

The following is a direct consequence of [13, Lemma 3.1].

Lemma 2.4 ([2, Lemma 3.4]) Let {§,} be a sequence of nonnegative real numbers which is
not convergent. Then there exist N € N and an eventually increasing function t : N - N
such that &;(;y < & pyn foralln e N and &, < & (1 foralln > N.
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Under the assumptions of Lemma 2.4, we cannot choose a strictly increasing function t;
see [2, Example 3.3].

Let {T,} be a sequence of mappings of C into H such that F = (-, Fix(T},) is nonempty.
Then

« {T,} is said to be strongly quasinonexpansive type if each T, is quasinonexpansive and

T,x, —x, — 0 whenever {x,} is a bounded sequence in C and
%, — pll = | Twxn — pll — 0

for some point p € F;
» {T,} is said to satisfy the condition (Z) [2, 14-16] if every weak cluster point of {x,}
belongs to F whenever {x,} is a bounded sequence in C such that T,x, — x, — 0.

Remark 2.5 Since 8, — a, — 0 if and only if 82 — a2 — 0 for all bounded sequences {o,}
and {8,} in [0, 00), {T}} is strongly quasinonexpansive type if and only if it is a strongly

relatively nonexpansive sequence in the sense of [2, 17]. See also [18, 19].

We know several examples of strongly quasinonexpansive type sequences satisfying the
condition (Z); see [17] and Example 4.5 in Section 4.
The following lemma follows from [2, Lemma 3.5] and Remark 2.5.

Lemma 2.6 Let {T,} be a sequence of mappings of C into H such that F = (2, Fix(T},) is
nonempty, T : N — N an eventually increasing function, and {z,} a bounded sequence in C
such that ||z, — p|| = | Tr(myzn —p|| = O for some p € F. If{T,} is strongly quasinonexpansive
type, then Tz, — 2z, — O.

In order to prove our main result in Section 3, we need the following lemmas.

Lemma 2.7 ([2, Lemma 3.6]) Let {T,} be a sequence of mappings of C into H such that
F = (N2, Fix(T,) is nonempty, v : N — N an eventually increasing function, and {z,} a
bounded sequence in C such that Tz, — 2z, — 0. Suppose that {T,} satisfies the condi-
tion (Z). Then every weak cluster point of {z,} belongs to F.

Lemma 2.8 ([2, Lemma 3.7]) Let{T,} be a sequence of mappings of C into H, F a nonempty
closed convex subset of H, {z,} a bounded sequence in C such that T,z,,—z, — 0,and u € H.
Suppose that every weak cluster point of {z,} belongs to F. Then

limsup(Tyz, —w,u—w) <0,

00
where w = Pr(u).

The following lemma is well known; see [20, 21].
Lemma 2.9 Let {£,} be a sequence of nonnegative real numbers, {8,} a sequence of real

numbers, and {B,} a sequence in [0,1]. Suppose that &,,1 < (1— B,)&, + BuSyforeveryn € N,
limsup,_, .8, <0,and y 2, B, = 0. Then &, — 0.
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3 Strong convergence of a viscosity approximation process
In this section, we prove the following strong convergence theorem.

Theorem 3.1 Let H be a real Hilbert space, C a nonempty closed convex subset of H, {S,,}
a sequence of mappings of C into C such that F = (-, Fix(S,) is nonempty, {a,} a sequence
in (0,1] such that o, — 0 and ", a, = 00, and {f,} a sequence of mappings of C into C
such that each f,, is a 6-contraction with respect to F and {f,} is stable on F, where 0 <6 < 1.
Let {x,} be a sequence defined by x, € C and

KXn+l = ai(f;l(xﬂ) + (1 - an)Snxn (31)

for n € N. Suppose that {S,} is strongly quasinonexpansive type and satisfies the condi-
tion (Z). Then {x,} converges strongly to w € F, where w is the unique fixed point of a con-

traction P o fj.

Note that Lemma 2.1 implies that Pr of] is a 8-contraction on F and hence it has a unique
fixed point on F.
First, we show some lemmas; then we prove Theorem 3.1. In the rest of this section, we

set

B =au(l+(1-20)(1 - )
and

Yo = 2 |[fuen) = w]|” + 200, (1 = c0s)(S,00 — W, fi (w) = w)
for n e N.

Lemma 3.2 {x,}, {S,x,}, and {f,(x,)} are bounded, and moreover,

1 = Wil < 0t [fuw) = w] + 1S 60— w (3:2)
and

[%ns1 = wII® < (L= B 1% = WII> + ¥ (3.3)
hold for every n e N.

Proof Since f, is a 0-contraction with respect to F, S, is quasinonexpansive, w € F C
Fix(S,), and {f,} is stable on F, it follows that

%41 — wll
<oy an(xn) - WH +(1- an)”Snxn —wl
< au([[fulen) = fuW)|| + [fuw) = w|) + (1 = ) 1S — Wl

Ii(w) — w]

S (1_an(1_9))”xn_wll +an(1_9) 1_9

(3.4)
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for every n € N. Thus, by induction on #, we have

LAilw) —wl|/1-6)}.

1Spn = wll < ll%s — wll < max{[lx; — wl,

Therefore, it turns out that {x,} and {S,x,} are bounded, and moreover, {f,(x,)} is also
bounded.

Equation (3.2) follows from (3.4).

Next, we show (3.3). By assumption, it follows that

(Snxn —= W, fu(xu) — W> < 1Suxn —w| ”fn(xn) _fn(W)” + (Snxn =W, fu(w) - W)

< QHxVI - W”z + (Snxn -w, I(W) - W))
and thus

s = I = 02 £ G6n) = w]* + (L= ) [1S 6 — wil?
+ 200, (1 = 0,)( Sy — W, fru () — W)
< @2[[fula) = w]* + (1= 00)? + 200, (1 — ,)8) [l — w2
+ 200, (1 = 0,)( S — W, fi(w) — w)

= (L= Bl = wl® + v (35)
for every n € N. Therefore, (3.3) holds. O

Lemma 3.3 The following hold:
e 0<B,<1foreveryneN;
o 20,1 -a,)/ B, — 1/(1-0);
o ayllful@n) = wl?/Bn — 0;
¢ ZE& Bn = 00.

Proof Since 0 <o, <1land -1<1-20 <1, we know that

0<a?=a,(1+ (-1 -0an) < By <au(l+1-0ay)=a,2-a,) <1

It follows from «,, — 0 that 20,(1 — @,,)/ B8, — 1/(1 - 0).
Since {f,,(x,)} is bounded by Lemma 3.2 and

o, oy,
B, 1+(1-2000-a,)

q N

)

it follows that o2 ||f,,(x,) — w[*/B, — 0.

Finally, we prove ) o2, B, = 0. Suppose that 1 — 26 > 0. Then it is clear that B, > a,
for every n € N. Thus, Y 77, B, > > o a,, = 00. Next, we suppose that 1 — 26 < 0. Then it
is clear that B, > 2(1 — 0)a,, for every n € N. Thus, Y o) B, > 2(1 - 0) Y 7, &, = 00. This
completes the proof. d

Lemma 3.4 {||x, — w||} is convergent.

Page 5 of 11


http://www.fixedpointtheoryandapplications.com/content/2014/1/17

Aoyama and Kohsaka Fixed Point Theory and Applications 2014, 2014:17
http://www.fixedpointtheoryandapplications.com/content/2014/1/17

Proof We assume, in order to obtain a contraction, that {||x,, —w||} is not convergent. Then
Lemma 2.4 implies that there exist N € N and an eventually increasing function 7 : N — N
such that

62 (m) = Wl < %21 — Wl (3.6)
for every n € N and
”xn - W” < ||x1:(n)+1 - W” (37)

for every n > N.
We show that S;(¥r() — %z(;) — 0. Since S;(, is quasinonexpansive and w € F C
Fix(S; (), it follows from (3.6), (3.2), and Lemmas 2.3 and 3.2 that

0 < [|%c(n) = Wl = IISzay%e ) — Wl
< %z = Wil = 1 Sem®em) — Wl
< Ur(n) ”fr(n)(xr(n)) - W” -0
as n — oo. Since {x(,} is bounded and {S,} is strongly quasinonexpansive type, Lem-
ma 2.6 implies that Sz ()% (n) — ¥z(m) = 0.

Since {S,} satisfies the condition (Z), it follows from Lemma 2.7 that every weak cluster
point of {x(,} belongs to F. Thus Lemma 2.8 shows that

lim sup(Sr(,,)x,(n) - w,fi(w) — w> <0.
n—0oQ

Moreover, Lemmas 2.3 and 3.3 imply that af(n) ety () = WU/ Brgny — 0 and 20ty (1 -
Qr(m)/ Br(ny = 1/(1 — 0). Therefore, we obtain

lim sup Yeln) <0. (3.8)

n—00 7(n)

On the other hand, from (3.3) and (3.6), we know that

||xr(n)+1 - W||2 <@1- ﬂr(n))”xr(n) - W||2 + Ye(n)

< (L= Bem) Ixcmys1 — W||2 + Vi)
for every n € N. Thus, by () > 0, this shows that

V:
12 ()41 = W||2 = Len) (3.9)
,Br(n)
for every m e N.
Finally, we obtain a contradiction that ||x, — w|| — 0. Using (3.7), (3.9), and (3.8), we
conclude that

Vr(n)

limsup [}, —wl> < limsup g1 — wll? < limsup 2 <0,

n—00 n—00 n—00 7(n)

and hence ||x,, — w|| — 0, which is a contradiction. (|
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Proof of Theorem 3.1 We first show that S,x, —x, — 0. Since S, is quasinonexpansive, it
follows from (3.2) that

0 < llxn = wll = 1Sun = wIl < Nl = Wl = [0 — Wl + an(xn) - WH

for every n € N, so that ||x, —w| - ||S,x, —w| — 0 by Lemma 3.4, &, — 0, and Lemma 3.2.
Since {S,} is strongly quasinonexpansive type and {x,} is bounded, we conclude that S,x, —
x, — 0.

Since {S,} satisfies the condition (Z), Lemma 2.8 implies that

lim sup(S,,x,, -wilw) - w) <0.
n—00
This shows that limsup,_, . /B, < 0 by using Lemmas 3.2 and 3.3. On the other hand,
it follows from (3.3) that

Y
%41 = WII* < (1= Ba)llxn — wi* + ﬁnﬁ—”
n

for every n € N. Therefore, noting that ) >, 8, = 0o and using Lemma 2.9, we conclude
that x, — w — 0. O

A direct consequence of Theorem 3.1 is the following corollary, which is a slight gener-
alization of [8, Theorem 2.3].

Corollary 3.5 Let H be a real Hilbert space, C a nonempty closed convex subset of H,
S : C — C astrongly quasinonexpansive mapping, {a,,} a sequence in (0,1] such that o,, —
0andy 2 o, =00, andf: C— C a 6-contraction with respect to F = Fix(S), where 0 <
0 < 1. Let {x,} be a sequence defined by x, € C and

Xn+l = ar(f(xn) + (1 - Q'n)an (310)

forn € N. Suppose that 1 -S is demiclosed at 0. Then {x,} converges strongly tow € F, where
w is the unique fixed point of a contraction Prof.

Proof Set S, = S and f, = f for n € N. Then it is clear that (2, Fix(S,) = Fix(S), {S,} is
strongly quasinonexpansive type, {S,} satisfies the condition (Z), and {f,} is stable on C.
Thus Theorem 3.1 implies the conclusion. d

4 Application to a variational inequality problem
In this section, applying Theorem 3.1, we study an approximation method for the following
variational inequality problem.

Problem 4.1 Let « and 5 be positive real numbers such that 2 < 2«. Let F be a nonempty
closed convex subset of H and A : H — H a k -strongly monotone and 5-Lipschitz contin-
uous mapping, that is, we assume that (x—y, Ax—Ay) > «|lx—y||* and |[Ax—Ay|| < nllx—y|
for all v,y € H. Then find z € F such that

(y—2zAz)>0 forallyeF.
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The solution set of Problem 4.1 is denoted by VI(F, A). Under the assumptions of Prob-
lem 4.1, it is known that the following hold; see, for example, [22].

e kK <1,0<1-2k +n?><1land]-A isa6-contraction, where 6 = /1 — 2k + n?;

+ Problem 4.1 has a unique solution and VI(F, A) = Fix(Pg(I — A)).

Remark 4.2 The assumption that 52 < 2« in Problem 4.1 is not restrictive. Indeed, let F
be a nonempty closed convex subset of H and Aa k-strongly monotone and 7-Lipschitz
continuous mapping, where i >0 and 7 > 0. Set A = MA, Kk = uk, and n = un, where pu
is a positive constant such that u7? < 2&. Then it is easy to verify that A is «-strongly
monotone and n-Lipschitz continuous, n? < 2«, and moreover, VI(F,A) = VI(F,A).

Using Theorem 3.1, we obtain the following convergence theorem for Problem 4.1.
Theorem 4.3 Let H, k, 1, and A be the same as in Problem 4.1. Let {S,} be a sequence

of mappings of H into H such that F = (.., Fix(S,) is nonempty, and {a,} the same as in
Theorem 3.1. Let {x,} be a sequence defined by x, € H and

Xn+l = Snxn - OlnASnxn (41)

for n € N. Suppose that {S,} is strongly quasinonexpansive type and {S,} satisfies the con-
dition (Z). Then {x,} converges strongly to the unique solution of Problem 4.1.

Proof Setf, = —A)S, forneNand 6 =,/1- 2k +n?. Since I — A is a 6-contraction and
S, is quasinonexpansive, Lemma 2.2 implies that each f; is a -contraction with respect
to F. It is obvious that {f,} is stable on F. Moreover, it follows from (4.1) that

K1 = (%) + (1 — 01) Sk,

for n € N. Thus Theorem 3.1 implies that {x,} converges strongly to w = (Pr o fi)(w) =
Pr(I — A)w, which is the unique solution of Problem 4.1. O

Remark 4.4 The iteration (4.1) is called the hybrid steepest descent method; see [9, 10]
for more details.

We finally construct an example of {S, } in Theorem 4.3 by using the notion of a subgra-

dient projection.
Let g : H — R be a continuous and convex function such that

C={xeH:g(x) <0}

is nonempty and #: H — H a mapping such that /(x) € dg(x) for all x € H, where dg
denotes the subdifferential mapping of g defined by

agx) = {z e H:g(x) + (y—x,2) <g(y) (Vy € H)}

for all x € H. Then the subgradient projection Py : H — H with respect to g and /4 is
defined by P, ;x = Ppx)x for all x € H, where Py, denotes the metric projection of H onto
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the set L(x) defined by
Lix)={yeH:gx) + (y—x,h(x)> <o}

for all x € H. Note that C is a subset of L(x) for all x € H and that L(x) is a closed half
space for all x € H \ C. According to [23, Section 7], [24, Proposition 2.3], and [25, Propo-
sition 1.1.11], we know the following:

(S1) Fix(Pgu) = C;

(S2) (z—Pypx,x—Pypx) <0forallze Candx e H;

(S3) if g(V) is bounded for each bounded subset V' of H, then I — Py, is demiclosed at 0.

It is known that the metric projection Pp of H onto a nonempty closed convex subset
D of H coincides with the subgradient projection Py with respect to g and % defined by
g(x) =infyep |lx — y|| for all x € H and

(x € D);
(x — Ppx)/|lx — Ppx|| (x € H\D).

h(x) =

The subgradient projection is not necessarily nonexpansive. In fact, if g: R — R and
h: R — R are defined by g(x) = max{x,2x — 1} forallx e Rand h(x) =1 ifx < 1; h(x) = 2 if
x> 1, then P, , is given by

x  (x=<0)
Pyp(x)=30  (0<x<l);
1/2 (x>1)

and is not nonexpansive.
Using (S1), (S2), and (S3), we show the following.

Example 4.5 Let g : H — R be a continuous and convex function such that C={x € H :
g(x) <0} is nonempty and g(V) is bounded for each bounded subset V of H, h: H - H
a mapping such that s(x) € dg(x) for all x € H, and {S,,} a sequence of mappings of H into
H defined by

Sn = ,BnI + (1 - ,Bn)Pg,h

for all » € N, where {8,} is a sequence of real numbers such that -1 < inf, 8, and
sup,, B, < 1. Then the following hold:
(i) Fix(S,)=CforallneN;
(i) {S,} is strongly quasinonexpansive type;
(iii) {S,} satisfies the condition (Z).

Proof Since B, #1 for all n € N, the part (i) obviously follows from (S1).
We first show (ii). By (i), we know that (), Fix(S,) = C is nonempty. Let n € N, p € C,
and x € H be given. Then we have
1S5x = pII? + lx = Suxll* = llx = p1I* = 2(Sux = %, Spx = p)

=2(1 = Bu){p — Sux, % — Py pix). (4.2)
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It follows from (S2) that
(B — Spx, 8 — Py pix) < (Pgpx — Su, % — Py ). (4.3)
On the other hand, we also know that

(Pgnx — Spx, % — Pg px)

= —[|Pgpx — x> + (% — Sy, x — Py )

(1Pl = S sal) o+ L - Spl? < Sl sm0? (4.4)
- x—x||— =llx=Sux|l ] +=lx=Sux||* < =|lx = Sux]||* .
= h 9 4 4

By (4.2), (4.3), and (4.4), each S,, satisfies

1
1S = plI> + 5(1 + Bl = Suxl|® < |l — plI® (4.5)

forall p € C and x € H. Since (1 + 8,)/2 > 0, we know that each S, is quasinonexpansive.
Let {x,} be abounded sequence in H such that ||x,, — p|| - ||S,.x,, —p|| = 0 for some p € C.
Since {S,x,} is bounded, it follows from (4.5) that
1 2 2 2
5(1 + ﬂn)”xn - Snxn” = ||xn —P” - ”Snxn —P” -0
and hence S,x,, —x, — 0 by inf,(1 + 8,) > 0. Thus {S,} is strongly quasinonexpansive type.

We finally show (iii). Let {y,} be a bounded sequence in H such that S,y, — y, — 0. By
the definition of S,,, we have

1Pgpyn = yull = 1Suyn = yull

l_ﬂn

for all #n € N. Since inf,(1 - B,) > 0, we obtain Py, — ¥, — 0. Consequently, by (S1) and
(S3), we know that {S,} satisfies the condition (Z). O
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