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Abstract
The purpose of this paper is to present some definitions and basic concepts of best
proximity point in a new class of probabilistic metric spaces and to prove the best
proximity point theorems for the contractive mappings and weak contractive
mappings. In order to get the best proximity point theorems, some new probabilistic
contraction mapping principles have been proved. Meanwhile the error estimate
inequalities have been established. Further, a method of the proof is also new and
interesting, which is to use the mathematical expectation of the distribution function
studying the related problems.
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1 Introduction and preliminaries
Probabilistic metric spaces were introduced in  byMenger []. In such spaces, the no-
tion of distance between two points x and y is replaced by a distribution function Fx,y(t).
Thus one thinks of the distance between points as being probabilistic with Fx,y(t) repre-
senting the probability that the distance between x and y is less than t. Sehgal, in his Ph.D.
thesis [], extended the notion of a contractionmapping to the setting of theMenger prob-
abilistic metric spaces. For example, a mapping T is a probabilistic contraction if T is such
that for some constant  < k < , the probability that the distance between image points
Tx and Ty is less than kt is at least as large as the probability that the distance between x
and y is less than t.
In , Sehgal and Bharucha-Reid proved the following result.

Theorem . (Sehgal and Bharucha-Reid [], ) Let (E,F ,�) be a complete Menger
probabilistic metric space for which the triangular norm � is continuous and satisfies
�(a,b) = min(a,b). If T is a mapping of E into itself such that for some  < k <  and all
x, y ∈ E,

FTx,Ty(t) ≥ Fx,y
(
t
k

)
, ∀t > , (.)

then T has a unique fixed point x∗ in E, and for any given x ∈ X, Tnx converges to x∗.
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The mapping T satisfying (.) is called a k-probabilistic contraction or a Sehgal con-
traction []. The fixed point theorem obtained by Sehgal and Bharucha-Reid is a general-
ization of the classical Banach contraction principle and is further investigated by many
authors [, –]. Some results in this theory have found applications to control theory,
system theory, and optimization problems.
Next we shall recall some well-known definitions and results in the theory of probabilis-

ticmetric spaces which are used later on in this paper. Formore details, we refer the reader
to [].

Definition . A triangular norm (shortly, �-norm) is a binary operation � on [, ]
which satisfies the following conditions:
(a) � is associative and commutative;
(b) � is continuous;
(c) �(a, ) = a for all a ∈ [, ];
(d) �(a,b)≤ �(c,d) whenever a ≤ c and b ≤ d for each a,b, c,d ∈ [, ].
The following are the six basic �-norms:

�(a,b) =max(a + b – , );
�(a,b) = a · b;
�(a,b) =min(a,b);
�(a,b) =max(a,b);
�(a,b) = a + b – ab;
�(a,b) =min(a + b, ).

It is easy to check that the above six �-norms have the following relations:

�(a,b)≤ �(a,b)≤ �(a,b)≤ �(a,b)≤ �(a,b)≤ �(a,b),

for any a,b ∈ [, ].

Definition . A function F(t) : (–∞, +∞) → [, ] is called a distribution function if it is
non-decreasing and left-continuous with limt→–∞ F(t) = . If in addition F() =  then F
is called a distance distribution function.

Definition . A distance distribution function F satisfying limt→+∞ F(t) =  is called a
Menger distance distribution function. The set of all Menger distance distribution func-
tions is denoted by D+. A special Menger distance distribution function given by

H(t) =

⎧⎨
⎩
, t ≤ ,

, t > .

Definition . A probabilistic metric space is a pair (E,F), where E is a nonempty set, F
is a mapping from E × E into D+ such that, if Fx,y denotes the value of F at the pair (x, y),
the following conditions hold:
(PM-) Fx,y(t) =H(t) if and only if x = y;
(PM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
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(PM-) Fx,z(t) = , Fz,y(s) =  implies Fx,y(t + s) = 
for all x, y, z ∈ E and –∞ < t < +∞.

Definition . AMenger probabilistic metric space (abbreviated, Menger PM space) is a
triple (E,F ,�) where E is a nonempty set, � is a continuous t-norm and F is a mapping
from E × E into D+ such that, if Fx,y denotes the value of F at the pair (x, y), the following
conditions hold:
(MPM-) Fx,y(t) =H(t) if and only if x = y;
(MPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(MPM-) Fx,y(t + s) ≥ �(Fx,z(t),Fz,y(s)) for all x, y, z ∈ E and t > , s > .

Nowwe give a new definition of probabilisticmetric space so-called S-probabilisticmet-
ric space. This definition reflects a more probabilistic meaning and the probabilistic back-
ground. In this definition, the triangle inequality has been changed to a new form.

Definition . A S-probabilistic metric space is a pair (E,F), where E is a nonempty set,
F is a mapping from E×E into D+ such that, if Fx,y denotes the value of F at the pair (x, y),
the following conditions hold:
(SPM-) Fx,y(t) =H(t) if and only if x = y;
(SPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(SPM-) Fx,y(t) ≥ Fx,z(t) ∗ Fz,y(t) ∀x, y, z ∈ E,

where Fx,z(t) ∗ Fz,y(t) is the convolution between Fx,z(t) and Fz,y(t) defined by

Fx,z(t) ∗ Fz,y(t) =
∫ +∞


Fx,z(t – u)dFz,y(u).

Example LetX be a nonempty set, S be ameasurable space which consist of somemetrics
on the X, (�,P) be a complete probabilistic measure space and f : � → S be a measurable
mapping. It is easy to think S is a random metric on the X, of course, (X,S) is a random
metric space. The following expressions of the distribution functions Fx,y(t), Fx,z(t), and
Fz,y(t) are reasonable:

Fx,y(t) = P
{
f –

{
d ∈ S;d(x, y) < t

}}
,

Fx,z(t) = P
{
f –

{
d ∈ S;d(x, z) < t

}}
,

and

Fz,y(t) = P
{
f –

{
d ∈ S;d(z, y) < t

}}

for all x, y, z ∈ X. Since

P
{
f –

{
d ∈ S;d(x, y) < t

}} ≥ P
{
f –

{
d ∈ S;d(x, z) + d(z, y) < t

}}

it follows from probabilistic theory that

P
{
f –

{
d ∈ S;d(x, z) + d(z, y) < t

}}
= Fx,z(t) ∗ Fz,y(t).
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Therefore

Fx,y(t)≥ Fx,z(t) ∗ Fz,y(t), ∀x, y, z ∈ X.

In addition, the conditions (SPM-), (SPM-) are obvious.

In this paper, both theMenger probabilistic metric spaces and the S-probabilisticmetric
spaces are included in the probabilistic metric spaces.
Several problems can be changed as equations of the form Tx = x, where T is a given

self-mapping defined on a subset of a metric space, a normed linear space, a topological
vector space or some suitable space. However, if T is a non-self-mapping from A to B,
then the aforementioned equation does not necessarily admit a solution. In this case, it is
contemplated to find an approximate solution x in A such that the error d(x,Tx) is mini-
mum, where d is the distance function. In view of the fact that d(x,Tx) is at least d(A,B),
a best proximity point theorem guarantees the global minimization of d(x,Tx) by the re-
quirement that an approximate solution x satisfies the condition d(x,Tx) = d(A,B). Such
optimal approximate solutions are called best proximity points of the mapping T . Inter-
estingly, best proximity point theorems also serve as a natural generalization of fixed point
theorems, for a best proximity point becomes a fixed point if the mapping under consid-
eration is a self-mapping. Research on the best proximity point is an important topic in
the nonlinear functional analysis and applications (see [–]).
Let A, B be two nonempty subsets of a complete metric space and consider a mapping

T : A → B. The best proximity point problem is whether we can find an element x ∈ A
such that d(x,Tx) =min{d(x,Tx) : x ∈ A}. Since d(x,Tx) ≥ d(A,B) for any x ∈ A, in fact,
the optimal solution to this problem is the one for which the value d(A,B) is attained.
Let A, B be two nonempty subsets of a metric space (X,d). We denote by A and B the

following sets:

A =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
,

where d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.
It is interesting to notice that A and B are contained in the boundaries of A and B,

respectively, provided A and B are closed subsets of a normed linear space such that
d(A,B) >  [].
In order to study the best proximity point problems, we need the following notations.

Definition . ([]) Let (A,B) be a pair of nonempty subsets of ametric space (X,d) with
A 
= ∅. Then the pair (A,B) is said to have the P-property if and only if for any x,x ∈ A

and y, y ∈ B,

⎧⎨
⎩
d(x, y) = d(A,B),

d(x, y) = d(A,B)
⇒ d(x,x) = d(y, y).

In [], the author proves that any pair (A,B) of nonempty closed convex subsets of a
real Hilbert space H satisfies P-property.
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In [, ], P-property has been weakened to the weak P-property. An example that
satisfies the P-property but not the weak P-property can be found there.

Definition . ([, ]) Let (A,B) be a pair of nonempty subsets of a metric space (X,d)
with A 
= ∅. Then the pair (A,B) is said to have the weak P-property if and only if for any
x,x ∈ A and y, y ∈ B,

⎧⎨
⎩
d(x, y) = d(A,B),

d(x, y) = d(A,B)
⇒ d(x,x) ≤ d(y, y).

Recently, many best proximity point problems with applications have been discussed
and some best proximity point theorems have been proved. For more details, we refer the
reader to [].
In this paper, we establish some definitions and basic concepts of the best proximity

point in the framework of probabilistic metric spaces.

Definition . Let (E,F) be a probabilistic metric space, A,B ⊂ E be two nonempty sets.
Let

FA,B(t) = sup
x∈A,y∈B

Fx,y(t), ∀t ∈ (–∞, +∞),

which is said to be the probabilistic distance of A, B.

Example Let X be a nonempty set and d, d be two metrics defined on X with the prob-
abilities p = ., p = ., respectively. Assume that

d(x, y)≤ d(x, y), ∀x, y ∈ X.

For any x, y ∈ X, the table

d(x, y) d(x, y)

. .

is a discrete random variable with the distribution function

Fx,y(t) =

⎧⎪⎪⎨
⎪⎪⎩
, t ≤ d(x, y),

., d(x, y) < t ≤ d(x, y),

, d(x, y) < t.

Let A, B be two nonempty sets of X, the table

d(A,B) d(A,B)

. .
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is also a discrete random variable with the distribution function

FA,B(t) =

⎧⎪⎪⎨
⎪⎪⎩
, t ≤ d(A,B),

., d(A,B) < t ≤ d(A,B),

, d(A,B) < t,

where

di(A,B) = inf
x∈A,y∈B

di(x, y), i = , .

It is easy to see that

FA,B(t) = sup
x∈A,y∈B

Fx,y(t), ∀t ∈ (–∞, +∞).

Definition . Let (E,F) be a probabilistic metric space, A,B ⊂ E be two nonempty sub-
sets and T : A → B be a mapping. We say that x∗ ∈ A is a best proximity point of the
mapping T if the following equality holds:

Fx∗ ,Tx∗ (t) = FA,B(t), ∀t ∈ (–∞, +∞).

Example Let X be a nonempty set and d, d be two metrics defied on X with the proba-
bilities p = ., p = ., respectively. Let A, B be two nonempty sets of X and T : A → B
be a mapping. Assume

d(x, y)≤ d(x, y), ∀x, y ∈ X.

If there exists a point x∗ ∈ A, such that

d
(
x∗,Tx∗) = d(A,B), d

(
x∗,Tx∗) = d(A,B),

then the table

d(x∗,Tx∗) d(x∗,Tx∗)

. .

is a discrete random variable with the distribution function

Fx∗ ,Tx∗ (t) =

⎧⎪⎪⎨
⎪⎪⎩
, t ≤ d(x∗,Tx∗),

., d(x∗,Tx∗) < t ≤ d(x∗,Tx∗),

, d(x∗,Tx∗) < t.

It is obvious that Fx∗ ,Tx∗ (t) = FA,B(t).

It is clear that the notion of a fixed point coincided with the notion of a best proximity
point when the underlying mapping is a self-mapping. Let (E,F) be a probabilistic metric

http://www.fixedpointtheoryandapplications.com/content/2014/1/170


Su and Zhang Fixed Point Theory and Applications 2014, 2014:170 Page 7 of 15
http://www.fixedpointtheoryandapplications.com/content/2014/1/170

space. Suppose that A⊂ E and B ⊂ E are nonempty subsets. We define the following sets:

A =
{
x ∈ A : Fx,y(t) = FA,B(t) for some y ∈ B

}
,

B =
{
y ∈ A : Fx,y(t) = FA,B(t) for some x ∈ A

}
.

Definition . Let (A,B) be a pair of nonempty subsets of a probabilistic metric space
(E,F) with A 
= ∅. Then the pair (A,B) is said to have the P-property if and only if for any
x,x ∈ A and y, y ∈ B,

Fx,y (t) = FA,B(t), Fx,y (t) = FA,B(t) ⇒ Fx,x (t) = Fy,y (t).

Definition . Let (A,B) be a pair of nonempty subsets of a probabilistic metric space
(E,F) with A 
= ∅. Then the pair (A,B) is said to have the weak P-property if and only if
for any x,x ∈ A and y, y ∈ B,

Fx,y (t) = FA,B(t), Fx,y (t) = FA,B(t) ⇒ Fx,x (t)≥ Fy,y (t).

Definition . Let (E,F) be a probabilistic metric space.
() A sequence {xn} in E is said to converges to x ∈ E if for any given ε >  and λ > ,

there must exist a positive integer N =N(ε,λ) such that Fxn ,x(ε) >  – λ whenever
n >N .

() A sequence {xn} in E is called a Cauchy sequence if for any ε >  and λ > , there
must exists a positive integer N =N(ε,λ) such that Fxn ,xm (ε) >  – λ, whenever
n,m >N .

() (E,F ,�) is said to be complete if each Cauchy sequence in E converges to some
point in E.

We denote by xn → x the {xn} converges to x. It is easy to see that xn → x if and only if
Fxn ,x(t)→H(t) for any given t ∈ (–∞, +∞) as n→ ∞.

2 Contractionmapping principle in S-probabilistic metric spaces
Let (E,F) be a S-probabilistic metric space. For any x, y ∈ E we definite

dF (x, y) =
∫ +∞


t dFx,y(t).

Since t is a continuous function and Fx,y is a bounded variation functions, so the above
integer is well definite. In fact, the above integer is just the mathematical expectation of
Fx,y(t). Throughout this paper we assume that

dF (x, y) =
∫ +∞


t dFx,y(t) < +∞, ∀x, y ∈ E,

for all probabilistic metric spaces (E,F) presented in this paper.
Next we give a new notation of convergence.
() A sequence {xn} in E is said to converges averagely to x ∈ E if

lim
n→∞

∫ +∞


t dFxn ,x(t) = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/170
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() A sequence {xn} in E is called an average Cauchy sequence if

lim
n,m→∞

∫ +∞


t dFxn ,xm (t) = .

() (E,F) is said to be average complete if each average Cauchy sequence in E converges
averagely to some point in E.

We denote by xn ⇒ x the {xn} that converges averagely to x.

Theorem . Let (E,F) be a S-probabilistic metric space. For any x, y ∈ E we define

dF (x, y) =
∫ +∞


t dFx,y(t).

Then dF (x, y) is a metric on the E.

Proof Since Fx,y(t) =H(t) (∀t ∈ R) if and only if x = y, and

∫ +∞


t dH(t) = ,

we know the condition dF (x, y) =  ⇔ x = y holds. The condition dF (x, y) = dF (y,x), for
all x, y ∈ E, is obvious. Next we will prove the triangle inequality. For any x, y, z ∈ E, from
(SPM-) we have

Fx,y(t)≥
∫ +∞


Fx,z(t – u)dFz,y(u) = Fx,z(t) ∗ Fz,y(t).

By using probabilistic theory we know that

∫ +∞


t dFx,y(t) ≤

∫ +∞


t dFx,z(t) +

∫ +∞


t dFz,y(t),

which implies that

dF (x, y)≤ dF (x, z) + dF (z, y).

This completes the proof. �

Theorem . Let (E,F) be a complete S-probabilistic metric space. Let T : E → E be a
mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y
(
t
h

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞), (.)

where  < h <  is a constant. Then T has a unique fixed point x∗ ∈ E and for any given x ∈
E the iterative sequence xn+ = Txn converges to x∗. Further, the error estimate inequality

∫ +∞


t dFTnx,x∗ (t)≤ hn

 – h

∫ +∞


t dFTx,x (t)

holds for all n ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/170
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Proof For any x, y ∈ E, from (.) we have

dF (Tx,Ty) =
∫ +∞


t dFTx,Ty(t)

≤
∫ +∞


t dFx,y

(
t
h

)
= h

∫ +∞



t
h
dFx,y

(
t
h

)

= h
∫ +∞


udFx,y(u) = hdF (x, y).

For any given x ∈ E, define xn+ = Txn for all n = , , , . . . . Observe that

dF (xn,xn+m) ≤ dF (xn,xn+) + dF (xn+,xn+m)

≤ dF (xn,xn+) + dF (xn+,xn+)

+ dF (xn+,xn+m)

≤ (
hn + hn+ + hn+ + · · · + hn+m–)dF (x,x). (.)

Since  < h < , we have

(
hn + hn+ + hn+ + · · · + hn+m–)dF (x,x)→ 

as n→ ∞. Hence
∫ +∞


t dFxn ,xn+m (t) = dF (xn,xn+m)→ 

as n→ ∞. We claim that

lim
n→∞Fxn ,xn+m =H(t). (.)

If not, there must exist numbers t > ,  < λ < , and subsequences {nk}, {mk} of {n} such
that Fxnk ,xnk+mk

(t) ≤ λ, for all k ≥ . In this case, we have

dF (xnk ,xnk+mk ) =
∫ +∞


t dFxnk ,xnk+mk

(t)

=
∫ t


t dFxnk ,xnk+mk

(t) +
∫ +∞

t
t dFxnk ,xnk+mk

(t)

≥
∫ +∞

t
t dFxnk ,xnk+mk

(t)≥ t
(
 – Fxnk ,xnk+mk

(t)
)

≥ t( – λ) > .

This is a contradiction. From (.) we know {xn} is a Cauchy sequence in complete S-
probabilisticmetric space (E,F). Hence there exists a point x∗ ∈ E such that {xn} converges
to x∗ in the mean of

lim
n→∞Fxn ,x∗ (t) =H(t), ∀t ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/170
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Therefore

lim
n→∞Fxn ,Tx∗ (t)≥ lim

n→∞Fxn–,x∗
(
t
h

)
=H(t), ∀t ≥ .

We claim x∗ is a fixed point of T , in fact, for any t > , it follows from condition (SPM-)
that

Fx∗ ,Tx∗ (t)≥
∫ +∞


Fx∗ ,xn (t – u)dFxn ,Tx∗ (u)

≥
∫ t




Fx∗ ,xn (t – u)dFxn ,Tx∗ (u)

= Fx∗ ,xn

(
t


)(
Fxn ,Tx∗

(
t


)
– 

)
→ 

as n→ ∞, which implies Fx∗ ,Tx∗ (t) =H(t), and hence x∗ = Tx∗. The x∗ is a fixed point of T .
If there exists another fixed point x∗∗ of T , we obverse

Fx∗ ,x∗∗ (t) = FTx∗ ,Tx∗∗ (t)≥ Fx∗ ,x∗∗
(
t
h

)
,

which implies Fx∗ ,x∗∗ (t) = H(t) ∀t ∈ R, and hence x∗ = x∗∗. Then the fixed point of T is
unique. Meanwhile, for any given x, the iterative sequence xn = Tnx converges to x∗.
Finally, we prove the error estimate formula. Letm → ∞ in the inequality (.); we get

dF
(
xn,x∗) ≤ hn

 – h
dF (x,x),

which can be rewritten as the following error estimate formula:

∫ +∞


t dFTnx,x∗ (t)≤ hn

 – h

∫ +∞


t dFTx,x (t).

This completes the proof. �

Theorem . Let (E,F ,�) be a complete Menger probabilistic metric space. Assume

�
(
Fx,z

(
t


)
,Fz,y

(
t


))
≥

∫ +∞


Fx,z(t – u)dFz,y(u), (.)

for all x, y, z ∈ E, t > . Let T : E → E be a mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y
(
t
h

)
, ∀x, y ∈ E,∀t > , (.)

where  < h <  is a constant. Then T has a unique fixed point x∗ ∈ E and for any given x ∈
E the iterative sequence xn+ = Txn converges to x∗. Further, the error estimate inequality

∫ +∞


t dFTnx,x∗ (t)≤ hn

 – h

∫ +∞


t dFTx,x (t)

holds for all n ≥ .
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Proof From (.) we know that (E,F ,�) is a S-probabilistic metric space. This together
with (.), by using Theorem ., shows that the conclusion is proved. �

3 Best proximity point theorems for contractions
We first define the notion of P-operator P : B → A, it is very useful for the proof of
the best proximity point theorem. From the definitions of A and B, we know that for
any given y ∈ B, there exists an element x ∈ A such that Fx,y(t) = FA,B(t). Because (A,B)
has the weak P-property, such x is unique. We denote by x = Py the P-operator from B

into A.

Theorem . Let (E,F) be a complete S-probabilistic metric space. Let (A,B) be a pair
of nonempty subsets in E and A be a nonempty closed subset. Suppose (A,B) satisfies the
weak P-property. Let T : A → B be a mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y
(
t
h

)
, ∀x, y ∈ A,∀t > ,

where  < h <  is a constant.Assume that T(A) ⊂ B.Then T has a unique best proximity
point x∗ ∈ A and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hn

 – h

∫ +∞


t dFPTx,x (t)

holds for all n ≥ .

Proof Since the pair (A,B) has the weak P-property, we have

FPTx,PTx (t)≥ FTx,Tx (t)≥ Fx,x

(
t
h

)
, ∀t > ,

for any x,x ∈ A. This shows that PT : A → A is a contraction from complete S-
probabilistic metric subspace A into itself. Using Theorem ., we know that PT has a
unique fixed point x∗ and for any given x ∈ E the iterative sequence xn+ = PTxn converges
to x∗. Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hn

 – h

∫ +∞


t dFPTx,x (t)

holds for all n ≥ . Since PTx∗ = x∗ if and only if Fx∗ ,Tx∗ (t) = FA,B(t), so the point x∗ is a
unique best proximity point of T : A→ B. This completes the proof. �

Theorem . Let (E,F ,�) be a complete Menger probabilistic metric space. Assume that

�
(
Fx,z

(
t


)
,Fz,y

(
t


))
≥

∫ +∞


Fx,z(t – u)dFz,y(u), (.)

for all x, y, z ∈ E, t > . Let (A,B) be a pair of nonempty subsets in E and A be nonempty
closed subset. Suppose that (A,B) satisfies the weak P-property. Let T : A→ B be amapping
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satisfying the following condition:

FTx,Ty(t) ≥ Fx,y
(
t
h

)
, ∀x, y ∈ A,∀t > ,

where  < h <  is a constant. Assume T(A) ⊂ B. Then T has a unique best proximity
point x∗ ∈ A and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hn

 – h

∫ +∞


t dFPTx,x (t)

holds for all n ≥ .

Proof From (.) we know that (E,F ,�) is a S-probabilistic metric space. By using Theo-
rem ., the conclusion is proved. �

4 Best proximity point theorem for Geraghty-contractions
First, we introduce the class Γ of those functions β : [, +∞) → [, ) satisfying the fol-
lowing condition:

β(tn)→  ⇒ tn → .

Definition . Let (E,F) be a probabilistic metric space. Let (A,B) be a pair of nonempty
subsets in E. A mapping T : A → B is said to be a Geraghty-contraction if there exists
β ∈ Γ such that

FTx,Ty(t) ≥ Fx,y
(

t
β(dF (x, y))

)
, ∀x, y ∈ A,∀t > , (.)

where

dF (x, y) =
∫ +∞


t dFx,y(t).

Theorem . Let (E,F) be a complete S-probabilistic metric space. Let (A,B) be a pair of
nonempty subsets in E and A be a nonempty closed subset. Suppose that (A,B) satisfies
the weak P-property. Let T : A → B be a Geraghty-contraction. Assume T(A) ⊂ B. Then
T has a unique best proximity point x∗ ∈ A and for any given x ∈ E the iterative sequence
xn+ = PTxn converges to x∗.

Proof From (.) and the weak P-property of (A,B), we get

dF (PTx,PTy) =
∫ +∞


t dFPTx,PTy(t)

≤
∫ +∞


t dFTx,Ty(t)

≤
∫ +∞


t dFx,y

(
t

β(dF (x, y))

)
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≤ β
(
dF (x, y)

)∫ +∞



t
β(dF (x, y))

dFx,y
(

t
β(dF (x, y))

)

= β
(
dF (x, y)

)
dF (x, y), ∀x, y ∈ E. (.)

We have proved that dF (·, ·) is a metric on the E in Theorem .. For any given x ∈ E,
define xn+ = PTxn, n = , , , . . . . From (.) we have

dF (xn,xn+) = dF (PTxn–,PTxn)

≤ dF (Txn–,Txn)

≤ β
(
dF (x, y)

)
dF (xn–,xn)

< dF (xn–,xn). (.)

Suppose that there exists n such that dF (xn ,xn+) = . In this case, PTxn = xn , which
implies that xn is a best proximity point of T and this is the desired result. In the con-
trary case, suppose that dF (xn,xn+) > , for any n ≥ . By (.), dF (xn,xn+) is a de-
creasing sequence of nonnegative real numbers, and hence there exists r ≥  such that
limn→∞ dF (xn,xn+) = r. In the sequel, we prove that r = . Assume r > , then from (.)
we have

 <
dF (xn,xn+)
dF (xn–,xn)

≤ β
(
dF (xn–,xn)

)
< 

for all n ≥ . The last inequality implies that limn→∞ β(dF (xn–,xn)) =  and since β ∈ Γ ,
we obtain r =  and this contradicts with our assumption. Therefore,

lim
n→∞dF (xn,xn+) = . (.)

In what follows, we prove that {xn} is a Cauchy sequence in metric space (E,dF (·, ·)). In
the contrary case, there exist two subsequences {xnk }, {xmk } such that

lim
k→∞

dF (xnk ,xmk ) > . (.)

Without loss of generality, we still denote by {xn}, {xm} these subsequences. By using the
triangular inequality,

dF (xn,xm)≤ dF (xn,xn+) + d(xn+,xm+) + dF (xm+,xm)

≤ dF (xn,xn+) + dF (PTxn,PTxm) + dF (xm+,xm)

≤ dF (xn,xn+) + dF (Txn,Txm) + dF (xm+,xm)

≤ dF (xn,xn+) + β
(
dF (xn,xm)

)
dF (xn,xm) + dF (xm+,xm),

which implies

dF (xn,xm) ≤ 
 – β(dF (xn,xm))

(
dF (xn,xn+) + dF (xm+,xm)

)
.
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The last inequality together with (.) and (.) give us

lim
n,m→∞


 – β(dF (xn,xm))

=∞.

Therefore,

lim
n,m→∞β

(
dF (xn,xm)

)
= .

Since β ∈ Γ , we get

lim
n,m→∞dF (xn,xm) = .

This is a contradiction with (.). Hence limn,m→∞ dF (xn,xm) = , the {xn} is a Cauchy
sequence in metric space (E,dF (·, ·)). By using the same method as in Theorem ., we
know

lim
n,m→∞Fxn ,xm (t) =H(t), ∀t ∈ R.

This shows that the {xn} is also a Cauchy sequence in S-probabilistic metric space (E,F).
Since (E,F) is complete, then there exists a point x∗ ∈ E such that xn → x∗ as n → ∞.
By using the same method as in Theorem ., we know that x∗ is a unique fixed point
of mapping PT : A → A. That is, PTx∗ = x∗, which is equivalent to x∗ is a unique best
proximity point of T . This completes the proof. �
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