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Abstract
The split problem, especially the split common fixed point problem, has been studied
by many authors. In this paper, we study the split common fixed point problem for
the pseudo-contractive mappings and the quasi-nonexpansive mappings. We
suggest and analyze an iterative algorithm for solving this split common fixed point
problem. A weak convergence theorem is given.
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1 Introduction
This articlewe devote to the split commonfixed point problem and study it for the pseudo-
contractive and quasi-nonexpansive mappings. The split common fixed point problem is
a generalization of the convex feasibility problem which is to find a point x∗ satisfying the
following:

x∗ ∈
m⋂
i=

Ci,

where m ≥  is an integer, and each Ci is a nonempty closed convex subset of a Hilbert
space H . Note that the convex feasibility problem has received a lot of attention due to
its extensive applications in many applied disciplines as diverse as approximation theory,
image recovery and signal processing, control theory, biomedical engineering, communi-
cations, and geophysics (see [–] and the references therein). A special case of the convex
feasibility problem is the split feasibility problem, which is to find a point x∗ such that

x∗ ∈ C and Ax∗ ∈ Q, (.)

where C and Q are two closed convex subsets of two Hilbert spaces H and H, respec-
tively, and A : H → H is a bounded linear operator. Such problems arise in the field of
intensity-modulated radiation therapy when one attempts to describe physical dose con-
straints and equivalent uniform dose constraints within a single model; see []. The prob-
lem with only a single pair of sets C ∈R

N and Q ∈R
M was first introduced by Censor and

Elfving []. They used their simultaneous multi-projections algorithm to solve the split
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feasibility problem. Their algorithms, as well as others, see, e.g., Byrne [], involve matrix
inversion at each iterative step. Calculating inverses of matrices is very time-consuming,
particularly if the dimensions are large. Therefore, a new algorithm for solving the split
feasibility problem was devised by Byrne [], called the CQ-algorithm:

xn+ = PC
(
xn – τA∗(I – PQ)Axn

)
,

where τ ∈ (, L ) with L being the largest eigenvalue of the matrix A∗A, I is the unit ma-
trix or operator and PC and PQ denote the orthogonal projections onto C and Q, respec-
tively. In the case of nonlinear constraint sets, orthogonal projections may demand a great
amount of work of solving a nonlinear optimization problem to minimize the distance
between the point and the constraint set. However, it can easily be estimated by linear
approximation using the current constraint violation and the sub-gradient at the current
point. This was done by Yang, in his recent paper [], where he proposed a relaxed version
of the CQ-algorithm in which orthogonal projections are replaced by sub-gradient pro-
jections, which are easily executed when the sets C and Q are given as lower level sets of
convex functions; see also []. There are a large number of references on the CQ method
for the split feasibility problem in the literature; see, for instance, [–].
It is our main purpose in this paper to develop algorithms for the split common fixed

point for the pseudo-contractive and quasi-nonexpansive mappings. Weak convergence
theorem is given. Our results improve and develop previously discussed feasibility prob-
lems and related algorithms.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C
be a nonempty closed convex subset of H .

Definition . A mapping S : C → C is called pseudo-contractive if

〈Sx – Sy,x – y〉 ≤ ‖x – y‖

for all x, y ∈ C.

We will use Fix(S) to denote the set of fixed points of S, that is, Fix(S) = {x ∈ C : x = Sx}.

Remark . It is clear that S is pseudo-contractive if and only if

‖Sx – Sy‖ ≤ ‖x – y‖ + ∥∥(I – S)x – (I – S)y
∥∥ (.)

for all x, y ∈ C.

Interest in pseudo-contractive mappings stems mainly from their firm connection with
the class of nonlinear accretive operators. It is a classical result, see Deimling [], that
if S is an accretive operator, then the solutions of the equations Sx =  correspond to the
equilibrium points of some evolution systems.

http://www.fixedpointtheoryandapplications.com/content/2014/1/172


Zhu et al. Fixed Point Theory and Applications 2014, 2014:172 Page 3 of 10
http://www.fixedpointtheoryandapplications.com/content/2014/1/172

Definition . A mapping T : C → C is called L-Lipschitzian if there exists L >  such
that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ C.

Remark . We call T nonexpansive if L =  and T is contractive if L < .

Definition . A mapping T : C → C is called quasi-nonexpansive if

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥, ∀(
x,x∗) ∈ C × Fix(T).

Remark . It is obvious that if T is nonexpansive with Fix(T) �= ∅, then T is quasi-
nonexpansive.

Usually, the convergence of fixed point algorithms requires some additional smoothness
properties of the mapping T such as demi-closedness.

Definition . A mapping T is said to be demi-closed if, for any sequence {xk} which
weakly converges to x̃, and if the sequence {T(xk)} strongly converges to z, then T(x̃) = z.

It is well known that in a real Hilbert space H , the following equality holds:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ (.)

for all x, y ∈ H and t ∈ [, ].

Lemma . ([]) Let H be a real Hilbert space, C a closed convex subset of H . Let U :
C → C be a continuous pseudo-contractive mapping. Then

(i) Fix(U) is a closed convex subset of C,
(ii) (I –U) is demi-closed at zero.

Lemma . ([]) Let H be a Hilbert space and let {un} be a sequence in H such that there
exists a nonempty set � ⊂H satisfying the following:

(i) for every u ∈ �, limn ‖un – u‖ exists,
(ii) any weak-cluster point of the sequence {un} belongs in �.

Then there exists x† ∈ � such that {un} weakly converges to x†.

In the sequel we shall use the following notation:
. ωw(un) = {x : ∃unj → x weakly} denote the weak ω-limit set of {un};
. un ⇀ x stands for the weak convergence of {un} to x;
. un → x stands for the strong convergence of {un} to x.

3 Main results
In this section, we will focus our attention on the following general two-operator split
common fixed point problem:

find x∗ ∈ C such that Ax∗ ∈Q, (.)
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where A : H → H is a bounded linear operator, U : H → H is a pseudo-contractive
mapping and T : H → H is a quasi-nonexpansive mapping with nonempty fixed point
sets Fix(U) = C and Fix(T) = Q, and we denote the solution set of the two-operator split
common fixed point problem by

� = {x ∈ C;Ax ∈Q}.

To solve (.), Censor and Segal [] proposed and proved, in finite-dimensional spaces,
the convergence of the following algorithm:

xk+ =U
(
xk + γA∗(T – I)Axk

)
, k ∈N, (.)

where γ ∈ (, 
λ
), with λ being the largest eigenvalue of the matrix A∗A.

Moudafi [] extended (.) to the following relaxed algorithm:

xk+ =Uαk

(
xk + γA∗(Tβ – I)Axk

)
, k ∈N,

where β ∈ (, ), αk ∈ (, ) are relaxation parameters.
Inspired by their works, we introduce the following algorithm.

Algorithm . Let H and H be two real Hilbert spaces. Let A :H → H be a bounded
linear operator. LetU :H →H be a pseudo-contractive mapping with Lipschitzian con-
stant L and T : H → H be a quasi-nonexpansive mapping with nonempty Fix(U) = C
and Fix(T) =Q. Let x ∈H. Define a sequence {un} as follows:

⎧⎪⎪⎨
⎪⎪⎩
xn = un + γ νA∗(T – I)Aun,

yn = ( – ξn)xn + ξnUxn,

un+ = [ – ( – δn)αn]xn + ( – δn)αnUyn

(.)

for all n ∈ N, where γ and ν are two constants, {αn}, {δn}, and {ξn} are three sequences in
[, ].

In the sequel, we assume the parameters satisfy the following restrictions.

Parameters restrictions:

(R):  < ν <  and  < γ < 
λν
, where λ is the largest eigenvalue of the matrix A∗A;

(R):  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(R):  < k ≤  – δn ≤ ξn < √

+L+
for all n ∈N, where L is the Lipschitz constant of U .

Remark . Without loss of generality, we may assume that the Lipschitz constant L > .
It is obvious that √

+L+
< 

L for all n≥ . Since ξn < √
+L+

, we have  – ξn – ξ 
nL >  for

all n ∈N.

Theorem . Let H and H be two real Hilbert spaces. Let A : H → H be a bounded
linear operator. Let U : H → H be a pseudo-contractive mapping with Lipschitzian con-
stant L and T : H → H be a quasi-nonexpansive mapping with nonempty Fix(U) = C
and Fix(T) =Q. Assume that T – I is demi-closed at  and � �= ∅. Then the sequence {un}
generated by algorithm (.) weakly converges to a split common fixed point μ ∈ �.
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Proof Let x∗ ∈ �. Then we get x∗ ∈ Fix(U) andAx∗ ∈ Fix(T). From (.) and (.), we have

∥∥un+ – x∗∥∥ =
∥∥[
 – ( – δn)αn

]
xn + ( – δn)αnUyn – x∗∥∥

=
∥∥( – αn)

(
xn – x∗) + αn

[
δnxn + ( – δn)Uyn – x∗]∥∥

= ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥δnxn + ( – δn)Uyn – x∗∥∥

– αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥

= αn
[
δn

∥∥xn – x∗∥∥ + ( – δn)
∥∥Uyn – x∗∥∥ – δn( – δn)‖Uyn – xn‖

]
+ ( – αn)

∥∥xn – x∗∥∥ – αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥. (.)

Since x∗ ∈ Fix(U), we have from (.)

∥∥Ux – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ‖x –Ux‖ (.)

for all x ∈ C.
By (.) and (.), we obtain

∥∥Uyn – x∗∥∥ =
∥∥U(

( – ξn)xn + ξnUxn
)
– x∗∥∥

≤ ∥∥( – ξn)xn + ξnUxn –Uyn
∥∥ +

∥∥( – ξn)xn + ξnUxn – x∗∥∥

=
∥∥( – ξn)(xn –Uyn) + ξn(Uxn –Uyn)

∥∥

+
∥∥( – ξn)

(
xn – x∗) + ξn

(
Uxn – x∗)∥∥

= ( – ξn)‖xn –Uyn‖ + ξn‖Uxn –Uyn‖ – ξn( – ξn)‖xn –Uxn‖

+ ( – ξn)
∥∥xn – x∗∥∥ + ξn

∥∥Uxn – x∗∥∥ – ξn( – ξn)‖xn –Uxn‖

≤ ( – ξn)
∥∥xn – x∗∥∥ + ξn

(∥∥xn – x∗∥∥ + ‖xn –Uxn‖
)

– ξn( – ξn)‖xn –Uxn‖ + ( – ξn)‖xn –Uyn‖ + ξn‖Uxn –Uyn‖

– ξn( – ξn)‖xn –Uxn‖.

Note that U is L-Lipschitzian and xn – yn = ξn(Uxn – xn). Then we have

∥∥Uyn – x∗∥∥ ≤ ( – ξn)
∥∥xn – x∗∥∥ + ξn

(∥∥xn – x∗∥∥ + ‖xn –Uxn‖
)

– ξn( – ξn)‖xn –Uxn‖ + ( – ξn)‖xn –Uyn‖ + ξ 
nL

‖xn –Uxn‖

– ξn( – ξn)‖xn –Uxn‖

=
∥∥xn – x∗∥∥ + ( – ξn)‖xn –Uyn‖

– ξn
(
 – ξn – ξ 

nL
)‖xn –Uxn‖. (.)

Substituting (.) into (.), we have

∥∥un+ – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αn

{
δn

∥∥xn – x∗∥∥ + ( – δn)
[∥∥xn – x∗∥∥

+ ( – ξn)‖xn –Uyn‖ – ξn
(
 – ξn – ξ 

nL
)‖xn –Uxn‖

]
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– δn( – δn)‖Uyn – xn‖
}
– αn( – αn)

∥∥δnxn + ( – δn)Uyn – xn
∥∥

≤ ∥∥xn – x∗∥∥ – αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥. (.)

Since λ is the spectral radius of the operator AA∗, we deduce

〈
(T – I)Aun,AA∗(T – I)Aun

〉 ≤ λ
∥∥(T – I)Aun

∥∥.

This together with (.) implies that

∥∥xn – x∗∥∥ =
∥∥un + γ νA∗(T – I)Aun – x∗∥∥

=
∥∥un – x∗∥∥ + γ ν

〈
A∗(T – I)Aun,un – x∗〉

+ γ ν∥∥A∗(T – I)Aun
∥∥

=
∥∥un – x∗∥∥ + γ ν

〈
A∗(T – I)Aun,un – x∗〉

+ γ ν〈(T – I)Aun,AA∗(T – I)Aun
〉

≤ ∥∥un – x∗∥∥ + γ ν
〈
A∗(T – I)Aun,un – x∗〉

+ γ νλ
∥∥(T – I)Aun

∥∥. (.)

Since T is quasi-nonexpansive and Ax∗ ∈ Fix(T), we have

∥∥TAun –Ax∗∥∥ ≤ ∥∥Aun –Ax∗∥∥.
At the same time, we have the following equality in Hilbert spaces:

‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉. (.)

In (.), picking up x = (T – I)Aun and y = TAun –Ax∗ to deduce

∥∥Aun –Ax∗∥∥ =
∥∥(T – I)Aun –

(
TAun –Ax∗)∥∥

=
∥∥(T – I)Aun

∥∥ +
∥∥TAun –Ax∗∥∥

– 
〈
(T – I)Aun,TAun –Ax∗〉

≤ ∥∥(T – I)Aun
∥∥ +

∥∥Aun –Ax∗∥∥

– 
〈
(T – I)Aun,TAun –Ax∗〉.

It follows that

〈
(T – I)Aun,TAun –Ax∗〉 ≤ 


∥∥(T – I)Aun

∥∥.

Thus,

〈
A∗(T – I)Aun,un – x∗〉 = 〈

(T – I)Aun,Aun –Ax∗〉
=

〈
(T – I)Aun,TAun –Ax∗〉 + 〈

(T – I)Aun,Aun – TAun
〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/172
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≤ 

∥∥(T – I)Aun

∥∥ –
∥∥(T – I)Aun

∥∥

= –


∥∥(T – I)Aun

∥∥. (.)

From (.), (.), and (.), we get

∥∥un+ – x∗∥∥ ≤ ∥∥un – x∗∥∥ – γ ν( – λγ ν)
∥∥(T – I)Aun

∥∥

– αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥. (.)

We deduce immediately that

∥∥un+ – x∗∥∥ ≤ ∥∥un – x∗∥∥.
Hence, limn→∞ ‖un – x∗‖ exists. This implies that {un} is bounded. Consequently, we have

 ≤ γ ν( – λγ ν)
∥∥(T – I)Aun

∥∥ ≤ ∥∥un – x∗∥∥ –
∥∥un+ – x∗∥∥ → .

Therefore,

lim
n→∞

∥∥(T – I)Aun
∥∥ = . (.)

Since {un} is bounded, ωw(un) �= ∅. We can take μ ∈ ωw(un), that is, there exists {unj} such
that ω – limj→∞ unj = μ. Noting that T – I is demi-closed at , from (.), we obtain

(T – I)Aμ = .

Thus, Aμ ∈ Fix(T).
From (.), we deduce

αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥ ≤ ∥∥un – x∗∥∥ –
∥∥un+ – x∗∥∥ → .

Since  < lim infn→∞ αn ≤ lim supn→∞ αn < ,  < lim infn→∞ αn ≤ lim supn→∞ αn( –
αn) < . Then we have

lim
n→∞

∥∥δnxn + ( – δn)Uyn – xn
∥∥ = lim

n→∞( – δn)‖Uyn – xn‖ = .

Note that lim sup δn < ; we get immediately

lim
n→∞‖Uyn – xn‖ = .

Since U is L-Lipschitzian, we have

‖Uxn – xn‖ ≤ ‖Uxn –Uyn‖ + ‖Uyn – xn‖
≤ L‖xn – yn‖ + ‖Uyn – xn‖
= Lξn‖Uxn – xn‖ + ‖Uyn – xn‖.
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It follows that

‖Uxn – xn‖ ≤ 
 – Lξn

‖Uyn – xn‖ ≤
√
 + L +  – L√
 + L + 

‖Uyn – xn‖.

So

lim
n→∞‖Uxn – xn‖ = . (.)

From (.), (.), and (.), we have limn→∞ ‖xn – un‖ = . Thus, ω – limj→∞ xnj = μ. By
the demi-closedness of U – I at  (Lemma .), we get

Uμ = μ.

Hence, μ ∈ Fix(U). Therefore, μ ∈ �. Since there is no more than one weak-cluster point,
the weak convergence of the whole sequence {un} follows by applying Lemma . with
� = �. This completes the proof. �

Example . Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈ R and
the standard norm | · |. Let C = [,+∞) and Tx = x+

+x for all x ∈ C. Obviously, Fix(T) = .
It is easy to see that

|Tx – | =
∣∣∣∣x

 + 
 + x

– 
∣∣∣∣ = x

 + x
|x – | ≤ |x – |

for all x ∈ C and
∣∣∣∣T() – T

(



)∣∣∣∣ = 


>
∣∣∣∣ – 



∣∣∣∣.

Hence, T is a continuous quasi-nonexpansive mapping but not nonexpansive.

Example . Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈ R and
the standard norm | · |. Let C = [,+∞) and let Ux = x –  + 

x+ for all x ∈ C. Observe that
Fix(U) = . It is easy to see that

〈Ux –Uy,x – y〉 =
〈
x –  +


x + 

– y +  –


y + 
,x – y

〉

≤
[
 –


(x + )(y + )

]
|x – y|

≤ |x – y|

and

|Ux –Uy| ≤
∣∣∣∣x –  +


x + 

– y +  –


y + 

∣∣∣∣
≤

∣∣∣∣ – 
(x + )(y + )

∣∣∣∣|x – y|

≤ |x – y|

for all x, y ∈ C.
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But
∣∣∣∣U

(



)
–U()

∣∣∣∣ = 


>


.

Hence, U is a Lipschitzian pseudo-contractive mapping but it is not nonexpansive.
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