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1 Introduction
Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual space of E. We use
→ and ⇀ to denote strong and weak convergence, respectively. We denote the value of
f ∈ E∗ at x ∈ E by 〈x, f 〉.
We use J to denote the normalized duality mapping from E to E∗ , which is defined by

Jx :=
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, x ∈ E.

It is well known that J is single-valued if E∗ is strictly convex.Moreover, J(cx) = cJx, for ∀x ∈
E and c ∈ R. We call J weakly sequentially continuous if each {xn} ⊂ E which converges
weakly to x implies that {Jxn} converges in the sense of weak∗ to Jx.
Let C be a nonempty, closed, and convex subset of E and Q be a mapping of E onto C.

Then Q is said to be sunny [] if Q(Q(x) + t(x –Q(x))) =Q(x), for all x ∈ E and t ≥ .
A mapping Q of E into E is said to be a retraction [] if Q = Q. If a mapping Q is a

retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is the range of Q.
A mapping T : C → C is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖, for ∀x, y ∈ C.

We use F(T) to denote the fixed point set of T , that is, F(T) := {x ∈ C : Tx = x}. A mapping
T : E ⊃ D(T) → R(T) ⊂ E is said to be demiclosed at p if whenever {xn} is a sequence in
D(T) such that xn ⇀ x ∈D(T) and Txn → p then Tx = p.
A subset C of E is said to be a sunny nonexpansive retract of E [] if there exists a sunny

nonexpansive retraction of E onto C and it is called a nonexpansive retract of E if there
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exists a nonexpansive retraction of E onto C. If E is reduced to a Hilbert spaceH , then the
metric projection PC is a sunny nonexpansive retraction fromH to any closed and convex
subset C of H . But this is not true in a general Banach space. We note that if E is smooth
and Q is a retraction of C onto F(T), then Q is sunny and nonexpansive if and only if for
∀x ∈ C, z ∈ F(T), 〈Qx – x, J(Qx – z)〉 ≤  [].
A mapping T : C → C is called pseudo-contractive [] if there exists j(x – y) ∈ J(x – y)

such that 〈Tx – Ty, j(x – y)〉 ≤ ‖x – y‖ holds for all x, y ∈ C.
Interest in pseudo-contractive mappings stems mainly from their firm connection with

the important class of nonlinear accretive mappings. A mapping A :D(A)⊂ E → E is said
to be accretive if ‖x – x‖ ≤ ‖x – x + r(y – y)‖, for ∀xi ∈ D(A), yi ∈ Axi, i = , , and
r > . If A is accretive, then we can define, for each r > , a nonexpansive single-valued
mapping JAr : R(I+rA) → D(A) by JAr := (I+rA)–, which is called the resolvent ofA.We also
know that for an accretivemappingA,N(A) = F(JAr ), whereN(A) = {x ∈D(A) : Ax = }. An
accretive mapping A is said to bem-accretive if R(I + λA) = E, for ∀λ > .
It is well known that if A is an accretive mapping, then the solutions of the problem

 ∈ Ax correspond to the equilibrium points of some evolution equations. Hence, the
problem of finding a solution x ∈ E with  ∈ Ax has been studied by many researchers
(see [–] and the references contained therein).
One classical method for studying the problem  ∈ Ax, where A is anm-accretive map-

ping, is the following so-called proximal method (cf. []), presented in a Hilbert space:

x ∈ H , xn+ ≈ JArnxn, n≥ , (.)

where JArn := (I+rnA)–. It was shown that the sequence generated by (.) converges weakly
or strongly to a zero point of A under some conditions.
On the other hand, one explicit iterative process was first introduced, in , by

Halpern [] in the frame of Hilbert spaces:

u ∈ C, x ∈ C, xn+ = αnu + ( – αn)Txn, n≥ , (.)

where {αn} ⊂ [, ] and T : C → C is a nonexpansive mapping. It was proved that under
some conditions, the sequence {xn} produced by (.) converges strongly to a point in
F(T).
In , Qin and Su [] presented the following iterative algorithm:

x ∈ C,

yn = βnxn + ( – βn)JArnxn,

xn+ = αnu + ( – αn)yn.

(.)

They showed that {xn} generated by (.) converges strongly to a point in N(A).
Motivated by iterative algorithms (.) and (.), Zegeye and Shahzad extended their

discussion to the case of finitem-accretivemappings. They presented in [] the following
iterative algorithm:

x ∈ C, xn+ = αnu + ( – αn)Srxn, n≥ , (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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where Sr = aI+aJA +aJA + · · ·+alJAl with JAi = (I+Ai)– and
∑l

i= ai = . If
⋂l

i=N(Ai) �=
∅, they proved that {xn} generated by (.) converges strongly to the common point in
N(Ai) (i = , , . . . , l) under some conditions.
The work in [] was then extended to the following one presented by Hu and Liu in

[]:

x ∈ C, xn+ = αnu + βnxn + ϑnSrnxn, n≥ , (.)

where Srn = aI + aJA
rn + aJA

rn + · · · + alJ
Al
rn with JAi

rn = (I + rnAi)– and
∑l

i= ai = . We
have {αn}, {βn}, {ϑn} ⊂ (, ) and αn + βn + ϑn = . If

⋂l
i=N(Ai) �= ∅, they proved that {xn}

converges strongly to the common point in N(Ai) (i = , , . . . , l) under some conditions.
In , Yao et al. presented the following iterative algorithm in the frame of Hilbert

space in []:

x ∈ C,

yn = PC
[
( – αn)xn

]
,

xn+ = ( – βn)xn + βnTyn, n≥ .

(.)

Here T : C → C is a nonexpansive mapping with F(T) �= ∅. Suppose {αn} and {βn} are two
real sequences in (, ) satisfying
(a)

∑∞
n= αn = +∞ and limn→∞ αn = ;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} constructed by (.) converges strongly to a point in F(T).
The following lemma is commonly used in proving the convergence of the iterative al-

gorithms in a Banach space.

Lemma . ([]) Let E be a real uniformly smooth Banach space, then there exists a non-
decreasing continuous function β : [, +∞) → [, +∞) with limt→+ β(t) =  and β(ct) ≤
cβ(t) for c≥ , such that for all x, y ∈ E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y, Jx〉 +max
{‖x‖, }‖y‖β(‖y‖).

Motivated by the work in [] and [], and after imposing an additional condition on
the function β in Lemma . that

β(t)≤ t
max{, r} , (.)

where r >  is a constant satisfying some conditions, Shehu and Ezeora presented the
following result.

Theorem . ([]) Let E be a real uniformly smooth and uniformly convex Banach space,
and let C be a nonempty, closed, and convex sunny nonexpansive retract of E, where QC is
the sunny nonexpansive retraction of E onto C. Supposed the duality mapping J : E → E∗

is weakly sequentially continuous. For each i = , , . . . ,N , let Ai : C → E be an m-accretive

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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mapping such that
⋂N

i=N(Ai) �= ∅. Let {αn}, {βn} ⊂ (, ) satisfy (a) and (b). Let {xn} be
generated iteratively by

x ∈ C,

yn =QC
[
( – αn)xn

]
,

xn+ = ( – βn)xn + βnSNyn, n≥ .

(.)

Here SN := aI+aJA +aJA + · · ·+aNJAN with JAi = (I+Ai)–, for i = , , . . . ,N .  < ak < ,
for k = , , , . . . ,N , and

∑N
k= ak = . Then {xn} converges strongly to the common point in

N(Ai), where i = , , . . . ,N .

How do we show the convergence of the iterative sequence {xn} in (.) if β loses the
additional condition (.)? How about the convergence of {xn} if different Ai has different
coefficient in (.)?
To answer these questions,Wei andTan presented the following iterative scheme in []:

x ∈ C,

un =QC
[
( – αn)(xn + en)

]
,

vn = ( – βn)xn + βnSnun,

xn+ = γnxn + ( – γn)Snvn, n≥ ,

(.)

where {en} ⊂ E is the error sequence and {Ai}Ni= is a finite family ofm-accretive mappings.
Sn := aI + aJA

rn, + aJA
rn, + · · · + aNJ

AN
rn,N , J

Ai
rn,i = (I + rn,iAi)–, for i = , , . . . ,N ,

∑N
k= ak = ,

 < ak < , for k = , , , . . . ,N . Some strong convergence theorems are obtained.
In this paper, our main purpose is to extend the discussion of (.) from one family of

m-accretive mappings {Ai}Ni= to that of two families of m-accretive mappings {Ai}Ni= and
{Bj}Mj=. We shall first present and study the following three-step iterative algorithm (A)
with errors {en} ⊂ E:

x ∈ C,

un =QC
[
( – αn)(xn + en)

]
,

vn = ( – βn)xn + βnSnun,

xn+ = γnxn + ( – γn)WnSnvn, n≥ ,

(A)

where Sn := aI +aJA
rn, +aJ

A
rn, + · · ·+aNJAN

rn,N , andWn := bI +bJBsn, +bJ
B
sn, + · · ·+bMJBMsn,M .

For i = , , . . . ,N , JAi
rn,i = (I + rn,iAi)–. For j = , , . . . ,M, JBjsn,j = (I + sn,jBj)–. a,a, . . . ,aN

and b,b, . . . ,bM are real numbers in (, ) and
∑N

i= ai = ,
∑M

j= bj = . rn,i > , for i =
, , . . . ,N , and sn,j > , for j = , , . . . ,M and n≥ .
Later, we introduce and study the following one:

x ∈ C,

un =QC
[
( – αn)(xn + en)

]
, (B)

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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vn = ( – βn)xn + βnSnun,

xn+ = γnxn + ( – γn)UnSnvn, n≥ ,

whereUn := cI +cJBtn, +cJ
B
tn, J

B
tn, + · · ·+cMJBMtn,MJ

BM–
tn,M– · · · JBtn, , c, c, . . . , cM are real numbers

in (, ),
∑M

j= cj = , and JBjtn,j = (I + tn,jBj)– and tn,j > , for j = , , . . . ,M and n≥ .
More details will be presented in Section . Some strong convergence theorems are ob-

tained, which can be regarded as the extension of the work done in [, , , , ], etc. As
a consequence, some new iterative algorithms are constructed to converge strongly to the
common fixed point of two finite families of pseudo-contractive mappings from C to E.

2 Preliminaries
Now, we list some results we need in sequel.

Lemma . ([]) Let E be a real uniformly convex Banach space and let C be a nonempty,
closed, and convex subset of E and T : C → C is a nonexpansive mapping such that
F(T) �= ∅, then I – T is demiclosed at zero.

Lemma . ([]) Let E be a strictly convex Banach space which has a uniformly Gâteaux
differential norm, and let C be a nonempty, closed, and convex subset of E. Let {Ai}Ni= be
a finite family of accretive mappings with

⋂N
i=N(Ai) �= ∅, satisfying the following range

conditions:

D(Ai) ⊆ C ⊂
⋂
r>

R(I + rAi), i = , , . . . ,N .

Let a,a, . . . ,aN be real numbers in (, ) such that
∑N

i= ai =  and Srn = aI + aJA
rn +

aJA
rn + · · ·+aNJAN

rn ,where JAi
rn = (I+rnAi)– and rn > , then Srn is nonexpansive and F(Srn ) =⋂N

i=N(Ai).

Lemma . ([]) In a real Banach space E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma . ([]) Let {an}, {bn}, and {cn} be three sequences of nonnegative real numbers
satisfying

an+ ≤ ( – cn)an + bncn, ∀n≥ ,

where {cn} ⊂ (, ) such that (i) cn →  and
∑∞

n= cn = +∞, (ii) either lim supn→∞ bn ≤  or∑∞
n= |bncn| < +∞. Then limn→∞ an = .

Lemma . ([]) Let {xn} and {yn} be two bounded sequences in a Banach space
E such that xn+ = βnxn + ( – βn)yn, for n ≥ . Suppose {βn} ⊂ (, ) satisfying  <
lim infn→+∞ βn ≤ lim supn→+∞ βn < . If lim supn→+∞(‖yn+ – yn‖ – ‖xn+ – xn‖) ≤ , then
limn→+∞ ‖yn – xn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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Lemma. ([]) Let E be a Banach space and let A be anm-accretivemapping. For λ > ,
μ > , and x ∈ E, we have

Jλx = Jμ
(

μ

λ
x +

(
 –

μ

λ

)
Jλx

)
,

where Jλ = (I + λA)– and Jμ = (I +μA)–.

3 Main results
Lemma . ([]) Let E be a real uniformly smooth and uniformly convex Banach space.
Let C be a nonempty, closed, and convex sunny nonexpansive retract of E, and QC be the
sunny nonexpansive retraction of E onto C. Let T : C → C be nonexpansive with F(T) �= ∅.
Suppose that the duality mapping J : E → E∗ is weakly sequentially continuous. If for each
t ∈ (, ), define Tt : C → C by

Ttx := TQC
[
( – t)x

]
. (.)

Then Tt is a contraction and has a fixed point zt , which satisfies ‖zt –Tzt‖ → , as t → .

Lemma . ([]) Under the assumptions of Lemma ., suppose further that β in
Lemma . satisfies (.), where r >  is a sufficiently large constant such that zt ∈ C

⋂{z ∈
E : ‖z – x∗‖ ≤ r}, x∗ is in F(T) and t ∈ (, ), then limt→ zt = z ∈ F(T).

Remark . Lemma . with additional condition (.) is employed as a key tool to prove
Lemma .. In the following lemma, we shall show that Lemma . can be used instead of
Lemma ., which simplifies the proof and weakens the assumption.

Lemma . Only under the assumptions of Lemma ., the result of Lemma . is true,
which ensures that the assumption is weaker than that in Lemma ..

Proof To show that limt→ zt = z ∈ F(T), it suffices to show that for any sequence {tn}
such that tn → , we have limn→∞ ztn = z ∈ F(T).
In fact, Lemma . implies that zt ∈ F(T) such that zt = TQC[(– t)zt], t ∈ (, ). By using

Lemma ., we have for ∀p ∈ F(T),

‖zt – p‖ = ∥∥TQC
[
( – t)zt

]
– TQCp

∥∥

≤ ‖zt – p – tzt‖

≤ ‖zt – p‖ – t‖zt – p – tzt‖ – t
〈
p + tzt , J(zt – p – tzt)

〉
.

This implies that

‖zt – p – tzt‖ ≤ 〈
p, J(p + tzt – zt)

〉
+ t

〈
zt , J(p + tzt – zt)

〉
. (.)

In particular,

‖ztn – p – tnztn‖ ≤ 〈
p, J(p + tnztn – ztn )

〉
+ tn

〈
ztn , J(p + tnztn – ztn )

〉
. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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Since ∀p ∈ F(T),

‖zt – p‖ = ∥∥TQC
[
( – t)zt

]
– TQCp

∥∥
≤ ∥∥QC

[
( – t)zt

]
–QCp

∥∥
≤ ∥∥( – t)zt – p

∥∥ =
∥∥( – t)(zt – p) – tp

∥∥
≤ ( – t)‖zt – p‖ + t‖p‖,

{zt} is bounded.
Without loss of generality, we can assume that {ztn} converges weakly to z. Using

Lemma . and Lemma ., we have z ∈ F(T).
Substituting z for p in (.), we obtain

‖ztn – z – tnztn‖ ≤ 〈
z, J(z + tnztn – ztn )

〉
+ tn

〈
ztn , J(z + tnztn – ztn )

〉
. (.)

Then from (.) and the weak convergence of J , we have ztn – z – tnztn → , as n→ ∞.
Then from ‖ztn – z‖ ≤ ‖ztn – z – tnztn‖ + tn‖ztn‖, we see that ztn → z, as n→ ∞.
Suppose there exists another sequence ztm ⇀ x, as tm →  and m → ∞. Then from

Lemma . that ‖ztm – Tztm‖ →  and I – T is demi-closed at zero, we have x ∈ F(T).
Moreover, repeating the above proof, we have ztm → x, as m → ∞. Next, we want to
show that z = x.
Using (.), we have

‖ztm – z – tmztm‖ ≤ 〈
z, J(z + tmztm – ztm )

〉
+ tm

〈
ztm , J(z + tmztm – ztm )

〉
. (.)

By lettingm → ∞, (.) implies that

‖x – z‖ ≤ 〈
z, J(z – x)

〉
. (.)

Interchanging x and z in (.), we obtain

‖z – x‖ ≤ 〈
x, J(x – z)

〉
. (.)

Then (.) and (.) ensure

‖x – z‖ ≤ ‖x – z‖, (.)

which implies that x = z.
Therefore, limt→ zt = z ∈ F(T).
This completes the proof. �

Lemma . Let E be a strictly convex Banach space and let C be a nonempty, closed, and
convex subset of E. Let Ai : C → E (i = , , . . . ,N ) be a finite family of m-accretive mappings
such that

⋂N
i=N(Ai) �= ∅.

Let a,a, . . . ,aN be real numbers in (, ) such that
∑N

i= ai =  and Sn = aI + aJA
rn, +

aJA
rn, + · · ·+aNJAN

rn,N , where J
Ai
rn,i = (I + rn,iAi)– and rn,i > , for i = , , . . . ,N , and n≥ , then

Sn : C → C is nonexpansive and F(Sn) =
⋂N

i=N(Ai), for n ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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Proof The proof is from []. For later use, we present the proof in the following.
It is easy to check that Sn : C → C is nonexpansive and

⋂N
i=N(Ai) ⊂ F(Sn).

On the other hand, for ∀p ∈ F(Sn), then p = Snp = ap+ aJA
rn,p+ aJA

rn,p+ · · ·+ aNJ
AN
rn,N p.

For ∀q ∈ ⋂N
i=N(Ai) ⊂ F(Sn), we have

‖p – q‖ ≤ a‖p – q‖ + a
∥∥JA

rn,p – q
∥∥ + · · · + aN

∥∥JAN
rn,N p – q

∥∥
≤ (a + a + · · · + aN–)‖p – q‖ + aN

∥∥JAN
rn,N p – q

∥∥
= ( – aN )‖p – q‖ + aN

∥∥JAN
rn,N p – q

∥∥
≤ ‖p – q‖.

Therefore, ‖p–q‖ = (–aN )‖p–q‖+aN‖JAN
rn,N p–q‖, which implies that ‖p–q‖ = ‖JAN

rn,N p–
q‖. Similarly, ‖p – q‖ = ‖JA

rn,p – q‖ = · · · = ‖JAN
rn,N p – q‖.

Then ‖p – q‖ = ‖ a∑N
i= ai

(JA
rn,p – q) + a∑N

i= ai
(JA
rn,p – q) + · · · + aN∑N

i= ai
(JAN
rn,N p – q)‖, which

implies from the strict convexity of E that p – q = JA
rn,p – q = JA

rn,p – q = · · · = JAN
rn,N p – q.

Therefore, JAi
rn,ip = p, for i = , , . . . ,N . We have p ∈ ⋂N

i=N(Ai), which completes the
proof. �

Similar to Lemma ., we have the following lemma.

Lemma . Let E and C be the same as those in Lemma .. Let {Bj}Mj= be a finite family
of m-accretive mappings such that

⋂M
j=N(Bj) �= ∅.

Let b,b, . . . ,bM be real numbers in (, ) such that
∑M

j= bj =  and Wn = bI + bJBsn, +

bJBsn, + · · ·+bMJBMsn,M ,where J
Bj
s,j = (I+ sn,jBj)– and sn,j > , for j = , , . . . ,M, thenWn : C → C

is nonexpansive and F(Wn) =
⋂M

j=N(Bj), for n≥ .

Lemma . Let E, C, Sn, and Wn be the same as those in Lemmas . and .. Suppose
D := (

⋂N
i=N(Ai)) ∩ (

⋂M
j=N(Bj)) �= ∅. Then WnSn,SnWn : C → C are nonexpansive and

F(WnSn) = F(SnWn) =D.

Proof From Lemmas . and ., we can easily check that WnSn,SnWn : C → C are non-
expansive and F(Sn) ∩ F(Wn) = D. So, it suffices to show that F(Sn) ∩ F(Wn) ⊃ F(WnSn)
since F(Sn)∩ F(Wn) ⊂ F(WnSn) is trivial.
For ∀p ∈ F(WnSn), then p =WnSnp.
For ∀q ∈ F(Sn)∩ F(Wn)⊂ F(WnSn), then q =WnSnq. Now,

‖p – q‖ ≤ ‖Snp – Snq‖ ≤ a‖p – q‖ + a
∥∥JA

rn,p – q
∥∥ + · · · + aN

∥∥JAN
rn,N p – q

∥∥.
Then repeating the discussion in Lemma ., we know that p ∈ F(Sn). Then p =WnSnp =

Wnp, thus p ∈ F(Wn), which completes the proof. �

Theorem . Let E be a real uniformly smooth and uniformly convex Banach space. Let
C be a nonempty, closed, and convex sunny nonexpansive retract of E, where QC is the
sunny nonexpansive retraction of E onto C. Let Ai,Bj : C → E be m-accretive mappings,
where i = , , . . .N , j = , , . . . ,M. Suppose that the duality mapping J : E → E∗ is weakly
sequentially continuous and D := (

⋂N
i=N(Ai)) ∩ (

⋂M
j=N(Bj)) �= ∅. Let {xn} be generated

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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by the iterative algorithm (A), where Sn := aI + aJA
rn, + aJA

rn, + · · · + aNJ
AN
rn,N , and JAi

rn,i =
(I + rn,iAi)–, for i = , , . . . ,N ,  < ak < , for k = , , , . . . ,N ,

∑N
k= ak = . Wn = bI +

bJBsn, + bJBsn, + · · · + bMJBMsn,M , where JBjsn,j = (I + sn,jBj)–, for j = , , . . . ,M,  < bk < , for
k = , , , . . . ,M,

∑M
k= bk = . Suppose {en} ⊂ E, {αn}, {βn}, and {γn} are three sequences in

(, ), and {rn,i}, {sn,j} ⊂ (, +∞) satisfy the following conditions:
(i) αn → , βn → , as n→ ∞;
(ii)

∑∞
n= αnβn = +∞;

(iii)  < lim infn→+∞ γn ≤ lim supn→+∞ γn < ;
(iv)

∑∞
n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε > , for n≥  and i = , , . . . ,N ;

(v)
∑∞

n= |sn+,j – sn,j| < +∞ and sn,j ≥ ε > , for n≥  and j = , , . . . ,M;
(vi) ‖en‖

αn
→ , as n→ +∞, and

∑∞
n= ‖en‖ < +∞.

Then {xn} converges strongly to a point p ∈ D.

Proof We shall split the proof into five steps:
Step . {xn}, {un}, {Snun}, {vn}, and {Snxn} are all bounded.
We shall first show that ∀p ∈ D,

‖xn+ – p‖ ≤ M +
n∑
i=

‖ei‖, (.)

whereM =max{‖x – p‖,‖p‖}.
By using the induction method, we see that for n = , ∀p ∈D,

‖x – p‖ ≤ γ‖x – p‖ + ( – γ)‖WSv – p‖
≤ γ‖x – p‖ + ( – γ)‖v – p‖
≤ γ‖x – p‖ + ( – γ)( – β)‖x – p‖ + β( – γ)‖u – p‖
≤ γ‖x – p‖ + ( – γ)( – β)‖x – p‖ + β( – γ)

∥∥( – α)(x + e) – p
∥∥

≤ [
 – αβ( – γ)

]‖x – p‖ + αβ( – γ)‖p‖ + ( – α)β( – γ)‖e‖
≤ M + ‖e‖.

Suppose that (.) is true for n = k. Then, for n = k + ,

‖xk+ – p‖ ≤ γk+‖xk+ – p‖ + ( – γk+)‖vk+ – p‖
≤ γk+‖xk+ – p‖ + ( – γk+)

[
( – βk+)‖xk+ – p‖ + βk+‖uk+ – p‖]

≤ γk+‖xk+ – p‖ + ( – γk+)
[
( – βk+)‖xk+ – p‖

+ βk+
∥∥( – αk+)(xk+ + ek+) – p

∥∥]
≤ [

 – αk+βk+( – γk+)
]‖xk+ – p‖ + αk+βk+( – γk+)‖p‖

+ βk+( – αk+)( – γk+)‖ek+‖

≤ M +
[
 – αk+βk+( – γk+)

] k∑
i=

‖ei‖ + ( – αk+)βk+( – γk+)‖ek+‖

≤ M +
k+∑
i=

‖ei‖.
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Thus (.) is true for all n ∈ N . Since
∑∞

n= ‖en‖ < +∞, (.) ensures that {xn} is bounded.
For ∀p ∈D, from ‖un – p‖ ≤ ‖( –αn)(xn + en) – p‖ ≤ ‖xn‖+ ‖en‖+ ‖p‖, we see that {un}

is bounded.
Since ‖Snun‖ ≤ ‖Snun – Snp‖ + ‖p‖ ≤ ‖un – p‖ + ‖p‖, {Snun} is bounded. Since both

{Snun} and {xn} are bounded, {vn} is bounded. Similarly, {Snxn}, {Snvn}, {JAi
rn,iun}, {JAi

rn,i vn},
and {JBjsn,j Snvn} are all bounded, for i = , , . . . ,N ; j = , , . . . ,M.
Thenwe setM = sup{‖un‖,‖JAi

rn,iun‖,‖vn‖,‖JAi
rn,i vn‖,‖Snun‖,‖Snvn‖,‖xn‖,‖J

Bj
sn,j Snvn‖ : n≥

, i = , , . . . ,N ; j = , , . . . ,M}.
Step . limn→∞ ‖xn –WnSnvn‖ =  and limn→∞ ‖xn+ – xn‖ = .
In fact,

‖Wn+Sn+vn+ –WnSnvn‖

≤ b‖Sn+vn+ – Snvn‖ +
M∑
j=

bj
∥∥JBjsn+,j Sn+vn+ – JBjsn,j Snvn

∥∥. (.)

Next, we discuss ‖JBjsn+,j Sn+vn+ – JBjsn,j Snvn‖.
If sn,j ≤ sn+,j, then, using Lemma .,

∥∥JBjsn+,j Sn+vn+ – JBjsn,j Snvn
∥∥

=
∥∥∥∥JBjsn,j

(
sn,j
sn+,j

Sn+vn+ +
(
 –

sn,j
sn+,j

)
JBjsn+,j Sn+vn+

)
– JBjsn,j Snvn

∥∥∥∥
≤

∥∥∥∥ sn,j
sn+,j

Sn+vn+ +
(
 –

sn,j
sn+,j

)
JBjsn+,j Sn+vn+ – Snvn

∥∥∥∥
≤ sn,j

sn+,j
‖Sn+vn+ – Snvn‖ +

(
 –

sn,j
sn+,j

)∥∥JBjsn+,j Sn+vn+ – Snvn
∥∥

≤ ‖Sn+vn+ – Snvn‖ + M
sn+,j – sn,j

ε
. (.)

If sn+,j ≤ sn,j, then imitating the proof of (.), we have

∥∥JBjsn+,j Sn+vn+ – JBjsn,j Snvn
∥∥ ≤ ‖Sn+vn+ – Snvn‖ + M

sn,j – sn+,j
ε

. (.)

Combining (.) and (.), we have

∥∥JBjsn+,j Sn+vn+ – JBjsn,j Snvn
∥∥

≤ ‖Sn+vn+ – Snvn‖ + M
|sn,j – sn+,j|

ε
. (.)

Putting (.) into (.), we have

‖Wn+Sn+vn+ –WnSnvn‖ ≤ ‖Sn+vn+ – Snvn‖ + M

ε

M∑
j=

|sn,j – sn+,j|. (.)
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Similarly, we have

‖Sn+un+ – Snun‖ ≤ ‖un+ – un‖ + M

ε

N∑
i=

|rn,i – rn+,i| (.)

and

‖Sn+vn+ – Snvn‖ ≤ ‖vn+ – vn‖ + M

ε

N∑
i=

|rn,i – rn+,i|. (.)

Therefore,

‖Wn+Sn+vn+ –WnSnvn‖

≤ ‖vn+ – vn‖ + M

ε

M∑
j=

|sn,j – sn+,j| + M

ε

N∑
i=

|rn,i – rn+,i|

≤ ‖xn+ – xn‖ + βn‖xn‖ + βn+‖xn+‖ + |βn+ – βn|‖Sn+un+‖ + βn‖Sn+un+ – Snun‖

+
M

ε

M∑
j=

|sn,j – sn+,j| + M

ε

N∑
i=

|rn,i – rn+,i|

≤ ‖xn+ – xn‖ + βn‖xn‖ + βn+‖xn+‖ + |βn+ – βn|‖Sn+un+‖ + βn‖un+ – un‖

+
M

ε

N∑
i=

|rn,i – rn+,i| + M

ε

M∑
j=

|sn,j – sn+,j|

≤ ‖xn+ – xn‖ + βn‖xn‖ + βn+‖xn+‖ + |βn+ – βn|‖Sn+un+‖
+ βn

∥∥( – αn+)(xn+ + en+) – ( – αn)(xn + en)
∥∥

+
M

ε

N∑
i=

|rn,i – rn+,i| + M

ε

M∑
j=

|sn,j – sn+,j|

≤ ( + βn)‖xn+ – xn‖ + (βn + αnβn)‖xn‖ + (βn+ + αn+βn)‖xn+‖
+ |βn+ – βn|‖Sn+un+‖ + βn‖en+ – en‖ + βn‖αn+en+ – αnen‖

+
M

ε

N∑
i=

|rn,i – rn+,i| + M

ε

M∑
j=

|sn,j – sn+,j|. (.)

Thus lim supn→+∞(‖Wn+Sn+vn+ –WnSnvn‖ – ‖xn+ – xn‖) ≤ . Using Lemma ., we
have from (.) limn→∞ ‖xn –WnSnvn‖ =  and then limn→∞ ‖xn+ – xn‖ = limn→∞( –
γn)‖WnSnvn – xn‖ = .
Step . limn→∞ ‖xn –WnSnxn‖ = .
In fact,

‖xn –WnSnxn‖ ≤ ‖xn+ – xn‖ + ‖xn+ –WnSnxn‖
≤ ‖xn+ – xn‖ +

∥∥γnxn + ( – γn)WnSnvn –WnSnxn
∥∥

≤ ‖xn+ – xn‖ + γn‖xn –WnSnvn‖ + ‖WnSnvn –WnSnxn‖
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≤ ‖xn+ – xn‖ + γn‖xn –WnSnvn‖ + βn‖Snun – xn‖
≤ ‖xn+ – xn‖ + γn‖xn –WnSnvn‖ + βnM. (.)

Then (.) and step  imply that ‖xn –WnSnxn‖ → , as n→ +∞, since βn → .
Step . lim supn→+∞〈p, J(p – xn)〉 ≤ , where p is an element in D.
From Lemma ., we know thatWnSn : C → C is nonexpansive and F(WnSn) =D. Then

Lemma . and Lemma . imply that there exists zt ∈ C such that zt =WnSnQC[( – t)zt]
for t ∈ (, ). Moreover, zt → p ∈D, as t → .
Since ‖zt – p‖ ≤ ‖( – t)zt – p‖ ≤ ( – t)‖zt – p‖ + ‖p‖, {zt} is bounded. Let M =

sup{‖zt – xn‖ : n ≥ , t > }. Then from step , we know that M is a positive constant.
Using Lemma ., we have

‖zt – xn‖ = ‖zt –WnSnxn +WnSnxn – xn‖

≤ ‖zt –WnSnxn‖ + 
〈
WnSnxn – xn, J(zt – xn)

〉
≤ ‖zt –WnSnxn‖ + ‖WnSnxn – xn‖‖zt – xn‖
≤ ∥∥( – t)zt – xn

∥∥ + ‖WnSnxn – xn‖‖zt – xn‖
≤ ‖zt – xn‖ – t

〈
zt , J

[
( – t)zt – xn

]〉
+ M‖WnSnxn – xn‖.

So 〈zt , J[( – t)zt – xn]〉 ≤ M
t ‖WnSnxn – xn‖, which implies that limt→ lim supn→+∞〈zt ,

J[( – t)zt – xn]〉 ≤  in view of step .
Since {xn} is bounded and J is uniformly continuous on each bounded subset of E,

〈p, J(p – xn) – J[( – t)zt – xn]〉 → , as t → .
Moreover, noticing the fact that

〈
p, J(p – xn)

〉
=

〈
p, J(p – xn) – J

[
( – t)zt – xn

]〉
+

〈
p – zt , J

[
( – t)zt – xn

]〉
+

〈
zt , J

[
( – t)zt – xn

]〉
,

we have lim supn→+∞〈p, J(p – xn)〉 ≤ .
Since 〈p, J[p – xn – ( –αn)en +αnxn]〉 = 〈p, J[p – xn – ( –αn)en +αnxn] – J(p – xn)〉+

〈p, J(p – xn)〉, and J is uniformly continuous on each bounded subset of E,

lim sup
n→+∞

〈
p, J

[
p – xn – ( – αn)en + αnxn

]〉 ≤ . (.)

Step . xn → p, as n→ +∞, where p ∈D is the same as in step .
LetM = sup{‖( – αn)(xn + en) – p‖ : n≥ }. By using Lemma . again, we have

‖xn+ – p‖

≤ γn‖xn – p‖ + ( – γn)‖vn – p‖

≤ γn‖xn – p‖ + ( – γn)( – βn)‖xn – p‖ + ( – γn)βn‖un – p‖

= ( – βn + βnγn)‖xn – p‖ + ( – γn)βn‖un – p‖

≤ ( – βn + βnγn)‖xn – p‖ + ( – γn)βn
∥∥( – αn)(xn + en) – p

∥∥
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≤ ( – βn + βnγn)‖xn – p‖ + ( – γn)βn( – αn)‖xn – p‖

+ ( – γn)βn( – αn)
〈
en, J

[
( – αn)(xn + en) – p

]〉
+ αnβn( – γn)

〈
p, J

[
p – xn – ( – αn)en + αnxn

]〉
≤ [

 – αnβn( – γn)
]‖xn – p‖ + ( – γn)( – αn)βnM‖en‖

+ αnβn( – γn)
〈
p, J

[
p – xn – ( – αn)en + αnxn

]〉
. (.)

Let cn = ( – γn)αnβn, then (.) reduces to ‖xn+ – p‖ ≤ ( – cn)‖xn – p‖ +
cn{〈p, J[p – xn – ( – αn)en + αnxn]〉 + ( – αn)M

‖en‖
αn

}.
From (.), (.), and the assumptions, by using Lemma ., we know that xn → p,

as n→ +∞.
This completes the proof. �

If in Theorem ., C = E, then we have the following theorem.

Theorem . Let E and D be the same as those in Theorem .. Suppose that the duality
mapping J : E → E∗ is weakly sequentially continuous. Let Ai : E → E (i = , , . . . ,N ) and
Bj : E → E (j = , , . . . ,M) be two finite families of m-accretive mappings. Let {en} ⊂ E,
{αn}, {βn}, {γn} ⊂ (, ), and {rn,i}, {sn,j} ⊂ (, +∞) satisfy the some conditions presented in
Theorem ..
Let {xn} be generated by the following scheme:

x ∈ E,

un = ( – αn)(xn + en),

vn = ( – βn)xn + βnSnun,

xn+ = γnxn + ( – γn)WnSnvn, n≥ .

(C)

Then {xn} converges strongly to a point p ∈D, where Sn andWn are the same as those in
Theorem ..

Lemma . Let E, C and {Bj}Mj= be the same as those in Lemma ..
⋂M

j=N(Bj) �= ∅.
Let c, c, . . . , cM be real numbers in (, ) such that

∑M
j= cj =  and Un = cI + cJBtn, +

cJBtn, J
B
tn, + · · · + cMJBMtn,MJ

BM–
tn,M– · · · JBtn, , where J

Bj
tn,j = (I + tn,jBj)– and tn,j > , for j = , , . . . ,M,

and n≥ , then Un : C → C is nonexpansive and F(Un) =
⋂M

j=N(Bj), for n≥ .

Proof It is easy to check that Un : C → C is nonexpansive and
⋂M

j=N(Bj) ⊂ F(Un).
On the other hand, for ∀p ∈ F(Un), then p = Unp = cp + cJBtn,p + cJBtn, J

B
tn,p + · · · +

cMJBMtn,MJ
BM–
tn,M– · · · JBtn,p.

For ∀q ∈ ⋂M
j=N(Bj) ⊂ F(Un), then

‖p – q‖ ≤ c‖p – q‖ + c
∥∥JBtn,p – q

∥∥ + · · · + cM
∥∥JBMtn,MJBM–

tn,M– · · · JBtn,p – q
∥∥

≤ (c + c + · · · + cM)‖p – q‖ + c
∥∥JBtn,p – q

∥∥
= ( – c)‖p – q‖ + c

∥∥JBtn,p – q
∥∥

≤ ‖p – q‖.
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Therefore, ‖p–q‖ = (– c)‖p–q‖+ c‖JBtn,p–q‖, which implies that ‖p–q‖ = ‖JBtn,p–q‖.
Similarly, ‖p – q‖ = ‖JBtn,p – q‖ = ‖JBtn, JBtn,p – q‖ = · · · = ‖JBMtn,MJBM–

tn,M– · · · JBtn,p – q‖.
Then ‖p – q‖ = ‖ c∑M

j= cj
(JBtn,p – q) + c∑M

j= cj
(JBtn, J

B
tn,p – q) + · · · + cM∑M

j= cj
(JBMtn,MJ

BM–
tn,M– · · · JBtn,p –

q)‖, which implies from the strict convexity of E that p– q = JBtn,p– q = JBtn, J
B
tn,p– q = · · · =

JBMtn,MJ
BM–
tn,M– · · · JBtn,p – q.

Therefore, JBtn,p = p, and then we can easily see that JBjtn,j p = p, for j = , . . . ,M. Thus p ∈⋂M
j=N(Bj), which completes the proof. �

Lemma . Let E and C be the same as those in Lemma .. Let Sn and Un be the same
as those in Lemmas . and ., respectively. Suppose D := (

⋂N
i=N(Ai))∩ (

⋂M
j=N(Bj)) �= ∅.

Then SnUn,UnSn : C → C are nonexpansive and F(UnSn) = F(SnUn) =D.

Proof From Lemmas . and ., we can easily check that UnSn,SnUn : C → C are nonex-
pansive and F(Sn) ∩ F(Un) =D. So, it suffices to show that F(Sn) ∩ F(Un) ⊃ F(UnSn) since
F(Sn)∩ F(Un) ⊂ F(UnSn) is trivial.
For ∀p ∈ F(UnSn), then p =UnSnp.
For ∀q ∈ F(Sn)∩ F(Un) ⊂ F(UnSn), then q =UnSnq. Now,

‖p – q‖ = ‖UnSnp – q‖ ≤ ‖Snp – Snq‖ ≤ ‖p – q‖.

Then repeating the discussion in Lemma ., we know that p ∈ F(Sn). Then p =UnSnp =
Unp, thus p ∈ F(Un), which completes the proof. �

Theorem . Let E, C,QC , Sn, and D be the same as those in Theorem .. Let Ai,Bj : C →
E be m-accretive mappings, for i = , , . . .N , and j = , , . . . ,M. Suppose that the duality
mapping J : E → E∗ is weakly sequentially continuous and D �= ∅. Let {xn} be generated by
the iterative algorithm (B), where Un := cI + cJBtn, + cJBtn, J

B
tn, + · · · + cMJBMtn,MJ

BM–
tn,M– · · · JBtn, ,

and JBjtn,j = (I + tn,jBj)–, for j = , , . . . ,M,  < ck < , for k = , , , . . . ,M, and
∑M

k= ck = .
Suppose {en} ⊂ E, {αn}, {βn}, and {γn} are three sequences in (, ) and {rn,i}, {tn,j} ⊂ (, +∞)
satisfy the following conditions:

(i) αn → , βn → , as n→ ∞;
(ii)

∑∞
n= αnβn = +∞;

(iii)  < lim infn→+∞ γn ≤ lim supn→+∞ γn < ;
(iv)

∑∞
n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε > , for n≥  and i = , , . . . ,N ;

(v)
∑∞

n= |tn+,j – tn,j| < +∞ and tn,j ≥ ε > , for n≥  and j = , , . . . ,M;
(vi) ‖en‖

αn
→ , as n→ +∞, and

∑∞
n= ‖en‖ < +∞.

Then {xn} converges strongly to a point p ∈ D.

Proof We shall split the proof into five steps:
Step . {xn}, {un}, {Snun}, {vn}, {Snvn} and {Snxn} are all bounded.
Similar to the proof of step  in Theorem ., we can get the result of step .
Then {JBtn,Snvn}, {JBtn, JBtn,Snvn}, . . . , {JBMtn,MJBM–

tn,M– · · · JBtn,Snvn} are all bounded.
Step . limn→∞ ‖xn –UnSnvn‖ =  and limn→∞ ‖xn+ – xn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/176


Wei and Tan Fixed Point Theory and Applications 2014, 2014:176 Page 15 of 18
http://www.fixedpointtheoryandapplications.com/content/2014/1/176

In fact,

‖Un+Sn+vn+ –UnSnvn‖
≤ c‖Sn+vn+ – Snvn‖ + c

∥∥JBtn+,Sn+vn+ – JBtn,Snvn
∥∥

+ c
∥∥JBtn+, JBtn+,Sn+vn+ – JBtn, J

B
tn,Snvn

∥∥ + · · ·
+ cM

∥∥JBMtn+,MJBM–
tn+,M– · · · JBtn+,Sn+vn+ – JBMtn,MJ

BM–
tn,M– · · · JBtn,Snvn

∥∥. (.)

Similar to (.), we know that

∥∥JBtn+,Sn+vn+ – JBtn,Snvn
∥∥ ≤ ‖Sn+vn+ – Snvn‖ + M

|tn+, – tn,|
ε

, (.)

whereM = sup{‖Snvn‖,‖JBtn,Snvn‖,‖JBtn, JBtn,Snvn‖, . . . ,‖JBMtn,MJBM–
tn,M– · · · JBtn,Snvn‖ : n ≥ }.

Repeating (.), we have

∥∥JBtn+, JBtn+,Sn+vn+ – JBtn, J
B
tn,Snvn

∥∥
≤ ∥∥JBtn+,Sn+vn+ – JBtn,Snvn

∥∥ +
M

ε
|tn+, – tn,|. (.)

Then (.) and (.) imply that

∥∥JBtn+, JBtn+,Sn+vn+ – JBtn, J
B
tn,Snvn

∥∥
≤ ‖Sn+vn+ – Snvn‖ + M

ε

(|tn+, – tn,| + |tn+, – tn,|
)
. (.)

By induction, we have

∥∥JBMtn+,MJBM–
tn+,M– · · · JBtn,Sn+vn+ – JBMtn,MJ

BM–
tn,M– · · · JBtn,Snvn

∥∥
≤ ‖Sn+vn+ – Snvn‖

+
M

ε

(|tn+,M – tn,M| + · · · + |tn+, – tn,| + |tn+, – tn,|
)
. (.)

Going back to (.), we have

‖Un+Sn+vn+ –UnSnvn‖
≤ ‖Sn+vn+ – Snvn‖

+
M

ε

( M∑
j=

cj|tn, – tn+,| +
M∑
j=

cj|tn, – tn+,| + · · · + cM|tn,M – tn+,M|
)
. (.)

Therefore, similar to (.), we have

‖Un+Sn+vn+ –UnSnvn‖

≤ ‖vn+ – vn‖ + M

ε

N∑
i=

|rn,i – rn+,i|
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+
M

ε

( M∑
j=

cj|tn, – tn+,| +
M∑
j=

cj|tn, – tn+,| + · · · + cM|tn,M – tn+,M|
)

≤ ( + βn)‖xn+ – xn‖ + (βn + αnβn)‖xn‖ + (βn+ + αn+βn)‖xn+‖
+ |βn+ – βn|‖Sn+un+‖ + βn‖en+ – en‖ + βn‖αn+en+ – αnen‖

+
M

ε

N∑
i=

|rn,i – rn+,i|

+
M

ε

( M∑
j=

cj|tn, – tn+,| +
M∑
j=

cj|tn, – tn+,| + · · · + cM|tn,M – tn+,M|
)
. (.)

Thus lim supn→+∞(‖Un+Sn+vn+ – UnSnvn‖ – ‖xn+ – xn‖) ≤ . Using Lemma ., we
have from (.) limn→∞ ‖xn – UnSnvn‖ =  and then limn→∞ ‖xn+ – xn‖ = limn→∞( –
γn)‖UnSnvn – xn‖ = .
Similar to Theorem ., we have
Step . limn→∞ ‖xn –UnSnxn‖ = .
Step . lim supn→+∞〈p, J(p – xn)〉 ≤ , where p is an element in D.
From Lemma ., we know that UnSn : C → C is nonexpansive and F(UnSn) = D. Then

Lemma . and Lemma . imply that there exists zt ∈ C such that zt =UnSnQC[( – t)zt]
for t ∈ (, ). Moreover, zt → p ∈ D, as t → . Then copy step  in Theorem ., the result
follows.
Step . xn → p ∈D, which is the same as that in step .
Copy step  in Theorem ., the result follows.
This completes the proof. �

If in Theorem ., C = E, then we have the following theorem.

Theorem . Let E and D be the same as those in Theorem .. Suppose that the duality
mapping J : E → E∗ is weakly sequentially continuous. Let Ai : E → E (i = , , . . . ,N ) and
Bj : E → E (j = , , . . . ,M) be two finite families of m-accretive mappings. Let {en} ⊂ E,
{αn}, {βn}, {γn} ⊂ (, ) and {rn,i}, {tn,j} ⊂ (, +∞) satisfy the some conditions presented in
Theorem ..
Let {xn} be generated by the following scheme:

x ∈ E,

un = ( – αn)(xn + en),

vn = ( – βn)xn + βnSnun,

xn+ = γnxn + ( – γn)UnSnvn, n≥ .

(D)

Then {xn} converges strongly to a point p ∈D, where Sn and Un are the same as those in
Theorem ..

Next, we apply Theorems . and . to the cases of finite pseudo-contractivemappings.

Theorem. Let E be a real uniformly smooth and uniformly convex Banach space. Let C
be a nonempty, closed, and convex sunny nonexpansive retract of E, where QC is the sunny

http://www.fixedpointtheoryandapplications.com/content/2014/1/176
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nonexpansive retraction of E onto C. Let T ()
i ,T ()

j : C → E be pseudo-contractive map-
pings such that (I – T ()

i ) and (I – T ()
j ) are m-accretive, where i = , , . . .N , j = , , . . . ,M.

Suppose that the duality mapping J : E → E∗ is weakly sequentially continuous and D :=
(
⋂N

i= F(T
()
i )) ∩ (

⋂M
j= F(T

()
j )) �= ∅. Let {xn} be generated by the iterative algorithm (A),

where Sn := aI + aJ
I–T ()


rn, + aJ

I–T ()


rn, + · · · + aNJ
I–T ()

N
rn,N , and JI–T

()
i

rn,i = [I + rn,i(I – T ()
i )]–,

for i = , , . . . ,N ,  < ak < , for k = , , , . . . ,N ,
∑N

k= ak = . Wn = bI + bJ
I–T ()


sn, +

bJ
I–T ()


sn, + · · ·+ bMJ

I–T ()
M

sn,M , where J
I–T ()

j
sn,j = [I + sn,j(I –T ()

j )]–, for j = , , . . . ,M,  < bk < , for
k = , , , . . . ,M,

∑M
k= bk = . Suppose {en} ⊂ E, {αn}, {βn}, and {γn} are three sequences in

(, ) and {rn,i}, {sn,j} ⊂ (, +∞) satisfying the following conditions:
(i) αn → , βn → , as n→ ∞;
(ii)

∑∞
n= αnβn = +∞;

(iii)  < lim infn→+∞ γn ≤ lim supn→+∞ γn < ;
(iv)

∑∞
n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε > , for n≥  and i = , , . . . ,N ;

(v)
∑∞

n= |sn+,j – sn,j| < +∞ and sn,j ≥ ε > , for n≥  and j = , , . . . ,M;
(vi) ‖en‖

αn
→ , as n→ +∞, and

∑∞
n= ‖en‖ < +∞.

Then {xn} converges strongly to a point p ∈ D.

Proof Let Ai = (I – T ()
i ) and Bj = (I – T ()

j ), for i = , , . . . ,N and j = , , . . . ,M. Then the
result follows from Theorem .. �

Similarly, from Theorem ., we have the following result.

Theorem . Let E, C, QC and D be the same as those in Theorem .. Let T ()
i ,T ()

j :
C → E be pseudo-contractive mappings such that (I – T ()

i ) and (I – T ()
j ) are m-accretive

mappings, where i = , , . . .N , j = , , . . . ,M. Suppose that the duality mapping J : E → E∗

is weakly sequentially continuous and D �= ∅. Let {xn} be generated by the iterative al-

gorithm (B), where Sn is the same as that in Theorem . and Un = cI + cJ
I–T ()


tn, +

cJ
I–T ()


tn, JI–T

()


tn, + · · · + cMJI–T
()
M

tn,M JI–T
()
M–

tn,M– · · · JI–T
()


tn, , where J
I–T ()

j
tn,j = [I + tn,j(I – T ()

j )]–, for j =
, , . . . ,M,  < ck < , for k = , , , . . . ,M,

∑M
k= ck = . Suppose {en} ⊂ E, {αn}, {βn}, and

{γn} are three sequences in (, ) and {rn,i}, {tn,j} ⊂ (, +∞) satisfying the following condi-
tions:

(i) αn → , βn → , as n→ ∞;
(ii)

∑∞
n= αnβn = +∞;

(iii)  < lim infn→+∞ γn ≤ lim supn→+∞ γn < ;
(iv)

∑∞
n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε > , for n≥  and i = , , . . . ,N ;

(v)
∑∞

n= |tn+,j – tn,j| < +∞ and sn,j ≥ ε > , for n ≥  and j = , , . . . ,M;
(vi) ‖en‖

αn
→ , as n→ +∞, and

∑∞
n= ‖en‖ < +∞.

Then {xn} converges strongly to a point p ∈ D.
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