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Abstract
In this paper, we introduce an iteration scheme for two multivalued maps in
Kohlenbach hyperbolic spaces. This extends the single-valued iteration process due
to Agarwal et al. (J. Nonlinear Convex Anal. 8(1):61-79, 2007). Using this new
algorithm, we approximate common fixed points of two multivalued mappings
through �-convergence and strong convergence under some weaker conditions.
A necessary and sufficient condition is given for strong convergence.
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1 Introduction and preliminaries
A subset K of a metric space X is proximinal if for each x ∈ X, there exists an element
k ∈ K such that

d(x,K) = inf
{
d(x, y) : y ∈ K

}
= d(x,k).

LetCB(K),C(K) and P(K) be the families of closed and bounded subsets, compact subsets
and proximinal bounded subsets ofK , respectively. LetH be theHausdorffmetric induced
by the metric d of X, that is,

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for every A,B ∈ CB(X). A multivalued map T : K → CB(X) is nonexpansive if

H(Tx,Ty) ≤ d(x, y)

for all x, y ∈ K . A point x ∈ K is a fixed point of T if x ∈ Tx. Denote the set of all fixed
points of T by F(T) and PT (x) = {y ∈ Tx : d(x, y) = d(x,Tx)}.
We consider the following definition of a hyperbolic space introduced by Kohlenbach

[].
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Definition  A metric space (X,d) is a hyperbolic space if there exists a map W : X ×
[, ] → X satisfying

(i) d(u,W (x, y,α))≤ αd(u,x) + ( – α)d(u, y),
(ii) d(W (x, y,α),W (x, y,β)) = |α – β|d(x, y),
(iii) W (x, y,α) =W (y,x, ( – α)),
(iv) d(W (x, z,α),W (y,w,α))≤ αd(x, y) + ( – α)d(z,w)

for all x, y, z,w ∈ X and α,β ∈ [, ].

In the sequel, we shall use the term hyperbolic space instead of Kohlenbach hyperbolic
space for the sake of simplicity.
A metric space (X,d) is called a convex metric space introduced by Takahashi [] if it

satisfies only (i). A subset K of a hyperbolic space X is convex if W (x, y,α) ∈ K for all
x, y ∈ K and α ∈ [, ].
A hyperbolic space (X,d,W ) is uniformly convex [] if for any u,x, y ∈ X, r > , and

ε ∈ (, ], there exists a δ ∈ (, ] such that d(W (x, y,  ),u) ≤ ( – δ)r whenever d(x,u) ≤ r,
d(y,u) ≤ r and d(x, y)≥ εr.
Amap η : (,∞)× (, ]→ (, ] which provides such a δ = η(r, ε) for given r >  and ε ∈

(, ], is known as the modulus of uniform convexity. We call η monotone if it decreases
with r (for a fixed ε).
Different definitions of hyperbolic space can be found in the literature (see for example

[, –], for a comparison). The hyperbolic space introduced by Kohlenbach [] is slightly
restrictive than the space of hyperbolic type [] but general than hyperbolic space of [].
CAT() spaces and Banach spaces are the examples of Kohlenbach hyperbolic spaces.
Moreover, this class of hyperbolic spaces also contains Hadamardmanifolds, Hilbert balls
equipped with the hyperbolic metric [], R-trees and Cartesian products of Hilbert balls
as special cases.
The study of fixed points for multivalued nonexpansive maps using Hausdorff metric

was initiated by Markin [] (see also []). The existence of fixed points for multivalued
nonexpansive mappings in convex metric spaces has been shown by Shimizu and Taka-
hashi []. Actually, they obtained the following.

Theorem ST ([]) Let (X,d) be a bounded, complete and uniformly convex metric space.
Then every multivalued map T : X → C(X) (the family of all compact subsets of X) has a
fixed point.

Later, an interesting and rich fixed point theory for such maps was developed which has
applications in control theory, convex optimization, differential inclusion and economics
(see [] and references cited therein). Since then many authors have published papers
on the existence and convergence of fixed points for multivalued nonexpansive maps in
convex metric spaces.
The theory of multivalued nonexpansive maps is harder than the corresponding the-

ory of single valued nonexpansive maps. Different iterative algorithms have been used to
approximate the fixed points of multivalued nonexpansive maps. Sastry and Babu []
considered Mann and Ishikawa type iterative algorithms.
The following is a useful lemma due to Nadler [].
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Lemma Let A,B ∈ CB(E) and a ∈ A. If η > , then there exists b ∈ B such that d(a,b) ≤
H(A,B) + η.

Panyanak [] proved some results using Ishikawa type iteration process without the
condition Tp = {p} on the mapping T . Based on the above lemma, Song and Wang []
modified the iterative algorithm due to Panyanak [] and improved the results presented
therein. Song and Wang [] showed that without this condition his process was not well
defined. They reconstructed the process using the condition Tp = {p} which made it well
defined.
Recently, Shahzad and Zegeye [] pointed out that the assumption Tp = {p} for any

p ∈ F(T) is quite strong. In order to get rid of the condition Tp = {p} for any p ∈ F(T), they
used PT (x) := {y ∈ Tx : ‖x– y‖ = d(x,Tx)} for a multivalued map T : K → P(K) and proved
some strong convergence results usingMann and Ishikawa type iterative algorithms. Song
and Cho [] improved the results of [] whereas Khan and Yildirim [] used an iterative
algorithm independent but faster than Ishikawa algorithm to further generalize the results
of [].
On the other hand Agarwal et al. [] introduced the following iteration scheme for

single valued mappings:

x ∈ K ,

xn+ = ( – αn)Txn + αnTyn, (.)

yn = ( – βn)xn + βnTxn, n ∈N,

where  ≤ αn,βn ≤ . This scheme is independent of both Mann and Ishikawa schemes.
They proved that this scheme converges at a rate faster than Picard and Mann iteration
schemes for contractions. Following their method, it was observed in Example . of Khan
and Kim [] that this scheme also converges faster than Ishikawa iteration scheme. Two
mappings case of the above scheme has also been considered by many authors including
[–].
In this paper, we first give a two-mappings version of the algorithm (.) in hyperbolic

spaces and use PT (x) = {y ∈ Tx : d(x, y) = d(x,Tx)} instead of a stronger condition Tp = {p}
for any p ∈ F(T) to approximate common fixed points of two multivalued nonexpansive
maps.We use the method of direct construction of Cauchy sequence as indicated by Song
and Cho [] (and opposed to []) but also used by many other authors including [, ,
, ]. Our algorithm in this paper is as follows:
Let K be a nonempty convex subset of a hyperbolic space X. Let S,T : K → P(K) be two

multivalued maps and PT (x) = {y ∈ Tx : d(x, y) = d(x,Tx)}. Choose x ∈ K and define {xn}
as

⎧⎨
⎩
yn =W (vn,xn, βn

–αn
),

xn+ =W (un, vn,αn),
(.)

where vn ∈ PS(xn), un ∈ PT (yn) = PT (W (vn,xn, βn
–αn

)), and αn,βn ∈ (, ) such that
αn + βn < .
It follows from the definition of PT that d(x,Tx)≤ d(x,PT (x)) for any x in K .

http://www.fixedpointtheoryandapplications.com/content/2014/1/181
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In order to verify that the algorithm (.) is well defined, define f : K → K by

f (x) =W (u, v,α)

for some v ∈ PS(x), and for some u ∈ PT (W (v,x, β
–α

)). Assume that PS and PT are non-
expansive multivalued mappings on K . For a given x ∈ K , the existence of x is guar-
anteed if f has a fixed point. Now, for any m,n ∈ K , let y ∈ PS(m), y′ ∈ PS(n) such that
d(y, y′) = d(y,Sn), and z ∈ PT (W (y,x, β

–α
)), z′ ∈ PT (W (y′,x, β

–α
)) such that d(z, z′) =

d(z,T(W (y′,x, β
–α

))).
On using (iv) of Definition , we have

d
(
f (m), f (n)

)
= d

(
W (z, y,α),W

(
z′, y′,α

))
≤ ( – α)d

(
z, z′) + αd

(
y, y′)

= ( – α)d
(
z,T

(
W

(
y′,x,

β

 – α

)))
+ αd(y,Sn)

≤ ( – α)d
(
z,PT

(
W

(
y′,x,

β

 – α

)))
+ αd

(
y,PS(n)

)

≤ ( – α)H
(
PTW

(
y,x,

β

 – α

)
,PT

(
W

(
y′,x,

β

 – α

)))

+ αH
(
PS(m),PS(n)

)

≤ ( – α)d
(
W

(
y,x,

β

 – α

)
,
(
W

(
y′,x,

β

 – α

)))
+ αd(m,n)

≤ ( – α)
(
 –

β

 – α

)
d
(
y, y′) + αd(m,n)

= ( – α)
(
 –

β

 – α

)
d(y,Sn) + αd(m,n)

≤ ( – α)
(
 –

β

 – α

)
d
(
y,PS(n)

)
+ αd(m,n)

≤ ( – α – β)H
(
PS(m),PS(n)

)
+ αd(m,n)

≤ ( – α – β)d(m,n) + αd(m,n)

≤ ( – β)d(m,n).

Since β ∈ (, ), f is a contraction. By the Banach contraction principle, f has a unique
fixed point. Thus the existence of x is established. Continuing in this way, the existence
of x,x, . . . is guaranteed. Hence the above algorithm is well defined.
In , Lim [] introduced the concept �-convergence in metric spaces. In ,

Kirk and Panyanak [] specialized Lim’s concept to CAT() spaces and proved a num-
ber of results involving weak convergence in Banach spaces. Since then the notion of �-
convergence has been widely studied and a number of articles have appeared e.g., [, ,
, , , ]. To reach the definition of �-convergence, we first recall the notions of
asymptotic radius and asymptotic center as under:

http://www.fixedpointtheoryandapplications.com/content/2014/1/181
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Let {xn} be a bounded sequence in a metric space X. For x ∈ X, define a continuous
functional r(x, {xn}) by

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

Then
(i) rK ({xn}) = inf{r(x, {xn}) : x ∈ X} of {xn} is called the asymptotic radius of {xn} with

respect to K ⊂ X ;
(ii) for any y ∈ K ,the set AK ({xn}) = {x ∈ X : r(x, {xn}) ≤ r(y, {xn})} is called the

asymptotic center of {xn} with respect to K ⊂ X .
If the asymptotic radius and the asymptotic center are takenwith respect toX, then these

are simply denoted by r({xn}) andA({xn}), respectively. In general,A({xn}) may be empty or
may even contain infinitelymany points. It is well known that a complete uniformly convex
hyperbolic space with monotone modulus of uniform convexity enjoys the property that
bounded sequences have unique asymptotic center with respect to closed convex subsets
[].
A sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymptotic center

of {xni} for every subsequence {xni} of {xn}. In this case, we call x the �-limit of {xn} and
write �- limn xn = x.
The following are the key results to be used in our main results.

Lemma . ([]) Let K be a nonempty closed convex subset of a uniformly convex hyper-
bolic space and {xn} a bounded sequence in K with A({xn}) = {y}. If {ym} is another sequence
in K such that limm→∞ r(ym, {xn}) = r(y, {xn}), then limm→∞ ym = y.

Lemma . ([]) Let (X,d,W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity. Suppose that {xn} and {yn} are sequences in X and
x ∈ X. Let {αn} be a sequence with  < b ≤ αn ≤ c < . If lim supn−→∞ d(xn,x) ≤ r,
lim supn−→∞ d(yn,x) ≤ r and limn−→∞ d(W (xn, yn,αn),x) = r for some r ≥ , then
limn→∞ d(xn, yn) = .

2 Main results
The following lemma proved in [] gives some properties of PT in metric (and hence
hyperbolic) spaces.

Lemma . Let K be a nonempty subset of a metric space X and T : K → P(K) be a mul-
tivalued map. Then the following are equivalent:

(i) x ∈ F(T), that is, x ∈ Tx,
(ii) PT (x) = {x}, that is, x = y for each y ∈ PT (x),
(iii) x ∈ F(PT ), that is, x ∈ PT (x).
Moreover, F(T) = F(PT ).

In the sequel, F = F(S) ∩ F(T) denotes the set of all common fixed points of the multi-
valued maps S and T .

Lemma . Let K be a nonempty closed convex subset of a hyperbolic space X and let
S,T : K → P(K) be two multivalued maps such that PT and PS are nonexpansive maps
and F �= ∅. Then for the sequence {xn} in (.), limn→∞ d(xn,p) exists for each p ∈ F .

http://www.fixedpointtheoryandapplications.com/content/2014/1/181
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Proof Let p ∈ F . Then p ∈ PT (p) = {p} and p ∈ PS(p) = {p}. Using (.), we have

d(xn+,p) = d
(
W (un, vn,αn),p

)
≤ ( – αn)d(un,p) + αnd(vn,p)

≤ ( – αn)d
(
un,PT (p)

)
+ αnd

(
vn,PS(p)

)
≤ ( – αn)H

(
PT (yn),PT (p)

)
+ αnH

(
PS(xn),PS(p)

)
≤ ( – αn)d(yn,p) + αnd(xn,p)

≤ ( – αn)d
(
W

(
vn,xn,

βn

 – αn

)
,p

)
+ αnd(xn,p)

≤ ( – αn – βn)d(vn,p) + βnd(xn,p) + αnd(xn–,p)

≤ ( – αn – βn)H
(
PS(xn),PS(p)

)
+ βnd(xn,p) + αnd(xn,p)

≤ ( – αn – βn)d(xn,p) + βnd(xn,p) + αnd(xn,p)

≤ d(xn,p). (.)

That is,

d(xn+,p) ≤ d(xn,p).

Hence limn→∞ d(xn,p) exists. �

Lemma . Let K be a nonempty closed convex subset of a uniformly convex hyperbolic
space X and let S,T : K → P(K) be two multivalued maps such that PT and PS are nonex-
pansive and F �= ∅. Let {αn} and {βn} satisfy  < a ≤ αn,βn ≤ b < . Then for the sequence
{xn} in (.), we have limn→∞ d(xn,PS(xn)) =  = limn→∞ d(xn,PT (yn)).

Proof By Lemma ., limn→∞ d(xn,p) exists for each p ∈ F . Assume that limn→∞ d(xn,p) =
c for some c≥ . For c = , the result is trivial. Suppose c > .
Now limn→∞ d(xn+,p) = c can be rewritten as

lim
n→∞d

(
W (un, vn,αn),p

)
= c.

Since PT is nonexpansive, we have

d(un,p) = d
(
un,PT (p)

)
≤ H

(
PT (yn),PT (p)

)
≤ d(yn,p)

= d
(
W

(
vn,xn,

βn

 – αn

)
,p

)

≤
(
 –

βn

 – αn

)
d(vn,p) +

βn

 – αn
d(xn,p)

≤
(
 –

βn

 – αn

)
H

(
PS(xn),PS(p)

)
+

βn

 – αn
d(xn,p)

http://www.fixedpointtheoryandapplications.com/content/2014/1/181
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≤
(
 –

βn

 – αn

)
d(xn,p) +

βn

 – αn
d(xn,p)

= d(xn,p).

Hence

lim sup
n→∞

d(un,p) ≤ c.

Next,

d(vn,p) = d
(
vn,PS(p)

)
≤ H

(
PS(xn),PS(p)

)
≤ d(xn,p)

and so

lim sup
n→∞

d(vn,p) ≤ c. (.)

Further,

d
(
W

(
xn, vn,

βn

 – αn

)
,p

)
≤

(
 –

βn

 – αn

)
d(xn,p) +

βn

 – αn
d(vn,p)

≤
(
 –

βn

 – αn

)
d(xn,p) +

βn

 – αn
d(xn,p)

= d(xn,p).

Taking limsup, we have

lim sup
n→∞

d
(
W

(
xn, vn,

βn

 – αn

)
,p

)
≤ c.

Now (.) can be rewritten as

( – αn)d(xn+,p) ≤ ( – αn)d
(
W

(
vn,xn,

βn

 – αn

)
,p

)
+ αnd(xn,p) – αnd(xn+,p).

This implies that

d(xn+,p) ≤ d
(
W

(
vn,xn,

βn

 – αn

)
,p

)
+

αn

 – αn

[
d(xn,p) – d(xn+,p)

]

≤ d
(
W

(
vn,xn,

βn

 – αn

)
,p

)
+

b
 – b

[
d(xn,p) – d(xn+,p)

]

and, in turn,

c≤ lim inf
n→∞ d

(
W

(
xn, vn,

βn

 – αn

)
,p

)
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/181
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Hence

lim
n→∞d

(
W

(
xn, vn,

βn

 – αn

)
,p

)
= c. (.)

From limn→∞ d(xn,p) = c, (.), (.), and Lemma ., it follows that

lim
n→∞d(xn, vn) = .

Similarly we can show that

lim
n→∞d(xn,un) = .

Since d(x,PS(x)) = infz∈PS(x) d(x, z), therefore

d
(
xn,PS(xn)

) ≤ d(xn, vn) →  as n→ ∞.

Similarly

d
(
xn,PT (yn)

) ≤ d(xn,un)→  as n→ ∞. �

We now prove �-convergence of the algorithm (.).

Theorem . Let K be a nonempty, closed, and convex subset of a uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity η and S, T , PT , PS and {xn}
be as in Lemma .. Then {xn} �-converges to a common fixed point of S and T (or PS and
PT ).

Proof By Lemma ., {xn} is bounded, therefore {xn} has a unique asymptotic center.
Thus A({xn}) = {x}. Let {zn} be any subsequence of {xn} such that A({zn}) = {z}. Then
limn→∞ d(zn,PT (zn)) =  = limn→∞ d(zn,PS(zn)) by Lemma .. We now prove that u is
a common fixed point of PS and PT . For this, take {wm} in PT (u). Then

r
(
wm, {zn}

)
= lim sup

n→∞
d(wm, zn)

≤ lim sup
n→∞

{
d
(
wm,PT (zn)

)
+ d

(
PT (zn), zn

)}

≤ lim sup
n→∞

H
(
PT (z),PT (zn)

)

≤ lim sup
n→∞

d(z, zn)

= r
(
z, {zn}

)
.

This yields |r(wm, {zn}) – r(z, {zn})| →  as m → ∞. Lemma . gives limm→∞ wm = z.
Note that Tz ∈ P(K) being proximinal is closed, hence PT (z) is closed. Moreover, PT (z)
is bounded. Consequently limm→∞ wm = z ∈ PT (z). Hence z ∈ F(PT ). Similarly, z ∈ F(PS).
Hence z ∈ F . Since limn→∞ d(xn, z) exists (by Lemma .), therefore by the uniqueness of

http://www.fixedpointtheoryandapplications.com/content/2014/1/181
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asymptotic center, we have

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn,x)

≤ lim sup
n→∞

d(xn,x)

< lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z),

a contradiction. Hence x = z. Thus A({zn}) = {z} for every subsequence {zn} of {xn}. This
proves that {xn} �-converges to a common fixed point of S and T (or PS and PT ). �

The following is a necessary and sufficient condition for the strong convergence of the
algorithm (.).

Theorem . Let K be a nonempty, closed, and convex subset of a complete hyperbolic
space X and S, T , PT , PS and {xn} be as in Lemma .. Then the sequence {xn} converges
strongly to p ∈ F if and only if lim infn→∞ d(xn,F) = .

Proof If {xn} converges to p ∈ F , then limn→∞ d(xn,p) = . Since  ≤ d(xn,F) ≤ d(xn,p),
we have lim infn→∞ d(xn,F) = . To prove that the condition is also sufficient, assume that
lim infn→∞ d(xn,F) = . By Lemma ., we have

d(xn+,F) ≤ d(xn,F),

and so limn→∞ d(xn,F) exists. By hypothesis lim infn→∞ d(xn,F) = , thus limn→∞ d(xn,
F) = .
We now show that {xn} is a Cauchy sequence inK . Letm,n ∈ N and assumem > n. Then

it follows (along the lines similar to Lemma .) that

d(xm,p) ≤ d(xn,p) for all p ∈ F .

Thus we have

d(xm,xn)≤ d(xm,p) + d(xn,p) ≤ d(xn,p).

Taking inf on the set F , we have d(xm,xn) ≤ d(xn,F). On letting m → ∞, n → ∞, the
inequality d(xm,xn) ≤ d(xn,F) shows that {xn} is a Cauchy sequence in K and hence
converges, say to q ∈ K . Now it is left to show that q ∈ F . Indeed, by d(xn,F(PT )) =
infy∈F(PT ) d(xn, y). So for each ε > , there exists p(ε)n ∈ F(PT ) such that

d
(
xn,p(ε)n

)
< d

(
xn,F(PT )

)
+

ε


.

This implies limn→∞ d(xn,p(ε)n ) ≤ ε
 . From d(p(ε)n ,q) ≤ d(xn,p(ε)n ) + d(xn,q), it follows that

lim sup
n→∞

d
(
p(ε)n ,q

) ≤ ε


.
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Finally,

d
(
PT (q),q

) ≤ d
(
q,p(ε)n

)
+ d

(
p(ε)n ,PT (q)

)
≤ d

(
q,p(ε)n

)
+H

(
PT

(
p(ε)n

)
,PT (q)

)
≤ d

(
p(ε)n ,q

)

yields d(PT (q),q) < ε. Since ε is arbitrary, therefore d(PT (q),q) = . Similarly, we can show
that d(PS(q),q) = . Since F is closed, q ∈ F as required.
Recall that amap T : K → P(K) is semi-compact if any bounded sequence {xn} satisfying

d(xn,Txn) →  as n→ ∞ has a convergent subsequence.
We would also like to give here the definition of the so-called condition (A′). Let f be

a nondecreasing selfmap on [,∞) with f () =  and f (t) >  for all t ∈ (,∞) and let
d(x,F) = inf{d(x, y) : y ∈ F}. Let S,T : K → P(K) be twomultivaluedmaps with F �= ∅. Then
the two maps are said to satisfy condition (A′) if

d(x,Tx)≥ f
(
d(x,F)

)
or d(x,Sx)≥ f

(
d(x,F)

)
for all x ∈ K . �

Applying Lemma ., we can easily obtain the following.

Theorem . Let K be a nonempty closed convex subset of a complete and uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η and S, T , PT , PS

and {xn} be as in Lemma .. Suppose that a pair of maps PT and PS satisfies condition
(A′), then the sequence {xn} defined in (.) converges strongly to p ∈ F .

Theorem . Let K be a nonempty closed convex subset of a uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η and S, T , PT , PS and {xn} be as in
Lemma .. Suppose that one of the map in PT and PS is semi-compact, then the sequence
{xn} defined in (.) converges strongly to p ∈ F .
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