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1 Introduction
Let H and H be two real Hilbert spaces and let C ⊂ H and Q ⊂ H be two nonempty,
closed, and convex sets. Let A : H →H be a bounded linear operator with its adjoint A∗.
Let S : H →H and T : H → H be two nonlinear mappings.
The purpose of this paper is to study the following split feasibility problem and fixed

point problem:

Find x∗ ∈ C ∩ Fix(T) such that Ax∗ ∈Q∩ Fix(S). (.)

Special cases:
(i) Finding a point x∗ which satisfies

x∗ ∈ C and Ax∗ ∈ Q. (.)

This problem, referred to as the split feasibility problem, was introduced by Censor and
Elfving [], modeling phase retrieval and other image restoration problems, and further
studied by many researchers; see, for instance, [–].
(ii) Find a point x∗ with the property

x∗ ∈ Fix(T) and Ax∗ ∈ Fix(S). (.)

This problem, referred to as the split common fixed point problem, was first introduced
by Censor and Segal [].
Next, we recall some existing algorithms for solving (.)-(.) in the literature.
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In order to solve (.), Censor and Elfving [] introduced the following algorithm:

xn+ = A–PQ
(
PA(C)(Axn)

)
, n ∈ N, (.)

where C and Q are closed and convex sets in R
n, A is a full rank n× nmatrix and A(C) =

{y ∈R
n | y = Ax,x ∈ C}.

Now (.) is not popular because it involves the computation of the inverse A–.
A more popular algorithm that solves (.) seems to be the CQ algorithm presented by

Byrne [, ]:

xn+ = PC
(
xn – τA∗(I – PQ)Axn

)
, n ∈N, (.)

where τ ∈ (, L ), with L being the largest eigenvalue of the matrix A∗A.
Note that x∗ solves (.) if and only if x∗ solves the fixed point equation

x∗ = PC
(
I – λA∗(I – PQ)A

)
x∗. (.)

The above equivalence relation (.) reminds us to use fixed point method to solve (.).
Many authors have given a continuation of the study on the CQ algorithm and its variant
form. For relatedwork, please refer to [–]. Especially, the following regularizedmethod
was presented by Xu []:

xn+ = PC
(
( – αnγn)xn – γnA∗(I – PQ)Axn

)
, n ∈N. (.)

It should be pointed out that (.) can be used to find theminimum norm solution of (.).
For solving (.), Censor and Segal [] invented an algorithmwhich generates a sequence

{xn} according to the iterative procedure:

xn+ = T
(
xn – γA∗(I – S)Axn

)
, n ∈N. (.)

Note that (.) is more general than (.). Some further generations of this algorithm were
studied by Moudafi [] and Wang and Xu [] and others; see, for example, [–].
Motivated by the results in this direction, the purpose of this paper is to study the split

feasibility problem and the fixed point problem involved in the pseudocontractive map-
pings. We construct an iterative algorithm and prove its strong convergence.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C
be a nonempty, closed, and convex subset of H .
Recall that a mapping T : C → C is called pseudocontractive if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖

for all x, y ∈ C. It is well known that T is pseudocontractive if and only if

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥ (.)
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for all x, y ∈ C. A mapping T : C → C is called L-Lipschitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ C. If L = , we call T nonexpansive.
We will use Fix(T) to denote the set of fixed points of T , that is,

Fix(T) = {x ∈ C : x = Tx}.

We know that the metric projection PC : H → C satisfies

∥∥x – PC(x)
∥∥ = inf

{‖x – y‖ : y ∈ C
}
.

It is well known that the metric projection PC : H → C is firmly nonexpansive, that is,

〈
x – y,PC(x) – PC(y)

〉 ≥ ∥∥PC(x) – PC(y)
∥∥

⇔ ∥∥PC(x) – PC(y)
∥∥ ≤ ‖x – y‖ – ∥∥(I – PC)x – (I – PC)y

∥∥ (.)

for all x, y ∈ H .
For all x, y ∈H , the following conclusions hold:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, t ∈ [, ], (.)

‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖, (.)

and

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉. (.)

Lemma. ([]) Let H be a real Hilbert space,C a closed convex subset of H . Let T : C →
C be a continuous pseudocontractive mapping. Then

(i) Fix(T) is a closed convex subset of C,
(ii) (I – T) is demiclosed at zero.

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n ∈N,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn =∞;

() lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . ([]) Let {wn} be a sequence of real numbers. Assume {wn} does not decrease
at infinity, that is, there exists at least a subsequence {wnk } of {wn} such that wnk ≤ wnk+

for all k ≥ . For every n ≥N, define an integer sequence {τ (n)} as

τ (n) =max{i≤ n : wni < wni+}.
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Then τ (n) → ∞ as n→ ∞ and for all n ≥N

max{wτ (n),wn} ≤ wτ (n)+.

3 Main results
Let H and H be two real Hilbert spaces and let C ⊂ H and Q ⊂ H be two nonempty
closed convex sets. Let A : H → H be a bounded linear operator with its adjoint A∗. Let
S : H → H nonexpansive mapping and let T : H → H be an L-Lipschitzian pseudocon-
tractive mapping with L > .
We use � to denote the set of solutions of (.), that is,

� =
{
x∗ | x∗ ∈ C ∩ Fix(T),Ax∗ ∈Q∩ Fix(S)

}
.

In the sequel, we assume � �= ∅.
Now, we present our algorithm for finding x∗ ∈ �.

Algorithm . For fixed u ∈H and x ∈H arbitrarily, let {xn} be a sequence defined by

⎧⎨
⎩
un = PC[αnu + ( – αn)(xn – δA∗(I – SPQ)Axn)],

xn+ = ( – βn)un + βnT(( – γn)un + γnTun), n ∈N,
(.)

where {αn}n∈N, {βn}n∈N, and {γn}n∈N are three real number sequences in (, ) and δ is a
constant in (, 

‖A‖ ).

Theorem . Assume the following conditions are satisfied:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < a < βn < c < γn < b < √
+L+

.
Then the sequence {xn} generated by algorithm (.) converges strongly to the point x∗,

given by x∗ = P�(u).

Proof Set x∗ = P�(u). Then we have x∗ ∈ C ∩ Fix(T) and Ax∗ ∈Q∩ Fix(S). Set zn = PQAxn
and yn = αnu + ( – αn)(xn – δA∗(I – SPQ)Axn) for all n ∈N. Thus un = PCyn for all n ∈N.
Since PC and PQ are nonexpansive, we have

∥∥zn –Ax∗∥∥ =
∥∥PQAxn – PQAx∗∥∥ ≤ ∥∥Axn –Ax∗∥∥ (.)

and

∥∥un – x∗∥∥ =
∥∥PCyn – PCx∗∥∥ ≤ ∥∥yn – x∗∥∥. (.)

By (.), we get

∥∥Szn –Ax∗∥∥ =
∥∥SPQAxn – SPQAx∗∥∥

≤ ∥∥PQAxn – PQAx∗∥∥

≤ ∥∥Axn –Ax∗∥∥ – ‖zn –Axn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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From (.), we have

∥∥Tun – x∗∥∥ ≤ ∥∥un – x∗∥∥ + ‖Tun – un‖ (.)

and
∥∥T(

( – γn)un + γnTun
)
– x∗∥∥

≤ ∥∥( – γn)
(
un – x∗) + γn

(
Tun – x∗)∥∥

+
∥∥( – γn)un + γnTun – T

(
( – γn)un + γnTun

)∥∥. (.)

Applying equality (.), we have

∥∥( – γn)un + γnTun – T
(
( – γn)un + γnTun

)∥∥

=
∥∥( – γn)

(
un – T

(
( – γn)un + γnTun

))
+ γn

(
Tun – T

(
( – γn)un + γnTun

))∥∥

= ( – γn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥ + γn
∥∥Tun – T

(
( – γn)un + γnTun

)∥∥

– γn( – γn)‖un – Tun‖. (.)

Since T is L-Lipschitzian and un – (( – γn)un + γnTun) = γn(un – Tun), by (.), we get

∥∥( – γn)un + γnTun – T
(
( – γn)un + γnTun

)∥∥

≤ ( – γn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥ + γ 
n L

‖un – Tun‖

– γn( – γn)‖un – Tun‖

= ( – γn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥ +
(
γ 
n L

 + γ 
n – γn

)‖un – Tun‖. (.)

By (.) and (.), we have

∥∥( – γn)
(
un – x∗) + γn

(
Tun – x∗)∥∥

= ( – γn)
∥∥un – x∗∥∥ + γn

∥∥Tun – x∗∥∥ – γn( – γn)‖un – Tun‖

≤ ( – γn)
∥∥un – x∗∥∥ + γn

(∥∥un – x∗∥∥ + ‖un – Tun‖
)

– γn( – γn)‖un – Tun‖

=
∥∥un – x∗∥∥ + γ 

n ‖un – Tun‖. (.)

From (.), (.), and (.), we deduce

∥∥T(
( – γn)un + γnTun

)
– x∗∥∥

≤ ∥∥un – x∗∥∥ + ( – γn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥

– γn
(
 – γn – γ 

n L
)‖un – Tun‖. (.)

Since γn < b < √
+L+

, we derive that

 – γn – γ 
n L

 > , ∀n ∈N.
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This together with (.) implies that

∥∥T(
( – γn)un + γnTun

)
– x∗∥∥

≤ ∥∥un – x∗∥∥ + ( – γn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥. (.)

By (.), (.), (.), and (C), we have

∥∥xn+ – x∗∥∥ =
∥∥( – βn)un + βnT

(
( – γn)un + γnTun

)
– x∗∥∥

= ( – βn)
∥∥un – x∗∥∥ + βn

∥∥T(
( – γn)un + γnTun

)
– x∗∥∥

– βn( – βn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥

≤ ∥∥un – x∗∥∥ – βn(γn – βn)
∥∥T(

( – γn)un + γnTun
)
– x∗∥∥

≤ ∥∥un – x∗∥∥. (.)

By the convexity of the norm and by using (.), we get

∥∥yn – x∗∥∥ =
∥∥αn

(
u – x∗) + ( – αn)

(
xn – x∗ + δA∗(Szn –Axn)

)∥∥

≤ ( – αn)
∥∥(
xn – x∗ + δA∗(Szn –Axn)

)∥∥ + αn
∥∥u – x∗∥∥

= ( – αn)
[∥∥xn – x∗∥∥ + δ

∥∥A∗(Szn –Axn)
∥∥

+ δ
〈
xn – x∗,A∗(Szn –Axn)

〉]
+ αn

∥∥u – x∗∥∥. (.)

Since A is a linear operator with its adjoint A∗, we have

〈
xn – x∗,A∗(Szn –Axn)

〉
=

〈
A

(
xn – x∗),Szn –Axn

〉
=

〈
Axn –Ax∗ + Szn –Axn – (Szn –Axn),Szn –Axn

〉
=

〈
Szn –Ax∗,Szn –Axn

〉
– ‖Szn –Axn‖. (.)

Again using (.), we obtain

〈
Szn –Ax∗,Szn –Axn

〉
=


(∥∥Szn –Ax∗∥∥ + ‖Szn –Axn‖ –

∥∥Axn –Ax∗∥∥). (.)

From (.), (.), and (.), we get

〈
xn – x∗,A∗(Szn –Axn)

〉
=


(∥∥Szn –Ax∗∥∥ + ‖Szn –Axn‖ –

∥∥Axn –Ax∗∥∥)

– ‖Szn –Axn‖

≤ 

(∥∥Axn –Ax∗∥∥ – ‖zn –Axn‖ + ‖Szn –Axn‖

–
∥∥Axn –Ax∗∥∥) – ‖Szn –Axn‖

= –


‖zn –Axn‖ – 


‖Szn –Axn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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Substituting (.) into (.) we deduce

∥∥yn – x∗∥∥ ≤ ( – αn)
[∥∥xn – x∗∥∥ + δ‖A‖‖Szn –Axn‖

+ δ
(
–


‖zn –Axn‖ – 


‖Szn –Axn‖

)]
+ αn

∥∥u – x∗∥∥

= ( – αn)
[∥∥xn – x∗∥∥ +

(
δ‖A‖ – δ

)‖Szn –Axn‖

– δ‖zn –Axn‖
]
+ αn

∥∥u – x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥u – x∗∥∥. (.)

From (.), (.), and (.), we get

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥u – x∗∥∥

≤max
{∥∥xn – x∗∥∥,

∥∥u – x∗∥∥}.
The boundedness of the sequence {xn} yields our result.
Using the firmly nonexpansivenessity of PC (.), we have

∥∥un – x∗∥∥ =
∥∥PCyn – x∗∥∥ ≤ ∥∥yn – x∗∥∥ – ‖PCyn – yn‖

=
∥∥yn – x∗∥∥ – ‖un – yn‖. (.)

Thus

∥∥xn+ – x∗∥∥ ≤ ∥∥un – x∗∥∥

≤ ∥∥yn – x∗∥∥ – ‖un – yn‖

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥u – x∗∥∥ – ‖un – yn‖.

It follows that

‖un – yn‖ ≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

∥∥u – x∗∥∥. (.)

Next, we consider two possible cases.
Case . Assume there exists some integer m >  such that {‖xn – x∗‖} is decreasing for

all n≥m. In this case, we know that limn→∞ ‖xn – x∗‖ exists. From (.), we deduce

lim
n→∞‖un – yn‖ = . (.)

Returning to (.), we have

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + ( – αn)

(
δ‖A‖ – δ

)‖Szn –Axn‖

– ( – αn)δ‖zn –Axn‖ + αn
∥∥u – x∗∥∥.

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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Hence,

( – αn)
(
δ – δ‖A‖)‖Szn –Axn‖ + ( – αn)δ‖zn –Axn‖

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

∥∥u – x∗∥∥,

which implies that

lim
n→∞‖Szn –Axn‖ = lim

n→∞‖zn –Axn‖ = . (.)

So,

lim
n→∞‖Szn – zn‖ = . (.)

Note that

‖yn – xn‖ =
∥∥δA∗(SPQ – I)Axn + αn

(
xn – δA∗(I – SPQ)Axn – u

)∥∥
≤ δ‖A‖‖Szn –Axn‖ + αn

∥∥xn – δA∗(I – SPQ)Axn – u
∥∥.

It follows from (.) that

lim
n→∞‖xn – yn‖ = . (.)

From (.), (.), and (.), we deduce

∥∥xn+ – x∗∥∥ ≤ ∥∥un – x∗∥∥ – βn(γn – βn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥

≤ ∥∥xn – x∗∥∥ + αn
∥∥u – x∗∥∥

– βn(γn – βn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥.

It follows that

βn(γn – βn)
∥∥un – T

(
( – γn)un + γnTun

)∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

∥∥u – x∗∥∥.

Therefore,

lim
n→∞

∥∥un – T
(
( – γn)un + γnTun

)∥∥ = . (.)

Observe that

‖un – Tun‖ ≤ ∥∥un – T
(
( – γn)un + γnTun

)∥∥ +
∥∥T(

( – γn)un + γnTun
)
– Tun

∥∥
≤ ∥∥un – T

(
( – γn)un + γnTun

)∥∥ + Lγn‖un – Tun‖.

Thus,

‖un – Tun‖ ≤ 
 – Lγn

∥∥un – T
(
( – γn)un + γnTun

)∥∥.

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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This together with (.) implies that

lim
n→∞‖un – Tun‖ = . (.)

Now, we show that

lim sup
n→∞

〈
u – x∗, yn – x∗〉 ≤ .

Choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈
u – x∗, yn – x∗〉 = lim

i→∞
〈
u – x∗, yni – x∗〉. (.)

Since the sequence {yni} is bounded, we can choose a subsequence {ynij } of {yni} such that
ynij ⇀ z. For the sake of convenience, we assume (without loss of generality) that yni ⇀ z.
Consequently, we derive from the above conclusions that

xni ⇀ z, uni ⇀ z, Axni ⇀ Az and zni ⇀ Az. (.)

Applying Lemma ., we deduce

z ∈ Fix(T) and Az ∈ Fix(S).

Note that uni = PCyni ∈ C and zni = PQAxni ∈Q. From (.), we deduce

z ∈ C and Az ∈Q.

To this end, we deduce

z ∈ C ∩ Fix(T) and Az ∈Q∩ Fix(S).

That is to say, z ∈ �.
Therefore,

lim sup
n→∞

〈
u – x∗, yn – x∗〉 = lim

i→∞
〈
u – x∗, yni – x∗〉

= lim
i→∞

〈
u – x∗, z – x∗〉

≤ . (.)

Using (.), we have

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥

=
∥∥( – αn)

(
xn – δA∗(I – SPQ)Axn – x∗) + αn

(
u – x∗)∥∥

≤ ( – αn)
∥∥xn – δA∗(I – SPQ)Axn – x∗∥∥ + αn

〈
u – x∗, yn – x∗〉

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

〈
u – x∗, yn – x∗〉. (.)

Applying Lemma . and (.) to (.), we deduce xn → x∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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Case . Assume there exists an integer n such that

∥∥xn – x∗∥∥ ≤ ∥∥xn+ – x∗∥∥.
Set ωn = {‖xn – x∗‖}. Then we have

ωn ≤ ωn+.

Define an integer sequence {τn} for all n≥ n as follows:

τ (n) =max{l ∈N | n ≤ l ≤ n,ωl ≤ ωl+}.

It is clear that τ (n) is a non-decreasing sequence satisfying

lim
n→∞ τ (n) =∞

and

ωτ (n) ≤ ωτ (n)+,

for all n ≥ n.
By a similar argument to that of Case , we can obtain

lim
n→∞‖uτ (n) – yτ (n)‖ = lim

n→∞‖xτ (n) – yτ (n)‖ = ,

lim
n→∞‖Szτ (n) –Axτ (n)‖ = lim

n→∞‖zτ (n) –Axτ (n)‖ = lim
n→∞‖Szτ (n) – zτ (n)‖ = ,

and

lim
n→∞‖uτ (n) – Tuτ (n)‖ = .

This implies that

ωw(yτ (n)) ⊂ �.

Thus, we obtain

lim sup
n→∞

〈
u – x∗, yτ (n) – x∗〉 ≤ . (.)

Since ωτ (n) ≤ ωτ (n)+, we have from (.) that

ω
τ (n) ≤ ω

τ (n)+ ≤ ( – ατ (n))ω
τ (n) + ατ (n)

〈
u – x∗, yτ (n) – x∗〉. (.)

It follows that

ω
τ (n) ≤ 

〈
u – x∗, yτ (n) – x∗〉. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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Combining (.) and (.), we have

lim sup
n→∞

ωτ (n) ≤ ,

and hence

lim
n→∞ωτ (n) = . (.)

By (.), we obtain

lim sup
n→∞

ω
τ (n)+ ≤ lim sup

n→∞
ω

τ (n).

This together with (.) implies that

lim
n→∞ωτ (n)+ = .

Applying Lemma . to get

 ≤ ωn ≤max{ωτ (n),ωτ (n)+}.

Therefore, ωn → . That is, xn → x∗. This completes the proof. �

Algorithm . For x ∈H arbitrarily, let {xn} be a sequence defined by

⎧⎨
⎩
un = PC[( – αn)(xn – δA∗(I – SPQ)Axn)],

xn+ = ( – βn)un + βnT(( – γn)un + γnTun), n ∈N,
(.)

where {αn}n∈N, {βn}n∈N, and {γn}n∈N are three real number sequences in (, ) and δ is a
constant in (, 

‖A‖ ).

Corollary . Assume the following conditions are satisfied:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < a < βn < c < γn < b < √
+L+

.
Then the sequence {xn} generated by algorithm (.) converges strongly to x∗ = P�(),

which is the minimum norm in �.

Algorithm . For fixed u ∈H and x ∈H arbitrarily, let {xn} be a sequence defined by

xn+ = PC
[
αnu + ( – αn)

(
xn – δA∗(I – PQ)Axn

)]
, n ∈N, (.)

where {αn}n∈N is a real number sequence in (, ) and δ is a constant in (, 
‖A‖ ).

Corollary . Suppose �, the set of the solutions of (.), is nonempty.Assume the follow-
ing conditions are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2014/1/183
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(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞.

Then the sequence {xn} generated by algorithm (.) converges strongly to x∗ = P� (u).

Algorithm . For x ∈H arbitrarily, let {xn} be a sequence defined by

xn+ = PC
[
( – αn)

(
xn – δA∗(I – PQ)Axn

)]
, n ∈N, (.)

where {αn}n∈N is a real number sequence in (, ) and δ is a constant in (, 
‖A‖ ).

Corollary . Suppose �, the set of the solutions of (.), is nonempty. Assume the follow-
ing conditions are satisfied:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞.

Then the sequence {xn} generated by algorithm (.) converges strongly to x∗ = P� (),
which is the minimum norm in �.

Algorithm . For fixed u ∈H and x ∈H arbitrarily, let {xn} be a sequence defined by

⎧⎨
⎩
un = αnu + ( – αn)(xn – δA∗(I – S)Axn),

xn+ = ( – βn)un + βnT(( – γn)un + γnTun), n ∈N,
(.)

where {αn}n∈N, {βn}n∈N, and {γn}n∈N are three real number sequences in (, ) and δ is a
constant in (, 

‖A‖ ).

Corollary . Suppose �, the set of the solutions of (.), is nonempty. Assume the fol-
lowing conditions are satisfied:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < a < βn < c < γn < b < √
+L+

.
Then the sequence {xn} generated by algorithm (.) converges strongly to x∗ = P� (u).

Algorithm . For and x ∈ H arbitrarily, let {xn} be a sequence defined by

⎧⎨
⎩
un = ( – αn)(xn – δA∗(I – S)Axn),

xn+ = ( – βn)un + βnT(( – γn)un + γnTun), n ∈N,
(.)

where {αn}n∈N, {βn}n∈N, and {γn}n∈N are three real number sequences in (, ) and δ is a
constant in (, 

‖A‖ ).

Corollary . Suppose �, the set of the solutions of (.), is nonempty. Assume the fol-
lowing conditions are satisfied:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn =∞;

(C)  < a < βn < c < γn < b < √
+L+

.
Then the sequence {xn} generated by algorithm (.) converges strongly to x∗ = P� ()

which is the minimum norm in �.
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Example . LetH =H =Rwith the inner product defined by 〈x, y〉 = xy for all x, y ∈R

and the standard norm | · |. Let C = [,∞) and Q = R. Let Sx = x
 –  for all x ∈ Q and let

Tx = x–+ 
x+ for all x ∈ C. LetAx = –x

 for all x ∈ R. ThenA is a bounded linear operator
with its adjoint A∗ = A. Observe that Fix(T) =  and Fix(S) = –. It is easy to see that

〈Tx – Ty,x – y〉 =
〈
x –  +


x + 

– y +  –


y + 
,x – y

〉

≤
[
 –


(x + )(y + )

]
|x – y|

≤ |x – y|,

and

|Tx – Ty| ≤
∣∣∣∣x –  +


x + 

– y +  –


y + 

∣∣∣∣
≤

∣∣∣∣ – 
(x + )(y + )

∣∣∣∣|x – y|

≤ |x – y|,

for all x, y ∈ C.
But

∣∣∣∣T
(



)
– T()

∣∣∣∣ = 


>


.

Hence, T is a Lipschitzian pseudocontractive mapping but not a nonexpansive one.
Note that ‖A‖ = ‖A∗‖ = 

 . Let u =  and δ = 
 . Then we have

un = PC

[
αn + ( – αn)

(
xn –




×
(
–
I


)
×

(
I

+ 

)
×

(
–xn


))]

= PC

[
αn + ( – αn)

(


xn +




)]
.

Let βn = 
 and γn = 

 for all n. It is not hard to compute that

|xn+ – | ≤ |un – |

≤ ( – αn)
∣∣∣∣xn +



– 

∣∣∣∣
≤ 


|xn – |

≤ · · ·

≤
(



)n

|x – |,

which shows xn →  ∈ �.
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