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Introduction
In the simplest case, the condition with a contractingmapping has the form d(f (y), f (x))≤
ϕ(d(y,x)), where (X,d) is a metric space, f is a mapping on X, and ϕ : [,∞) → [,∞) is
such that ϕ(α) < α, α > . Boyd and Wong [] assumed that ϕ is upper semicontinuous
from the right (i.e., lim supβ→α+ ϕ(β) ≤ ϕ(α), α ≥ ); Matkowski in [] assumed that ϕ

is nondecreasing and such that limn→∞ ϕn(α) =  for each α > . We assume that all se-
quences (an)n∈N such that an+ ≤ ϕ(an), n ∈N, converge to zero. It appears that the classes
of Boyd-Wong’s andMatkowski’s mappings are included in this new class (the problem of
ϕ() for Boyd-Wongmappings ismeaningless for contractions). Themain results are The-
orems , , , and theorems extending the well-known classical results: Theorem 
(Matkowski’s theorem) and Theorem  (covering the theorems of Romaguera and Boyd-
Wong).
Let us recall the notions of a partial metric space due toMatthews [, Definition .] and

of a dualistic partial metric due to Oltra and Valero [] and O’Neill [].

Definition  A dualistic partial metric is a mapping p : X ×X →R such that

y = x iff p(y, y) = p(y,x) = p(x,x), x, y ∈ X, ()

p(y, y) ≤ p(y,x), x, y ∈ X, ()

p(y,x) = p(x, y), x, y ∈ X, ()

p(z,x) ≤ p(z, y) + p(y,x) – p(y, y), x, y, z ∈ X. ()

If p is nonnegative, then it is a partial metric.
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If p is a dualistic partial metric on X, then q : X ×X → [,∞) defined by

q(y,x) = p(y,x) – p(y, y), x, y ∈ X ()

is a quasi-metric [, Theorem .] (y = x iff q(y,x) = q(x, y) = , q(z,x) ≤ q(z, y) + q(y,x)).
An open ball for x ∈ X, ε >  is defined by

B(x, ε) =
{
y ∈ X : q(x, y) < ε

}
=

{
y ∈ X : p(x, y) < p(x,x) + ε

}
. ()

The family of open balls generates topology Tq on X. It is accepted that the (dualistic)
partial metric space (X,p) is equipped with the topology Tq.
It is known (see, e.g., []) that a metric d can be defined by a dualistic partial metric p as

follows:

d(y,x) = max
{
q(y,x),q(x, y)

}

= max
{
p(y,x) – p(y, y),p(x, y) – p(x,x)

}
, x, y ∈ X. ()

In this paper it is understood that q, d are defined by (), () respectively for a (dualistic)
partial metric p.
For dualistic partial metric spaces, it is accepted (see, e.g., [, p.]) that (xn)n∈N is

called a Cauchy sequence in (X,p) if limm,n→∞ p(xn,xm) = α ∈ R, and (X,p) is com-
plete if for every Cauchy sequence (xn)n∈N in (X,p), there exists x ∈ limn→∞ xn such that
limm,n→∞ p(xn,xm) = p(x,x).
The following notions are useful.

Definition  [, Definition .] Let p : X × X → R be a mapping. The kernel of p is the
set Kerp = {x ∈ X : p(x,x) = }.

Definition  (cp. [, Definition .]) A dualistic partial metric space (X,p) is -complete
if for every sequence (xn)n∈N in X such that limm,n→∞ p(xn,xm) = , there exists x ∈
limn→∞ xn ∩Kerp in (X,p).

In fact Definition  is too abstract. The condition x ∈ limn→∞ xn ∩Kerp in (X,p) means
that limn→∞ p(x,xn) = p(x,x) =  (see (), ()). If, in addition, limm,n→∞ p(xn,xm) = , then
x = limn→∞ xn in (X,d) (see [, Lemma .] or [, Proposition .]).

Corollary  A dualistic partial metric space (X,p) is -complete iff every sequence (xn)n∈N
such that limm,n→∞ p(xn,xm) =  converges in (X,d) to a point x ∈ Kerp. If p is a metric,
then -completeness is identical with completeness.

There exist -complete partial metric spaces which are not complete []. Some criteri-
ons of -completeness can be found in [, Section ].

Proposition  Let (X,p) be a partial metric space. Then (xn)n∈N converges in (X,d) to
x ∈Kerp iff limn→∞ p(x,xn) =  and iff we have x ∈ limn→∞ xn ∩Kerp in (X,p).

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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Proof A sequence (xn)n∈N converges to x in (X,d) iff limm,n→∞ p(xn,xm) = limn→∞ p(x,
xn) = p(x,x) (see [, Lemma .] or [, Proposition .]). Assume limn→∞ p(x,xn) = .
Then, for nonnegative p, condition () yields p(x,x) =  and limn→∞ p(x,xn) = p(x,x), i.e.,
x ∈Kerp and x ∈ limn→∞ xn in (X,p). We also have

 ≤ p(xn,xm) ≤ p(xn,x) + p(x,xm) – p(x,x) = p(x,xn) + p(x,xm)

and consequently, limm,n→∞ p(xn,xm) = limn→∞ p(x,xn) = p(x,x) = , i.e., x ∈ Kerp and
(xn)n∈N converges in (X,d) to x. �

Let Y be the family of all subsets ofY .We say that F : X → Y is a (multivalued)mapping
if F(x) �= ∅ for all x ∈ X �= ∅.
Now, let us investigate the concept of a -closed graph.

Definition  Let (X,p) be a dualistic partial metric space. A mapping F : X → X has a
-closed graph if for all sequences (xn)n∈N, (yn)n∈N in X the following condition is satisfied:

lim
n→∞p(x,xn) = lim

n→∞p(x, yn) = , yn ∈ F(xn),n ∈N, and x ∈Kerp yield x ∈ F(x). ()

Proposition  and [, Proposition .] yield the following.

Corollary  For all sequences (xn)n∈N, (yn)n∈N with limm,n→∞ p(xn,xm) = limm,n→∞ p(yn,
ym) = , condition () can be replaced by

lim
n→∞xn = lim

n→∞ yn = x in (X,d), yn ∈ F(xn),n ∈N, and x ∈Kerp yield x ∈ F(x). ()

If p is nonnegative, then () is equivalent to ().

Clearly, if F : X → X has a closed graph in (X,d) × (X,d), then () is satisfied as Kerp
with topology induced by p is a closed metric subspace of (X,d) [, Lemma .].
For a partial metric space (X,p), a nonempty set A ⊂ X, and z ∈ X, let us adopt

p(A, z) = inf
{
p(x, z) : x ∈ A

}

and

E(A, r) =
{
z ∈ X : p(A, z) < r

}
.

The family {E(A, ε) : A ∈ X \ {∅}, ε > } generates a topology P , and we get a topological
space (X \ {∅},P). Assume that p is nonnegative and

for every ε > , there exists δ >  such that for each

u ∈ X,p(x,u) < δ yields F(u) ⊂ E
(
F(x), ε

)
()

holds. Then, for all sequences (xn)n∈N, (yn)n∈N such that limn→∞ p(x,xn) = limn→∞ p(x,
yn) =  and yn ∈ F(xn), n ∈ N, there exist zn ∈ F(x), n ∈ N with limn→∞ p(yn, zn) = . We
have

p(x, zn) ≤ p(x, yn) + p(yn, zn)

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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and consequently, x = limn→∞ zn in (X,d) (Proposition ). If F(x)∩Kerp = F(x)∩Kerp in
(X,d), then x ∈ F(x) holds.
For a partial metric space (X,p) and nonempty A,C ⊂ X, let us adopt

P(A,C) = inf
{
r >  : A ⊂ E(C, r) and C ⊂ E(A, r)

}
. ()

If p is a metric, then P is the Hausdorff metric of the metric p, whenever A and C are
nonempty closed and bounded subsets of X. In general, P is not a partial metric (see [,
Proposition .(i), Proposition .(h)]).
Clearly, p(x,u) – p(x,x) = p(x,u) for x ∈ Kerp and if () holds, then F : (X,p) → (X \

{∅},P) is continuous on Kerp.

Corollary  Let (X,p) be a partial metric space. Assume that for each x ∈Kerp, the map-
ping F : X → X satisfies () and F(x)∩Kerp = F(x)∩Kerp in (X,d).Then F has a -closed
graph (and conditions (), () are equivalent).

Proposition  Let (X,p) be a dualistic partial metric space. If F : X → X has a -closed
graph, then FixF ∩Kerp is closed in (X,d).

Proof If xn ∈ FixF ∩ Kerp, n ∈ N, then for yn = xn, n ∈ N and each x ∈ Kerp such that
limn→∞ p(x,xn) = , condition () yields x ∈ F(x), i.e., FixF∩Kerp is closed inKerp (which
with topology induced by p is a closed metric subspace of (X,d) [, Lemma .]). �

Now, let us investigate a ‘contraction’ condition.
Let � be a class of mappings ϕ : [,∞) → [,∞) such that ϕ(α) < α, α > ; ϕ ∈ � iff

ϕ ∈ � and ϕ() = .

Proposition  Let (X,p) be a partial metric space. Assume that G,H : X → X satisfy

p
(
H(y), y

) ≤ ϕ
(
p(y,x)

)
, y ∈G(x),x ∈ X ()

for ϕ ∈ �. Then FixG ⊂Kerp; if H has a -closed graph, then FixG ⊂ FixH holds.

Proof For y = x ∈ G(x) and nonnegative p, conditions (), () yield

 ≤ p(x,x)≤ inf
{
p(z,x) : z ∈ H(x)

}
= p

(
H(x),x

) ≤ ϕ
(
p(x,x)

)
,

i.e., p(x,x) =  and x ∈ Kerp. What is more, from our inequality it follows that there exist
yn ∈ H(x) such that limn→∞ p(yn,x) = . Now, () for xn = x, F =H yields x ∈ H(x). �

Propositions ,  yield the following.

Theorem  Let (X,p) be a -complete partial metric space, and letF be a family of map-
pings X → X with -closed graphs. Assume that ϕ ∈ �; some and at least all different
G,H ∈ F satisfy (). Then all members of F have the same set of fixed points; this set is
closed in (X,d) and contained in Kerp.
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The previous result becomes a little more interesting if a mapping F ∈ F has a fixed
point.
Let us assume that the following condition is satisfied for a partial metric space (X,p), P

defined by (), and G,H : X → X :

P
(
H(y),G(x)

) ≤ ϕ
(
p(y,x)

)
, x, y ∈ X. ()

Then, for any y ∈G(x), we have

p
(
H(y), y

) ≤ sup
{
p
(
H(y),u

)
: u ∈G(x)

}

≤ max
{
sup

{
p
(
H(y),u

)
: u ∈G(x)

}
, sup

{
p
(
G(x), v

)
: v ∈H(y)

}}

= P
(
H(y),G(x)

) ≤ ϕ
(
p(y,x)

)
,

i.e., condition () yields condition (). The subsequent two propositions enable us to
strengthen condition ().

Proposition  Let (X,p) be a partial metric space, and let C ⊂ X be compact in (X,d).
Then, for any y ∈ X, there exists x ∈ C such that p(x, y) = p(C, y).

Proof Let (xn)n∈N be a sequence in C such that

lim
n→∞p(xn, y) = inf

{
p(z, y) : z ∈ C

}
= p(C, y) = α.

There exists a subsequence (xkn )n∈N of (xn)n∈N and x ∈ C such that x = limn→∞ xkn in (X,d),
i.e., [, Lemma .]

lim
m,n→∞p(xkn ,xkm ) = lim

n→∞p(x,xkn ) = p(x,x).

Now, from

α ≤ p(x, y) ≤ p(x,xkn ) + p(xkn , y) – p(xkn ,xkn )

we get

α ≤ p(x, y) ≤ p(x,x) + α – p(x,x) = α. �

Corollary  Let (X,p) be a partial metric space, and let G,H : X → X be mappings with
H compact valued in (X,d). Then condition () is equivalent to

for each x ∈ X, y ∈ G(x), there exists z ∈H(y)

such that p(z, y) = p
(
H(y), y

) ≤ ϕ
(
p(y,x)

)
. ()

Condition () extends the idea of α-step mappings [, Definition ].
The next example shows that even a ‘good’ mapping ϕ in condition () does not guar-

antee the existence of a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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Example  Let us consider a continuousmapping ϕ ∈ � defined by ϕ(α) = α/(α +) for
α ∈ [, ], andϕ(α) = / forα > . An easy computation proves that ϕ is increasing on [, ]
and, therefore, ϕ is nondecreasing on [,∞). Let us consider X = [,∞) and f (x) = x+ /x,
x ∈ X. For p(y,x) = d(y,x) = |y – x|, we have

d
(
f (x), f (x)

)
= x + /x + /(x + /x) – x – /x = x/

(
 + x

)
= (/x)/

(
(/x) + 

)
.

Now, for α = d(f (x),x) = /x ≤ , we obtain

d
(
f (x), f (x)

)
= ϕ(α) = ϕ

(
d
(
f (x),x

))
,

i.e., () is satisfied for H = f , y = f (x), z = f (x). Still it is clear that f : X → X has no fixed
point.

It is a good idea suggested by [] to gather together the properties of ϕ. Let us recall
that � is a class of mappings ϕ : [,∞) → [,∞) such that ϕ(α) < α, α > ; and ϕ ∈ � iff
ϕ ∈ � and ϕ() = .

Proposition  Assume that ϕ ∈ �. Then every sequence (an)n∈N such that an+ ≤ ϕ(an),
n ∈N (in particular (ϕn(α))n∈N, α ≥ ) is nonincreasing; if, in addition, ϕ is nondecreasing,
then an+ ≤ ϕn(a), n ∈N holds.

Proof From ϕ(α) ≤ α, α ≥ , it follows that an+ ≤ ϕ(an) ≤ an. Similarly, for nondecreas-
ing ϕ, we get a ≤ ϕ(a),a ≤ ϕ(a) ≤ ϕ(a), . . . ,an+ ≤ ϕn(a). �

Let us present some subclasses of �.
Let �P consist of mappings ϕ : [,∞) → [,∞) for which every sequence (an)n∈N such

that an+ ≤ ϕ(an), n ∈N converges to zero.

Proposition  We have �P ⊂ �. For ϕ ∈ �P , the sequence (ϕn(α))n∈N is nonincreasing
and it converges to , α ≥ . If a mapping ϕ ∈ � satisfies

lim sup
β→α+

ϕ(β) < α, α > , ()

then ϕ ∈ �P .

Proof Assume that ϕ ∈ �P . Suppose that α ≤ ϕ(α) for α > . Then an = α, n ∈ N, is a
good counterexample (the sequence does not converge to ). Therefore �P ⊂ � holds.
Suppose ϕ() = a > . Then, for an– = a, an = , n ∈ N, we obtain a divergent sequence
(an)n∈N such that an+ ≤ ϕ(an), n ∈ N. Consequently, every ϕ ∈ �P satisfies ϕ() = . The
sequence (ϕn(α))n∈N is nonincreasing, ϕn+(α) = ϕ(ϕn(α))≤ ϕn(α), n ∈N and it converges
to  as ϕ ∈ �P . Assume ϕ ∈ �. Then any sequence (an)n∈N such that an+ ≤ ϕ(an) (≤ an),
n ∈N is nonincreasing and therefore it converges, say, to γ ≥ . Suppose γ > . Then ()
yields

 = lim
n→∞[an+ – an] ≤ lim sup

n→∞
ϕ(an) – γ < γ – γ = ,

a contradiction. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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Let �BW ⊂ � consist of mappings ϕ upper semicontinuous from the right, call them
Boyd-Wong mappings. Proposition  yields �BW ⊂ �P .
In turn, let �M consist of nondecreasing mappings ϕ : [,∞) → [,∞) such that

limn→∞ ϕn(α) = , α >  (Matkowski mappings). It is well known [, Lemma] that
�M ⊂ �. Moreover, an+ ≤ ϕ(an), n ∈ N, yields an+ ≤ ϕn(a) (Proposition ) and hence
limn→∞ an = . Consequently,�M ⊂ �P holds. Let us note that ϕ fromExample  belongs
to �M .
The following is a kind of the reverse condition.

Proposition  Let (an)n∈N be a sequence convergent to zero and such that an+ ≤ ϕ(an),
n ∈N, for a ϕ ∈ �.Then there exists amappingψ ∈ �M ∩�BW such that ϕ(an) ≤ ψ(an) ≤
an, and ψn(α)≤ an, n ∈N, α ≥ .

Proof Let us adopt ψ() =  and ψ(α) = sup{ϕ(an) : an ≤ α,n ∈ N}, α > . Clearly, ψ is
nondecreasing and continuous from the right as limn→∞ ϕ(an) = . Therefore, ψ is also
upper semicontinuous. The sequence (an)n∈N is nonincreasing as an+ ≤ ϕ(an)≤ an, n ∈N.
Let us adopt a =∞. For  < an ≤ α < an–, we have

ϕ(an) ≤ sup
{
ϕ(an–+k) : k ∈N

}
=ψ(α) < sup{an–+k : k ∈N} = an ≤ α,

and the case of an =  is trivial as then ψ(α) =  < α. Consequently, we get ψ(α) < a
(if a > ), ψ(α) < a (if a > ), and so on. Finally, we obtain ψn(α) ≤ an, n ∈ N (the
possible case of some ak = ). �

The following modification of ϕ is useful.

Proposition  Assume that ϕ : [,∞) → [,∞) is a mapping. Then ψ defined by

ψ(α) =
[
ϕ(α) + α

]
/, α ≥ , ()

belongs to � iff ϕ ∈ �; ϕ ∈ � iff ψ ∈ �; ϕ satisfies () iff ψ satisfies (). In addition, if ϕ
is nondecreasing, then ψ is increasing.

Proof It is clear that ϕ(α) < ψ(α) < α holds iff ψ(α) < α. If ϕ is nondecreasing, then for
 ≤ α < β we obtain

ψ(β) –ψ(α) =
[
ϕ(β) – ϕ(α)

]
/ + (β – α)/≥ (β – α)/ > ,

i.e., ψ is increasing. The remaining part of the proof is also trivial. �

The next two propositions can be helpful in proving fixed point theorems.

Proposition  Assume that (X,p) is a partial metric space, and let ϕ ∈ �. If mappings
G,H : X → X satisfy () and H has a -closed graph, then for ϕ = ψ , where ψ is defined
by (), condition () holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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Proof For p(y,x) > , there exist ε >  and z ∈ H(y) such that p(z, y) ≤ ϕ(p(y,x)) + ε ≤
ψ(p(y,x)). If p(y,x) = , then () yields x = y, i.e., x is a fixed point of G, and by Proposi-
tion , z = x ∈H(x). �

Proposition  Let (X,p) be a partial metric space, letF be a nonempty family of at most
two mappings X → X with -closed graphs, and let ϕ ∈ �P . Assume that all members of
F either satisfy () and ϕ has property () or satisfy (). Then there exists a sequence
(xn)n∈N such that xn ∈H(xn–), xn+ ∈G(xn), n ∈N, and limn→∞ p(xn+,xn) = .

Proof If ϕ ∈ � satisfies () and () holds, then for ψ as in () and ϕ = ψ , condition
() is satisfied (Proposition ), and ϕ ∈ �P (Propositions , ). Thus, it is sufficient
to consider the case of ϕ ∈ �P and condition (). Let x ∈ X be arbitrary, x ∈ G(x),
and let x ∈ H(x) be such that p(x,x) ≤ ϕ(p(x,x)). If xk ∈ H(xk–) is defined, then
xk+ ∈ G(xk) is such that p(xk+,xk) ≤ ϕ(p(xk ,xk–)), and, similarly, xk+ ∈ H(xk+)
satisfies p(xk+,xk+) ≤ ϕ(p(xk+,xk)). Thus, for an = p(xn+,xn), we have an+ ≤ ϕ(an),
n ∈N, and (an)n∈N converges to zero as ϕ ∈ �P . �

As was shown in Example , conditions (), () are too weak to guarantee the exis-
tence of a fixed point, even for ϕ ∈ �M . The next two theorems, with stronger assump-
tions, are general results.

Theorem  Let (X,p) be a -complete partial metric space, and let F : X → X be a
mapping with -closed graph. Assume that for a ϕ ∈ �P there exists a sequence (xn)n∈N in
X such that

sup
k∈N

p(xn++k ,xn+) ≤ an+ ≤ ϕ(an), n ∈ N, for a sequence (an)n∈N, ()

and limn→∞ p(F(xn),xn+) = . Then x = limn→∞ xn in (X,d) is a fixed point of F , and x ∈
Kerp.

Proof Clearly, (an)n∈N converges to zero as ϕ ∈ �P . Therefore, (xn)n∈N is a Cauchy se-
quence (see ()) and it converges in (X,d), say, to x ∈ Kerp (X is -complete). There exist
yn ∈ F(xn) such that limn→∞ p(yn,xn+) = . Now, from

p(yn,xn) ≤ p(yn,xn+) + p(xn+,xn)

and condition () it follows that x ∈ F(x). �

Theorem , with ϕ(α) = kα, α ≥  (for k < ), is an extension of the Nadler theorem on
multivalued contractions [, Theorem ].
Now, Theorem  and Theorem  yield the following.

Theorem  Let (X,p) be a -complete partial metric space, and let F be a family of
mappings X → X with -closed graphs. Assume that ϕ ∈ �P ; some and at least all dif-
ferent G,H ∈ F satisfy (). If for an F ∈ F there exists a sequence (xn)n∈N such that
limn→∞ p(F(xn),xn+) =  and () holds, then all members of F have the same nonempty
set of fixed points; this set is closed in (X,d) and contained in Kerp.

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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A simple consequence of Theorem  is the following one.

Theorem  Let (X,p) be a -complete partial metric space, and let f : X → X be a map-
ping with a -closed graph (e.g., f : (X,d)→ (X,d) is continuous).Assume that for a ϕ ∈ �P

and x the following condition is satisfied:

sup
k∈N

p
(
f n++k(x), f n+(x)

)

≤ an+ ≤ ϕ(an), n ∈N, for a sequence (an)n∈N. ()

Then x = limn→∞ f n(x) in (X,d) is a fixed point of f , and x ∈Kerp.

Proof For xn = f n(x) (and xn+ = f n+(x)), we have (see ())

 ≤ lim
n→∞p

(
f (xn),xn+

) ≤ lim
n→∞p(xn+,xn) = ,

and condition () holds. �

The next proposition shows that Theorem  is related to the well-known theorem of
Matkowski [, Theorem ., p.].

Proposition  Let (X,p) be a partial metric space, and let f : X → X be a bounded map-
ping satisfying

p
(
f (y), f (x)

) ≤ ϕ
(
p(y,x)

)
, x, y ∈ X ()

for a nondecreasing mapping ϕ : [,∞)→ [,∞). Then condition () holds.

Proof Let us adopt xn = f n(x) and an = supk∈N p(xn+k ,xn), n ∈ N. For each k,n ∈ N, we
have

p(xn++k ,xn+) = p
(
f (xn+k), f (xn)

) ≤ ϕ
(
p(xn+k ,xn)

)

≤ ϕ
(
sup
k∈N

p(xn+k ,xn)
)
= ϕ(an)

as ϕ is nondecreasing, and we get (). �

Let (X,p) be a partial metric space, and let f : X → X be a mapping. Let us recall the
conditions used by Romaguera in []:

p
(
f (y), f (x)

) ≤ ϕ
(
mf (y,x)

)
, x, y ∈ X ()

for

mf (y,x) =max
{
p(y,x),p

(
f (y), y

)
,p

(
f (x),x

)}
,

and

p
(
f (y), f (x)

) ≤ ϕ
(
pf (y,x)

)
, x, y ∈ X ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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for

pf (y,x) =max
{
p(y,x),p

(
f (y), y

)
,p

(
f (x),x

)
,
[
p
(
f (y),x

)
+ p

(
f (x), y

)]
/

}
.

For nondecreasing ϕ, Ćirić’s condition () is more general than (), and () is more
general than condition (). All these conditions are used to prove that f has a fixed point.
Let us note that ϕ() for conditions (), (), () can be arbitrary as p(f (x),x) =  on

the right-hand side of any of these inequalities (for y = f (x)) means that x is a fixed point
of f .
Many fixed point theorems use more sophisticated conditions than (), (), () (see,

e.g., [], []) or the spaces under consideration have a richer structure (see, e.g., [], []).
We are interested in extending the most classical results.
The subsequent two lemmas are proved for condition (), and the reasonings for ()

and () as well can be easily deduced. The next lemma (for condition ()) has much in
common with Romaguera’s Lemma  and Lemma  [].

Lemma  Let (X,p) be a partial metric space, and let f : X → X be a mapping satisfying
condition (), (), or () for a ϕ ∈ �P . Then, for any x ∈ X, the condition

p
(
f (x), f (x)

) ≤ ϕ
(
p
(
f (x),x

))

is satisfied, and limn→∞ p(f n+(x), f n(x)) = .

Proof For notational simplicity, let us adopt xn = f n(x), n ∈ N. For y = x, condition ()
has the following form:

p(x,x) ≤ ϕ
(
pf (x,x)

)
= ϕ

(
max

{
p(x,x),p(x,x),

[
p(x,x) + p(x,x)

]
/

})
.

We have

p(x,x) + p(x,x) ≤ p(x,x) + p(x,x) – p(x,x) + p(x,x)

= p(x,x) + p(x,x),

and therefore,

max
{
p(x,x),p(x,x)

} ≤mf (x,x)≤ pf (x,x) ≤max
{
p(x,x),p(x,x)

}

holds, i.e., pf (f (x),x) =max{p(f (x), f (x)),p(f (x),x)} (Lemma  []). This last equality and
condition () for p(x,x) < p(x,x) yield

 < p(x,x)≤ ϕ
(
pf (x,x)

)
= ϕ

(
p(x,x)

)
,

i.e., p(x,x) = p(f (x), f (x)) =  (ϕ ∈ �). This contradiction proves that p(x,x) ≤ p(x,x)
must hold, and then condition () yields p(f (x), f (x)) ≤ ϕ(p(f (x),x)) (see Romaguera’s
Lemma  []). Now, it is clear that for arbitrary x ∈ X and xn = f n(x) the sequence

http://www.fixedpointtheoryandapplications.com/content/2014/1/185


Pasicki Fixed Point Theory and Applications 2014, 2014:185 Page 11 of 16
http://www.fixedpointtheoryandapplications.com/content/2014/1/185

(an)n∈N, where an = p(xn+,xn), n ∈ N, converges to zero as ϕ ∈ �P and an+ ≤ ϕ(an)
holds. �

The next lemma is also helpful in proving fixed point theorems.

Lemma Let (X,p) be a -complete partialmetric space, and let f : X → X be amapping
satisfying condition (), (), or () for a ϕ ∈ �. If for xn = f n(x), limm,n→∞ p(xn,xm) = 
holds, then (xn)n∈N converges in (X,d) to a unique fixed point of f , and this point belongs to
Kerp.

Proof From limm,n→∞ p(xn,xm) =  it follows that (xn)n∈N converges to a point x ∈Kerp in
(X,d) (Corollary ). We get

p
(
f (x),x

) ≤ p
(
xn+, f (x)

)
+ p(xn+,x) ≤ ϕ

(
pf (xn,x)

)
+ p(xn+,x)

= ϕ
(
max

{
p(xn,x),p(xn+,xn),p

(
f (x),x

)
,
[
p(xn+,x) + p

(
f (x),xn

)]
/

})

+ p(xn+,x).

Suppose  < p(f (x),x). Then from

p
(
f (x),xn

)
/ ≤ [

p
(
f (x),x

)
+ p(x,xn)

]
/,

and limn→∞ p(x,xn) = limn→∞ p(x,xn+) =  it follows that

max
{
p(xn,x),p(xn+,xn),p

(
f (x),x

)
,
[
p(xn+,x) + p

(
f (x),xn

)]
/

}
= p

(
f (x),x

)

for large n. Now we get

 < p
(
f (x),x

) ≤ ϕ
(
p
(
f (x),x

))
,

a contradiction. Clearly, p(f (x),x) =  means that p(x,x) = p(f (x), f (x)) = p(f (x),x) = 
(see ()), and f (x) = x (see ()). If x, y are fixed points of f , then p(y, y) ≤ p(y,x) ≤ ϕ(p(y,x))
(see (), ()) means that x = y. �

The next result extends Romaguera’s Theorem  [], and consequently, an earlier cele-
brated result due to Matkowski [, Theorem ., p.].

Theorem  Let (X,p) be a -complete partial metric space, and let f : X → X be a map-
ping satisfying condition () or () for a ϕ ∈ �P such that

lim sup
β→α–

ϕ(β) < α, α >  ()

holds (e.g., if ϕ is nondecreasing). Then f has a unique fixed point; if x = f (x), then x ∈Kerp
and x = limn→∞ f n(x) in (X,d), x ∈ X.

Proof In view of Lemmas ,  it is sufficient to prove that (xn)n∈N is a Cauchy se-
quence for xn = f n(x), n ∈ N. Suppose that there are infinitely many k,n ∈ N such that

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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p(f n++k(x), f k(x)) ≥ ε > . Let n = n(k) >  be the smallest numbers satisfying this in-
equality. For simplicity let us adopt x = f k(x) and xn = f n(x), n ∈N. We have

ε ≤ p(xn+,x)≤ p(xn+,xn) + p(xn,x) < p(xn+,xn) + ε,

which for n = n(k) means that

lim
k→∞

p(xn+,x) = lim
k→∞

p(xn,x) = ε

as we have limk→∞ p(xn+,xn) = limk→∞ p(x,x) = . Now, for y = xn, condition () yields

ε ≤ p(xn+,x) ≤ p(xn+,x) + p(x,x)≤ ϕ
(
mf (xn,x)

)
+ p(x,x)

= ϕ
(
max

{
p(xn,x),p(xn+,xn),p(x,x)

})
+ p(x,x),

and we obtain (from () as well)

ε ≤ ϕ
(
p(xn,x)

)
+ p(x,x)

for large k. Now, p(xn,x) < ε, limk→∞ p(xn,x) = ε, and condition () yield

ε ≤ lim sup
k→∞

ϕ
(
p(xn,x)

)
< ε,

a contradiction. Therefore, (xn)n∈N is a Cauchy sequence. �

Let ϕ,ϕ ∈ � be continuous mappings. Then ϕ ∈ � such that ϕ = ϕ on Q ∩ [,∞)
and ϕ = ϕ on [,∞) \Q is a member of �P and ϕ satisfies conditions (), (); clearly, ϕ
does not necessarily belong to �M or to �BW .
Paesano and Vetro [] have proved some theorems on coincidences and common fixed

points. Maybe Theorem  can be extended to that case.
The next result extends Romaguera’s Theorem  [], and consequently, an earlier cele-

brated result due to Boyd-Wong [, Theorem ]. Let us recall that ϕ() =  does not spoil
the generality of condition (). The proof is a modification of the one presented by Ro-
maguera.

Theorem  Let (X,p) be a -complete partial metric space, and let f : X → X be a map-
ping satisfying condition () for a mapping ϕ ∈ � and satisfying () (e.g., with ϕ upper
semicontinuous from the right). Then f has a unique fixed point; if x = f (x), then x ∈ Kerp
and x = limn→∞ f n(x) in (X,d), x ∈ X.

Proof We follow the initial part of the proof of Theorem  preceding the sentence with
condition () (Proposition  yields ϕ ∈ �P). For large k ∈N and n = n(k), we obtain

ε ≤ p(xn+,x) ≤ pf (xn+,x) =max
{
p(xn+,x),

[
p(xn+,x) + p(xn,x)

]
/

}

≤ max
{
p(xn+,x),

[
p(xn+,xn+) + p(xn+,x) + p(xn,x) + p(x,x)

]
/

}
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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and limk→∞ pf (xn+,x) = ε. Now, condition () yields

ε ≤ p(xn+,x) ≤ p(xn+,xn+) + p(xn+,x) + p(x,x)

≤ p(xn+,xn+) + ϕ
(
pf (xn+,x)

)
+ p(x,x),

and we obtain (see ())

ε ≤ lim sup
k→∞

ϕ
(
pf (xn+,x)

)
< ε,

a contradiction. Therefore, (xn)n∈N is a Cauchy sequence. �

The next lemma enables us to extend the preceding two theorems.

Lemma  Let f : X → X be a mapping such that f t for t ∈ N has a unique fixed point,
say, x. Then x is the unique fixed point of f . If, in addition, x ∈ limn→∞(f t)n(x), x ∈ X,
then x ∈ limn→∞ f n(x), x ∈ X holds.

Proof If x is a fixed point of f t , then f t(f (x)) = f (f t(x)) = f (x) means that f (x) is a fixed
point of f t and the uniqueness yields f (x) = x. If x, y ∈ X are fixed points of f , then we get
x = f t(x), y = f t(y), and x = y as f t has a unique fixed point. If x ∈ limn→∞(f t)n(x) holds
for each x ∈ X, then we also obtain x ∈ limn→∞(f t)n(f (x)) ∩ · · · ∩ limn→∞(f t)n(f t–(x)),
which means that x ∈ limn→∞ f n(x). �

Theorem  Let (X,p) be a -complete partial metric space, and let f : X → X be a map-
ping satisfying condition () or () with f replaced by f t for a t ∈N, and a ϕ ∈ �P having
property () (e.g., with ϕ nondecreasing). Then f has a unique fixed point; if x = f (x), then
x ∈Kerp and x = limn→∞ f n(x) in (X,d), x ∈ X.

Proof Clearly, all the assumptions of Theorem  are satisfied for f replaced by f t . Now,
we apply Lemma . �

The next theorem is a consequence of Theorem  and of Lemma .

Theorem  Let (X,p) be a -complete partial metric space, and let f : X → X be a map-
ping satisfying the condition

p
(
f t(y), f t(x)

) ≤max
{
p(y,x),p

(
f t(y), y

)
,p

(
f t(x),x

)
,
[
p
(
f t(y),x

)
+ p

(
f t(x), y

)]
/

}
()

for t ∈N, and amapping ϕ ∈ � satisfying () (e.g.,with ϕ upper semicontinuous from the
right). Then f has a unique fixed point; if x = f (x), then x ∈Kerp and x = limn→∞ f n(x) in
(X,d), x ∈ X.

Now, we present the respective versions of conditions (), (), () for a multivalued
mapping F : X → X , where P is defined by ().

P
(
F(y),F(x)

) ≤ ϕ
(
p(y,x)

)
, x, y ∈ X, ()

P
(
F(y),F(x)

) ≤ ϕ
(
mF (y,x)

)
, x, y ∈ X ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/185
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for

mF (y,x) =max
{
p(y,x),p

(
F(y), y

)
,p

(
F(x),x

)}
,

and

P
(
F(y),F(x)

) ≤ ϕ
(
pF (y,x)

)
, x, y ∈ X ()

for

pF (y,x) =max
{
p(y,x),p

(
F(y), y

)
,p

(
F(x),x

)
,
[
p
(
F(y),x

)
+ p

(
F(x), y

)]
/

}
.

For nondecreasing ϕ, condition () is more general than (), and () is more general
than condition ().
The subsequent two lemmas are proved for condition (), and the reasonings for ()

and () as well can be easily deduced.
At first, let us present the following extension of Lemma .

Lemma  Let (X,p) be a partial metric space, and let F : X → X be a mapping. Then

mF (y,x) = pF (y,x) =max
{
p(y,x),p

(
F(y), y

)}
, x ∈ X, y ∈ F(x) ()

holds, and condition () for any ϕ ∈ � yields pF (y,x) = p(y,x), x ∈ X, y ∈ F(x) (mF in place
of pF for ()), and

p
(
F(y), y

) ≤ ϕ
(
p(y,x)

)
, x ∈ X, y ∈ F(x). ()

If ϕ ∈ �P and

for each y ∈ F(x), there exists z ∈ F(y)

such that p(z, y) ≤ ϕ
(
p(y,x)

)
,x ∈ X ()

holds (e.g., F satisfies () and is compact valued), then there exists xn+ ∈ F(xn), n ∈ N,
such that

p(xn+,xn+)≤ ϕ
(
p(xn+,xn)

)
, n ∈N, and lim

n→∞p(xn+,xn) = .

Proof For y ∈ F(x), we have (see ())

p
(
F(y),x

)
+ p

(
F(x), y

)
= inf

{
p(z,x) : z ∈ F(y)

}
+ inf

{
p(z, y) : z ∈ F(x)

}

≤ inf
{
p(z, y) + p(y,x) – p(y, y) : z ∈ F(y)

}
+ p(y, y)

= p
(
F(y), y

)
+ p(y,x).

Consequently, we get

mF (y,x) ≤ pF (y,x)≤max
{
p(y,x),p

(
F(y), y

)
,p

(
F(x),x

)
,
[
p
(
F(y), y

)
+ p(y,x)

]
/

}

≤ max
{
p(y,x),p

(
F(y), y

)}
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as p(F(x),x)≤ p(y,x), y ∈ F(x) holds. Clearly,

max
{
p(y,x),p

(
F(y), y

)} ≤mF (y,x) ≤ pF (y,x)

is satisfied and hence we get (). Suppose p(y,x) < p(F(y), y) for a y ∈ F(x). Then (see ())

p
(
F(y), y

) ≤ P
(
F(y),F(x)

) ≤ ϕ
(
pF (y,x)

)
= ϕ

(
p
(
F(y), y

))

means that p(F(y), y) =  (as ϕ ∈ �), and p(y,x) = p(F(y), y). This contradiction proves ().
Let x ∈ X, x ∈ F(x) be arbitrary. If xn+, xn are known, then let xn+ ∈ F(xn+) be such

that (see () or () and Proposition ) p(xn+,xn+) ≤ ϕ(p(xn+,xn)). If p ∈ �P , then for
an = p(xn+,xn) we get limn→∞ an = . �

Now, let us prove an analog of Lemma .

Lemma  Let (X,p) be a -complete partial metric space, and let F : X → X be
a mapping with -closed graph satisfying condition (), (), or () for a ϕ ∈ �. If
limn→∞ p(F(xn),xn+) =  and limm,n→∞ p(xn,xm) = , then (xn)n∈N converges in (X,d) to
a fixed point of F , and this point belongs to Kerp.

Proof From limm,n→∞ p(xn,xm) =  it follows that (xn)n∈N converges to a point x ∈Kerp in
(X,d) (Corollary ). We get

p
(
F(x),x

) ≤ p
(
F(x),xn+

)
+ p(xn+,x)

≤ P
(
F(x),F(xn)

)
+ p(xn+,x) ≤ ϕ

(
pF (xn,x)

)
+ p(xn+,x)

= ϕ
(
max

{
p(xn,x),p(xn+,xn),p

(
F(x),x

)
,
[
p(xn+,x) + p

(
F(x),xn

)]
/

})

+ p(xn+,x).

Suppose  < p(F(x),x). Then from

p
(
F(x),xn

)
/ ≤ [

p
(
F(x),x

)
+ p(x,xn)

]
/,

and limn→∞ p(x,xn) = limn→∞ p(x,xn+) =  it follows that

max
{
p(xn,x),p(xn+,xn),p

(
F(x),x

)
,
[
p(xn+,x) + p

(
F(x),xn

)]
/

}
= p

(
F(x),x

)

for large n. Now we get

 < p
(
F(x),x

) ≤ ϕ
(
p
(
F(x),x

))
,

a contradiction. Clearly, p(F(x),x) = means that x ∈Kerp (see ()). There exist yn ∈ F(xn)
such that limn→∞ p(yn,xn+) = , and now,

p(yn,xn) ≤ p(yn,xn+) + p(xn+,xn)

together with condition () yield x ∈ F(x). �
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It should be noted that a partial metric p definesmetric δ in the following way: δ(x, y) = 
iff x = y, and δ(x, y) = p(x, y) for x �= y. The topology of (X, δ) is clearly larger than the topol-
ogy of (X,d) (see ()). Moreover, (X,p) is -complete iff (X, δ) is complete [], [, Propo-
sition .].
If the proof of a theorem is based on p(xn+,xn) �= , n ∈ N, then it works for (X, δ) and

the theorem is an immediate consequence of the respective result (if known) for metric
spaces. Numerous examples can be found in [].
Let us add that Corollary  and Proposition  show that for a -complete partial metric

space (X,p), if we prove that limm,n→∞ p(xn,xm) = , then the remaining part of the proof
concerns themetric space (X,d) (see ()). Let us also recall thatKerpwith its partialmetric
topology is a closed metric subspace of (X,d) [, Lemma .].
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