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Abstract
In this paper, we establish a unified approach to study the existence of fixed points for
common fixed point problems. Moreover, we introduce mixed systems of common
fixed point problems, systems of common fixed point problems and common fixed
point problems without convex assumptions. As applications, we establish a general
type of some set-valued variational inequalities, and we obtain some existence
theorems of solutions of set-valued variational inequalities. The results of this paper
improve and generalize several known results on common fixed point problems.
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1 Introduction
In three recent papers [–], by using some new concepts of generalized KKMmappings,
the authors established common fixed point theorems for families of set-valuedmappings
in Hausdorff topological vector spaces. Recently, Agarwal et al. [] established a common
fixed point theorem for a family of self set-valued mappings on a compact and convex
set in a locally convex topological vector space. As applications, an existence theorem of
solutions for a variational inequality of Stampacchia type and some Ky Fan-type minimax
inequalities were obtained.
It is well known that the equilibrium problems are unified models of several prob-

lems, namely, optimization problems, saddle point problems, variational inequalities,
fixed point problems, Nash equilibrium problems etc. Recently, Luc [] introduced amore
general model of equilibrium problems, which is called a variational relation problem (in
short, VR). The stability of the solution set of variational relation problems was studied in
[, ]. Some various types of variational relation problems or systems of variational relation
problems have been investigated in many recent papers (see [–]). Recently, Agarwal et
al. [] presented a unified approach in studying the existence of solutions for two types
of variational relation problems, and Balaj and Lin [] established existence criteria for
the solutions of two very general types of variational relation problems (see also [–]
for further studies of variational relation problems).
Motivated and inspired by research worksmentioned above, in this paper, we establish a

unified approach to study the existence of fixed points for common fixed point problems.
As generalizations, mixed systems of common fixed point problems, systems of common
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fixed point problems, and common fixed point problems without convex assumptions are
obtained.

2 Preliminary
In this short section, we recall some definitions and known results concerning set-valued
mappings which will be needed throughout this paper.
Let X, Y , Z be three Hausdorff topological spaces.We adopt the following notations: for

a set U and point x, α(x,U) and, respectively, α(x,U) means ∀x ∈ U , and, respectively,
∃x ∈ U . Denote α̂ by α̂ = α and α̂ = α; for two sets A, B, γ(A,B) and, respectively,
γ(A,B) means A ⊂ B, and, respectively, A∩B �= ∅. Denote γ̂ by γ̂ = γ and γ̂ = γ. A set-
valued mapping F : X ⇒ Y is said to be: () upper semicontinuous at x ∈ X if, for any
open subset O of Y with O ⊃ F(x), there exists an open neighborhood U(x) of x such that
O ⊃ F(x′) for any x′ ∈U(x); () upper semicontinuous onX, if it is upper semicontinuous at
each x ∈ X; () lower semicontinuous at x ∈ X if, for any open subsetO of Y withO∩F(x) �=
∅, there exists an open neighborhood U(x) of x such that O ∩ F(x′) �= ∅ for any x′ ∈ U(x);
( lower semicontinuous on X, if it is lower semicontinuous in each x ∈ X; () closed if
Graph(F) = {(x, y) ∈ X × Y |y ∈ F(x)} is a closed subset of X × Y .

Lemma . (Corollary . (Kakutani-Fan-Glicksberg fixed point theorem) of []) Let
X be a nonempty, convex and compact subset of a locally convex topological linear space,
and F : X ⇒ X be an upper semicontinuous set-valued mapping with nonempty convex
compact values. Then there exists x∗ ∈ X such that x∗ ∈ F(x∗).

Lemma . (Lemma ., Theorem ., Theorem ., Theorem . of [])
(i) The image of a compact set under a compact-valued upper semicontinuous

set-valued mapping is compact.
(ii) If an upper semicontinuous set-valued mapping possess compact-valued, then it is

closed.
(iii) The correspondence ϕ is upper semicontinuous at x and ϕ(x) is compact, if and only

if, for every net {(xα , yα)} in the graph of ϕ, that is, with yα ∈ ϕ(xα) for each α, if
xα −→ x, then the net {yα} has a limit point in ϕ(x).

(iv) If X and Y are topological spaces, a set-valued mapping F : X ⇒ Y is lower
semicontinuous, if and only if, for any net {xα} in X , converging to x ∈ X , and each
y ∈ F(x), there exists a net {yα} converging to y, with yα ∈ F(xα) for all α.

3 Main results
Let S : X ⇒ X, Q : X ⇒ Y , T : Y × Z ⇒ Z and P : X ⇒ Z be set-valued mappings with
nonempty values. A common fixed point problem of type α (CFP-α) consists in finding
x̃ ∈ X such that x̃ ∈ S(x̃), for any y ∈Q(x̃),

α
(
z,P(x̃)

)
, z ∈ T(y, z).

When α = α, a common fixed point problem of type α (CFP-α) consists in finding x̃ ∈ X
such that x̃ ∈ S(x̃), and

z ∈
⋂

y∈Q(x̃)
T(y, z), ∀z ∈ P(x̃).
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When α = α, a common fixed point problem of type α (CFP-α) consists in finding x̃ ∈ X
such that x̃ ∈ S(x̃) and, for any y ∈ Q(x̃), there exists z̃ ∈ P(x̃) for which

z̃ ∈ T(y, z̃).

When X = Z and P(x) = {x} for any x ∈ X, the problems (CFP-α) and (CFP-α) reduce the
common fixed point problem (CFP): finding x̃ ∈ X such that x̃ ∈ S(x̃), and

x̃ ∈
⋂

y∈Q(x̃)
T(y, x̃).

Theorem . Assume that the data of problem (CFP-α) satisfy the following conditions:
(i) X is a nonempty, convex and compact subset of a locally convex topological linear

space, Y is Hausdorff linear topological space, and Z is a Hausdorff topological
space;

(ii) S is upper semicontinuous with nonempty convex compact values;
(iii) U(y) := {x ∈ X|y ∈Q(x) and α̂(z,P(x)), z /∈ T(y, z)} is open in X .

Moreover, assume that there exists a set-valued mapping F : Y ⇒ X such that
(iv) F(Q(x))⊂ S(x) for any x ∈ X ;
(v) F(y) is nonempty, convex and compact for any y ∈ Y ;
(vi) F is convex, i.e.,

∑n
j= λjF(yj) ⊂ F(

∑n
j= λjyj) for any yj ∈ Y and any λj ≥  with∑n

j= λj = ;
(vii) T is α-(F ,P)-KKM, i.e., for any finite set {y, . . . , yn} of Y and any

x ∈ F(co{y, . . . , yn}), there is i ∈ {, . . . ,n} such that α(z,P(x)), z ∈ T(yi , z).
Then problem (CFP-α) has at least a solution.

Proof By way of contradiction suppose that, for any x ∈ X, x /∈ S(x), or, there is y ∈ Q(x)
such that α̂(z,P(x)), z /∈ T(y, z). Denote U = {x ∈ X|x /∈ S(x)}, which is open in X by (ii).
Therefore,

X =U ∪
⋃
y∈Y

U(y).

By (iii), there is a finite subset {y, . . . , yn} of Y such that

X =U ∪
n⋃
k=

U(yk).

Let {βk|k = , , , . . . ,n} be the partition of unity subordinate to the open covering
{U,U(yk)|k = , , . . . ,n} of X, i.e., {βk|k = , , , . . . ,n} is a set of continuous functions
with following properties:  ≤ βk(x) ≤ ,

∑n
k= βk(x) = , ∀x ∈ X, k = , , , . . . ,n; and if

x /∈U(yk), for some k ∈ {, . . . ,n}, then βk(x) = , and if x /∈U, then β(x) = .
Now, we define the following set-valued mapping φ : X ⇒ X:

φ(x) = β(x)S(x) +
n∑
k=

βk(x)F(yk).
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Clearly φ is upper semicontinuous on X. Moreover, since S(x) and F(yk) are nonempty,
convex and compact, φ(x) is nonempty, convex and compact in X for any x ∈ X. By
Lemma ., there exists x∗ ∈ X such that x∗ ∈ φ(x∗). Let I(x∗) = {k ∈ {, . . . ,n}|βk(x∗) > }.
Then, for any k ∈ I(x∗), x∗ ∈ U(yk), it follows that yk ∈ Q(x∗) for any k ∈ I(x∗). By (iv),
F(yk) ⊂ F(Q(x∗)) ⊂ S(x∗) for any k ∈ I(x∗). Therefore, x∗ ∈ φ(x∗) ⊂ S(x∗), which implies
that β(x∗) = . It follows from the convexity of F that

x∗ ∈
n∑
k=

βk
(
x∗)F(yk) ⊂ F

( ∑
k∈I(x∗)

βk
(
x∗)yk).

By (vii), there is i ∈ I(x∗) such that α(z,P(x∗)), z ∈ T(yi , z), which implies that x∗ /∈U(yi ),
i.e., βi (x∗) = . It contradicts the fact that i ∈ I(x∗), that is, βi (x∗) > . This completes the
proof. �

Remark . By Proposition . of [], when α = α, condition (iii) in Theorem . can be
replaced by (a) P : X ⇒ Z is lower semicontinuous; (b) {z ∈ Z|z ∈ T(y, z)} is closed in X
for any y ∈ Y ; (c) Q–(y) is open in X for any y ∈ Y . Thus we have the following theorem.

Theorem . Assume that the data of problem (CFP-α) satisfy the conditions (i), (ii),
(iv)-(vi) of Theorem . and
(a) P : X ⇒ Z is lower semicontinuous;
(b) {z ∈ Z|z ∈ T(y, z)} is closed in X for any y ∈ Y ;
(c) Q–(y) is open in X for any y ∈ Y ;
(d) T is α-(F ,P)-KKM, i.e., for any finite set {y, . . . , yn} of Y and any

x ∈ F(co{y, . . . , yn}), there is i ∈ {, . . . ,n} such that z ∈ T(yi , z) for any z ∈ P(x).
Then problem (CFP-α) has at least a solution.

Remark . By Proposition . of [], when α = α, condition (iii) in Theorem . can
be replaced by (a) P : X ⇒ Z is upper semicontinuous with nonempty compact values;
(b) {z ∈ Z|z ∈ T(y, z)} is closed in X for any y ∈ Y ; (c) Q–(y) is open in X for any y ∈ Y .
Thus we have the following theorem.

Theorem . Assume that the data of problem (CFP-α) satisfy the conditions (i), (ii),
(iv)-(vi) of Theorem . and
(a) P : X ⇒ Z is upper semicontinuous with nonempty compact values;
(b) {z ∈ Z|z ∈ T(y, z)} is closed in X for any y ∈ Y ;
(c) Q–(y) is open in X for any y ∈ Y ;
(d) T is α-(F ,P)-KKM, i.e., for any finite set {y, . . . , yn} of Y and any

x ∈ F(co{y, . . . , yn}), there is i ∈ {, . . . ,n} such that there is z ∈ P(x) for which
z ∈ T(yi , z).

Then problem (CFP-α) has at least a solution.

If X = Y and F(x) = x for all x ∈ X, we have problem (CFP-α).

Theorem . Let X be a nonempty, convex and compact subset of a locally convex topo-
logical linear space, Z be a Hausdorff topological space, and S,Q : X ⇒ X, T : X × Z⇒ Z
and P : X ⇒ Z be set-valued mappings with nonempty values. Assume that
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(i) S is upper semicontinuous with nonempty convex compact values, and Q(x)⊂ S(x)
for all x ∈ X ;

(ii) the set {x ∈ X|y ∈Q(x) and α̂(z,P(x)), z /∈ T(y, z)} is open in X for any y ∈ X ;
(iii) T is α-P-KKM, i.e., for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there

is i ∈ {, . . . ,n} such that α(z,P(x)), z ∈ T(xi , z).
Then problem (CFP-α) has at least a solution.

When X = Y = Z, and F(x) = x, P(x) = {x} for all x ∈ X, we obtain the following corollary.

Corollary . Let X be a nonempty, convex, and compact subset of a locally convex topo-
logical linear space, and S,Q : X ⇒ X, T : X × X ⇒ X be set-valued mappings with
nonempty values. Assume that

(i) S is upper semicontinuous with nonempty convex compact values;
(ii) Q–(y) is open in X for any y ∈ X , and ∅ �=Q(x)⊂ S(x) for any x ∈ X ;
(iii) the set {x ∈ X|x ∈ T(y,x)} is closed in X for any y ∈ X ;
(iv) for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n}

such that x ∈ T(xi ,x).
Then there exists x̃ ∈ X such that x̃ ∈ S(x̃) and x̃ ∈ ⋂

y∈Q(x̃)T(y, x̃).

Remark . Theorems .-. generalize the results of [–]. When X = Y and P(x) =
F(x) = x for all x ∈ X, and S(x) = Q(x) = X for any x ∈ X, our Theorems .-. reduce to
the results of [–].

Now, we introduce a new class of problems, calledmixed systems of commonfixed point
problems (MSCFP). LetX,Y be nonempty sets in twoHausdorff topological vector spaces,
Z be a Hausdorff topological space, S : X × Y ⇒ X, H : X × Y ⇒ Y , Q : X × Y ⇒ X, M :
X × Y ⇒ Y , T : X × Z ⇒ Z, F : Y × Z ⇒ Z, P : X × Y ⇒ Z be set-valued mappings with
nonempty values. A mixed system of common fixed point problems consists in finding
(x∗, y∗) ∈ X × Y such that x∗ ∈ S(x∗, y∗), y∗ ∈H(x∗, y∗) and

∀u ∈Q
(
x∗, y∗), ∀z ∈ P

(
x∗, y∗), s.t. z ∈ T(u, z),

∀v ∈M
(
x∗, y∗), ∃z ∈ P

(
x∗, y∗), s.t. z ∈ F(v, z).

Theorem . Assume that
(i) X , Y , Z are three nonempty, compact and convex subsets of three Hausdorff linear

topological spaces;
(ii) C = {(x, y) ∈ X × Y : x ∈ S(x, y)} and D = {(x, y) ∈ X × Y : y ∈H(x, y)} are nonempty

and closed in X × Y ;
(iii) P is continuous with nonempty convex compact values;
(iv) {z ∈ Z : z ∈ T(x, z)} and {z ∈ Z : z ∈ F(y, z)} are closed for any (x, y) ∈ X × Y ;
(v) Q(x, y) �= ∅,M(x, y) �= ∅, coQ(x, y)⊂ S(x, y), coM(x, y) ⊂H(x, y), and Q–(x),M–(y)

are open for any (x, y) ∈ X × Y ;
(vi) for any fixed y ∈ Y , any finite subset {u, . . . ,un} of X and any x ∈ co{u, . . . ,un},

there is i ∈ {, . . . ,n} such that, for any z ∈ P(x, y), z ∈ T(ui, z);
(vii) for any fixed x ∈ X , any finite subset {v, . . . , vn} of Y and any y ∈ co{v, . . . , vn}, there

is i ∈ {, . . . ,n} such that there is z ∈ P(x, y) for which z ∈ F(vi, z).
Then problem (MSCFP) has at least a solution.

http://www.fixedpointtheoryandapplications.com/content/2014/1/189
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Proof Define A : X × Y ⇒ X and B : X × Y ⇒ Y as follows:

A(x, y) =
{
u ∈ X : ∃z ∈ P(x, y), z /∈ T(u, z)

}
,

B(x, y) =
{
v ∈ Y : z /∈ F(v, z),∀z ∈ P(x, y)

}
.

By (iii), (iv), and Remarks ., ., A–(u), B–(v) are open in X × Y for any (u, v) ∈ X × Y .
Suppose there exists (x, y) ∈ X × Y such that x ∈ coA(x, y), then there is a finite subset

{u, . . . ,un} ofA(x, y) such that x ∈ co{u, . . . ,un}. By (vi), there is i ∈ {, . . . ,n} such that z ∈
T(ui , z) for any z ∈ P(x, y), which contradicts the fact that ui ∈ A(x, y) for any i ∈ {, . . . ,n}.
Hence x /∈ coA(x, y) for any (x, y) ∈ X × Y .
Suppose there exists (x, y) ∈ X × Y such that y ∈ coB(x, y), then there is a finite subset

{v, . . . , vn} of B(x, y) such that y ∈ co{v, . . . , vn}. By (vii), there is i ∈ {, . . . ,n} such that
there exists z ∈ P(x, y) for which z ∈ F(vi , z), which contradicts the fact that vi ∈ B(x, y) for
any i ∈ {, . . . ,n}. Hence y /∈ coB(x, y) for any (x, y) ∈ X × Y .
Define the mappings A′ : X × Y ⇒ X and B′ : X × Y ⇒ Y as follows:

A′(x, y) =

⎧⎨⎩A(x, y)∩Q(x, y), if (x, y) ∈ C,

Q(x, y), if (x, y) /∈ C,

B′(x, y) =

⎧⎨⎩B(x, y)∩M(x, y), if (x, y) ∈D,

M(x, y), if (x, y) /∈D.

For any u ∈ X,

A′–(u) =
[
Q–(u)∩A–(u)

] ∪ [(
(X × Y )\C) ∩Q–(u)

]
is open inX×Y . Similarly, B′–(v) is open for any v ∈ Y . Hence,A′–(u), B′–(v) are open for
any (u, v) ∈ X × Y , and x /∈ coA′(x, y), y /∈ coB′(x, y) for any (x, y) ∈ X × Y . By Theorem  of
[], there exists (x∗, y∗) ∈ X × Y such that A′(x∗, y∗) = ∅ and B′(x∗, y∗) = ∅, which implies
that x∗ ∈ S(x∗, y∗), y∗ ∈H(x∗, y∗) and

∀u ∈Q
(
x∗, y∗), ∀z ∈ P

(
x∗, y∗), s.t. z ∈ T(u, z),

∀v ∈M
(
x∗, y∗), ∃z ∈ P

(
x∗, y∗), s.t. z ∈ F(v, z).

As a generalization, we introduce the following systemof commonfixed point problems.
Let I be any index set. For any i ∈ I , let Xi, Zi be Hausdorff topological spaces, and Si : X ⇒
Xi, Qi : X ⇒ Xi, Ti : Xi × Zi ⇒ Zi and Pi : X ⇒ Zi be set-valued mappings with nonempty
values. A system of common fixed point problems (SCFP) consists in finding x̃ ∈ X such
that, for each i ∈ I , x̃i ∈ Si(x̃) and, for any yi ∈Qi(x̃),

α
(
zi,Pi(x̃)

)
, zi ∈ Ti(yi, zi). �

Theorem . Assume that, for each i ∈ I , the following conditions are satisfied:
(i) Xi is a nonempty, convex and compact subset of a locally convex topological linear

space, and Zi is a Hausdorff topological space;

http://www.fixedpointtheoryandapplications.com/content/2014/1/189
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(ii) the set �i := {x ∈ X : xi ∈ S(x)} is nonempty and closed in X ;
(iii) the set-valued mapping Gi : X ⇒ Xi, defined by

Gi(x) := {yi ∈ Xi |̂α(zi,Pi(x)), zi /∈ Ti(yi, zi)}, has open fibers;
(iv) Q–

i (yi) is open in X for any yi ∈ Xi;
(v) for any finite set {yi, . . . , yin} of Xi and any xi ∈ co{yi, . . . , yin} with x = (xi)i∈I , there is

j ∈ {, . . . ,n} such that α(zi,Pi(x)), zi ∈ Ti(yij, zi).
Then problem (SCFP) has at least a solution.

Proof For each i ∈ I , define the set

Wi = [X\�i]∪
{
x ∈ X|Gi(x)∩Qi(x) �= ∅}

.

By (ii) and (iii), Wi is open in X for each i ∈ I . Since G–
i (yi) is open in X for each i ∈ I , by

a known continuous selection Theorem (see [, Theorem .]), there is a continuous
function fi : X −→ Xi such that fi(x) ∈ coGi(x). Thus, for each i ∈ I , we define the mapping
F : X ⇒ X as follows:

Fi(x) =

⎧⎨⎩fi(x), if x ∈Wi,

Xi, if x /∈Wi,
F(x) =

∏
i∈I

Fi(x).

By Lemma ., there exists x∗ ∈ X such that x∗ ∈ F(x∗), which implies that x∗
i ∈ Fi(x∗) for

each i ∈ I . If x ∈ Wi for some i ∈ I , x∗
i = fi (x∗) ∈ coGi (x∗). Then there exists a finite

set {yi, . . . , yin} ⊂ Gi (x∗) such that x∗
i ∈ co{yi, . . . , yin}. By (v), there is j ∈ {, . . . ,n}

such that α(zi ,Pi (x∗)), zi ∈ Ti (yij , zi ), which contradicts the fact that yij ∈ Gi (x∗).
Therefore, x∗ /∈ Wi for any i ∈ I , which implies that, for each i ∈ I , x∗

i ∈ Si(x∗) and, for any
yi ∈Qi(x∗), α(zi,Pi(x∗)), zi ∈ Ti(yi, zi). This completes the proof. �

As a generalization of Theorem ., we derive the following existence result for the so-
lution of problem (CFP-α) without convex assumptions.

Theorem . Assume that
(i) X is a nonempty and compact subset of a Hausdorff topological vector space E, and

has the fixed point property, and Z is a Hausdorff topological space;
(ii) � := {x ∈ X : x ∈ S(x)} is closed;
(iii) Q(x)⊂ S(x) for any x ∈ X ;
(iv) U(y) := {x ∈ X |̂α(z,P(x)), z /∈ T(y, z)} and Q–(y) are open in X for any y ∈ X ;
(v) for any finite set {y, . . . , yn} of X , there exists a continuous mapping φn :	n −→ X

such that
(v) for any λ = (λ, . . . ,λn) ∈ 	n, there exists i ∈ J(λ) such that α(z,P(φn(λ))),

z ∈ T(yi, z);
(v) if yi ∈Q(φn(λ)) for any i ∈ J(λ), then φn(λ) ∈Q(φn(λ)), where

	n :=

{
(λ, . . . ,λn) ∈R

n
∣∣∣ n∑

i=

λi = ,λi ≥ 

}
, J(λ) :=

{
i ∈ {, . . . ,n}|λi > 

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/189
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Then problem (CFP-α) has at least a solution, i.e., there exists x̃ ∈ X such that x̃ ∈ S(x̃) and,
for any y ∈Q(x̃),

α
(
z,P(x̃)

)
, z ∈ T(y, z).

Proof Define the mapping G : X ⇒ X as follows:

G(y) =
[
X\Q–(y)

] ∪ {
x ∈ X|x ∈ S(x) and α

(
z,P(x)

)
, z ∈ T(y, z)

}
.

By (ii) and (iv), G(y) is closed for any y ∈ X.
By (v), for any finite subset {y, . . . , yn} of X, there exists a continuous mapping φn :

	n −→ X such that, for any λ = (λ, . . . ,λn) ∈ 	n, there exists i ∈ J(λ) such that α(z,
P(φn(λ))), z ∈ T(yi, z), then
() if there exists i ∈ J(λ) such that yi /∈Q(φn(λ)), which implies that

φn(λ) ∈ X\Q–(yi ). Thus φn(λ) ∈ G(yi );
() if yi ∈Q(φn(λ)) for any i ∈ J(λ), then φn(λ) ∈Q(φn(λ)) by (v). By (iii),

φn(λ) ∈ S(φn(λ)). Then φn(λ) ∈ S(φn(λ)) and, for any λ = (λ, . . . ,λn) ∈ 	n, there
exists i ∈ J(λ) such that α(z,P(φn(λ))), z ∈ T(yi, z). Thus φn(λ) ∈ G(yi).

Hence, by Theorem . of [],

⋂
y∈X

G(y) �= ∅,

which implies that there is x̃ ∈ X such that x̃ ∈ S(x̃) and, for any y ∈Q(x̃),

α
(
z,P(x̃)

)
, z ∈ T(y, z). �

By Remarks . and ., we have the following results.

Theorem . If (iv) of Theorem . is replaced by
(a) P : X ⇒ Z is lower semicontinuous;
(b) {z ∈ Z|z ∈ T(y, z)} is closed in X for any y ∈ Y , and Q–(y) is open in X for any y ∈ X .

Then problem (CFP-α) has at least a solution, i.e., there exists x̃ ∈ X such that x̃ ∈ S(x̃)
and

z ∈
⋂

y∈Q(x̃)
T(y, z), ∀z ∈ P(x̃).

Theorem . If (iv) of Theorem . is replaced by
(a) P : X ⇒ Z is upper semicontinuous with nonempty compact values;
(b) {z ∈ Z|z ∈ T(y, z)} is closed in X for any y ∈ Y , and Q–(y) is open in X for any y ∈ X .

Then problem (CFP-α) has at least a solution, i.e., there exists x̃ ∈ X such that x̃ ∈ S(x̃)
and, for any y ∈Q(x̃), there is z ∈ P(x̃) for which z ∈ T(y, z).

Remark . In [–], convex assumptions or the KKMproperty played an important role
in the proofs of common fixed points. In Theorems .-., the existence of common fixed
points does not depend on convex assumptions.

http://www.fixedpointtheoryandapplications.com/content/2014/1/189
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Remark . This paper extends the research on common fixed point problems. The clas-
sical common fixed point problem (see [–]) is a special case of problem (CFP-α). More-
over, we introduce the system of common fixed points, and common fixed point problems
without convex assumptions are obtained.

4 Applications
4.1 Variational inclusions
In this section, we fix our attention on variational inclusions described below:
Let X be a nonempty, convex and compact subset of a locally convex topological linear

space, Z be a Hausdorff topological linear space, and S,Q : X ⇒ X, A,B : X × X ⇒ Z be
set-valued mapping with nonempty values.
A variational inclusion of type γ (VI-γ ) consists in finding x̃ ∈ X such that x̃ ∈ S(x̃) and

γ (A(x̃, y),B(x̃, y)) holds for any y ∈Q(x̃).
A variational inclusion of type γ (VI-γ) consists in finding x̃ ∈ X such that x̃ ∈ S(x̃) and

A(x̃, y) ⊂ B(x̃, y) for any y ∈Q(x̃).
A variational inclusion of type γ (VI-γ) consists in finding x̃ ∈ X such that x̃ ∈ S(x̃) and

A(x̃, y)∩ B(x̃, y) �= ∅ holds for any y ∈Q(x̃).

Theorem . Let X be a nonempty, convex and compact subset of a locally convex topo-
logical linear space, Z be a Hausdorff topological linear space. Assume that

(i) S is upper semicontinuous with nonempty convex compact values;
(ii) Q–(y) is open in X for any y ∈ X , and ∅ �=Q(x)⊂ S(x) for any x ∈ X ;
(iii) the set {x ∈ X|γ (A(x, y),B(x, y)) holds} is closed in X for any y ∈ X ;
(iv) for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n}

such that γ (A(x,xi ),B(x,xi )) holds.
Then problem (VI-γ ) has at least a solution.

Proof Define the mapping T : X ×X ⇒ X as follows:

T(y,x) =
{
z ∈ X : γ

(
A(x, y),B(z, y)

)
holds

}
.

By (iii), {x ∈ X : x ∈ T(y,x)} is closed in X for any y ∈ X. By Corollary ., there exists x̃ ∈
X such that x̃ ∈ S(x̃) and x̃ ∈ ⋂

y∈Q(x̃)T(y, x̃), which implies x̃ ∈ S(x̃) and γ (A(x̃, y),B(x̃, y))
holds for any y ∈Q(x̃). This completes the proof. �

Theorem . Assume (ii) and (iii) of Theorem . are replaced by
(a) for any y ∈ X , A(·, y) is lower semicontinuous, and B(·, y) is closed;
(b) for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n}

such that A(x,xi ) ⊂ B(x,xi ).
Then problem (VI-γ) has at least a solution.

Proof As soon as we show that the set {x ∈ X : A(x, y)⊂ B(x, y)} is closed for any y ∈ X. Let
{xα} be a net inX converging to x, such thatA(xα , y) ⊂ B(xα , y) for any α. For any z ∈ A(x, y),
since A(·, y) is lower semicontinuous, by Lemma ., there is zα ∈ A(xα , y) ⊂ B(xα , y) such
that zα −→ z. It follows from the closeness of B(·, y) that z ∈ B(x, y). Then A(x, y) ⊂ B(x, y).
Thus, the set {x ∈ X : A(x, y)⊂ B(x, y)} is closed for any y ∈ X. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/189
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Theorem . Assume (ii) and (iii) of Theorem . are replaced by
(a) for any y ∈ X , A(·, y) is upper semicontinuous with nonempty compact values, and

B(·, y) is closed;
(b) for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n}

such that A(x,xi )∩ B(x,xi ) �= ∅.
Then problem (VI-γ) has at least a solution.

Proof As soon as we show that the set {x ∈ X : A(x, y)∩B(x, y) �= ∅} is closed for any y ∈ X.
Let {xα} be a net in X converging to x, such that A(xα , y) ∩ B(xα , y) �= ∅ for any α. Then
there exists zα ∈ Z such that zα ∈ A(xα , y) ∩ B(xα , y) for any α. Since A(·, y) is upper semi-
continuous with nonempty compact values, by (iii) of Lemma ., there is a subnet {zαβ }
of {zα} converging to some z ∈ A(x). Since zαβ ∈ B(xαβ , y), and B(·, y) is closed, z ∈ B(x, y).
Thus z ∈ A(x, y)∩B(x, y). Hence, the set {x ∈ X : A(x, y)∩B(x, y) �= ∅} is closed for any y ∈ X.

�

4.2 Generalized multiplied minimax inequality of Ky Fan type
Let X be a nonempty, convex and compact subset of a locally convex topological linear
space, and S,Q : X ⇒ X, f : X × X × X −→ R be a real-valued function. A generalized
multiplied minimax inequality of Ky Fan type consists in finding x̃ ∈ X such that x̃ ∈ S(x̃)
and f (y, x̃, x̃) ≤  for any y ∈Q(x̃).

Theorem . Let X be a nonempty, convex and compact subset of a locally convex topo-
logical linear space. Assume that

(i) S is upper semicontinuous with nonempty convex compact values;
(ii) Q–(y) is open in X for any y ∈ X , and ∅ �=Q(x)⊂ S(x) for any x ∈ X ;
(iii) f (y, ·, ·) is lower semicontinuous on X ×X for any y ∈ X ;
(iv) for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n}

such that f (xi ,x,x)≤ .
Then the generalized multiplied minimax inequality of Ky Fan type has at least a solution.

Proof Define the mapping T : X ×X ⇒ X as follows:

T(y,x) =
{
z ∈ X : f (y,x, z) ≤ 

}
.

By (iii), {x ∈ X : x ∈ T(y,x)} is closed in X for any y ∈ X. By Corollary ., there exists x̃ ∈ X
such that x̃ ∈ S(x̃) and x̃ ∈ ⋂

y∈Q(x̃)T(y, x̃), which implies x̃ ∈ S(x̃) and f (y, x̃, x̃) ≤  for any
y ∈ Q(x̃). This completes the proof. �

Remark . Theorem . is different from Theorems ., . of []. () Our Theorem .
with constraining mappings S,Q is a more general problem than Theorems ., . of [].
() The existence conditions are different between Theorem . and Theorems ., .
of [].

FromTheorem ., when S(x) =Q(x) = X for any x ∈ X, we obtain a multipliedminimax
inequality of Ky Fan type.

Theorem . Let X be a nonempty, convex and compact subset of a locally convex topo-
logical linear space. Assume that

http://www.fixedpointtheoryandapplications.com/content/2014/1/189
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(i) f (y, ·, ·) is lower semicontinuous on X ×X for any y ∈ X ;
(ii) for any finite set {x, . . . ,xn} of X and any x ∈ co{x, . . . ,xn}, there is i ∈ {, . . . ,n} such

that f (xi ,x,x)≤ .
Then the multiplied minimax inequality of Ky Fan type has at least a solution, i.e.,
f (y, x̃, x̃) ≤  for any y ∈ X.
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