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1 Introduction and preliminaries
In , Matthews [] introduced the notion of partial metric spaces as follows.

Definition . [] A partial metric on a nonempty set X is a function p : X × X −→ R
+

such that for all x, y, z ∈ X:
(p) x = y⇔ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).
A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial

metric on X.

In [], Matthews extended the Banach contraction principle from metric spaces to par-
tial metric spaces. Based on the notion of partial metric spaces, several authors (for ex-
ample, [–]) obtained some fixed-point results for mappings satisfying different con-
tractive conditions. Very recently, Haghi et al. [] showed in their interesting paper that
some fixed-point theorems in partial metric spaces can be obtained from metric spaces.
Karapınar et al. [] introduced the concept of quasi-partial metric spaces and studied

some fixed-point problems on quasi-partial metric spaces. The notion of a quasi-partial
metric space is defined as follows.

Definition . [] A quasi-partial metric on nonempty set X is a function q : X × X →
R

+ which satisfies:

(QPM) If q(x,x) = q(x, y) = q(y, y), then x = y,
(QPM) q(x,x)≤ q(x, y),
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(QPM) q(x,x)≤ q(y,x), and
(QPM) q(x, y) + q(z, z) ≤ q(x, z) + q(z, y)

for all x, y, z ∈ X.
A quasi-partial metric space is a pair (X,q) such that X is a nonempty set and q is a

quasi-partial metric on X.

Let q be a quasi-partial metric on set X. Then

dq(x, y) = q(x, y) + q(y,x) – q(x,x) – q(y, y)

is a metric on X.

Definition . [] Let (X,q) be a quasi-partial metric space. Then
(i) A sequence {xn} converges to a point x ∈ X if and only if

q(x,x) = lim
n→∞q(x,xn) = lim

n→∞q(xn,x).

(ii) A sequence {xn} is called a Cauchy sequence if limn,m→∞ q(xn,xm) and
limn,m→∞ q(xm,xn) exist (and are finite).

(iii) The quasi-partial metric space (X,q) is said to be complete if every Cauchy
sequence {xn} in X converges, with respect to τq, to a point x ∈ X such that

q(x,x) = lim
n,m→∞q(xn,xm) = lim

n,m→∞q(xn,xm).

Bhaskar and Lakshmikantham [] introduced the concept of a coupled fixed point and
studied some nice coupled fixed-point theorems. Later, Lakshmikantham and Ćirić []
introduced the notion of a coupled coincidence point of mappings. For some works on a
coupled fixed point, we refer the reader to [–].

Definition . [] Let X be a nonempty set. We call an element (x, y) ∈ X ×X a coupled
fixed point of the mapping F : X ×X → X if F(x, y) = x and F(y,x) = y.

Definition . [] An element (x, y) ∈ X ×X is called
(i) a coupled coincidence point of the mapping F : X ×X → X and g : X → X if

F(x, y) = gx and F(y,x) = gy; in this case (gx, gy) is called coupled point of coincidence
of mappings F and g ;

(ii) a common coupled fixed point of mappings F : X ×X → X and g : X → X if
F(x, y) = gx = x and F(y,x) = gy = y;

(iii) a common coupled fixed point of mappings F : X ×X → X and g : X → X if
F(x, y) = gx = x and F(y,x) = gy = y.

Abbas et al. [] introduced the concept of w-compatible mappings as follows.

Definition . [] LetX be a nonempty set.We say that themappings F : X×X → X and
g : X → X are w-compatible if gF(x, y) = F(gx, gy) whenever gx = F(x, y) and gy = F(y,x).
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Very recently, Shatanawi and Pitea [] obtained some common coupled fixed-point
results for a pair of mappings in quasi-partial metric space.

Theorem . (see [, Theorem .]) Let (X,q) be a quasi-partial metric space, g : X → X
and F : X × X → X be two mappings. Suppose that there exist k, k, and k in [, ) with
k + k + k <  such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

)
≤ k

[
q(gx, gu) + q(gy, gv)

]
+ k

[
q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

)]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) and gy =
F(y,x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (x,x).
The aim of this article is to prove some new coupled common fixed-point theorems for

mappings defined on a set equipped with two quasi-partial metrics.
The following lemma is crucial in our work.

Lemma . [] Let (X,q) be a quasi-partial metric space. Then the following statements
hold true:

(i) If q(x, y) = , then x = y.
(ii) If x �= y, then q(x, y) >  and q(y,x) > .

In this manuscript, we generalize, improve, enrich, and extend the above coupled com-
mon fixed-point results. We also state some examples to illustrate our results. This paper
can be considered as a continuation of the remarkable works of Aydi [], Karapınar et al.
[], and Shatanawi and Pitea [].

2 Main results
Now we shall prove our main results.

Theorem . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and let F : X × X → X, g : X → X be two mappings. Suppose that there exist k,
k, k, k, and k in [, ) with

k + k + k + k + k <  (.)

such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

)
≤ k

[
q(gx, gu) + q(gy, gv)

]
+ k

[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
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+ k
[
q

(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

)]
+ k

[
q

(
gx,F(u, v)

)
+ q

(
gy,F(v,u)

)]
+ k

[
q

(
gu,F(x, y)

)
+ q

(
gv,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Proof Let x, y ∈ X. Since F(X × X) ⊂ g(X), we can choose x, y ∈ X such that gx =
F(x, y) and gy = F(y,x). Similarly, we can choose x, y ∈ X such that gx = F(x, y)
and gy = F(y,x). Continuing in this way we construct two sequences {xn} and {yn} in X
such that

gxn+ = F(xn, yn) and gyn+ = F(yn,xn), ∀n≥ . (.)

It follows from (.) and (QPM) that

q(gxn, gxn+) + q(gyn, gyn+)

= q
(
F(xn–, yn–),F(xn, yn)

)
+ q

(
F(yn–,xn–),F(yn,xn)

)
≤ k

[
q(gxn–, gxn) + q(gyn–, gyn)

]
+ k

[
q

(
gxn–,F(xn–, yn–) + q

(
gyn–,F(yn–,xn–)

))]
+ k

[
q

(
gxn,F(xn, yn)

)
+ q

(
gyn,F(yn,xn)

)]
+ k

[
q

(
gxn–,F(xn, yn)

)
+ q

(
gyn–,F(yn,xn)

)]
+ k

[
q

(
gxn,F(xn–, yn–)

)
+ q

(
gyn,F(yn–,xn–)

)]
= (k + k)

[
q(gxn–, gxn) + q(gyn–, gyn)

]
+ k

[
q(gxn, gxn+) + q(gyn, gyn+)

]
+ k

[
q(gxn–, gxn+) + q(gyn–, gyn+)

]
+ k

[
q(gxn, gxn) + q(gyn, gyn)

]
≤ (k + k)

[
q(gxn–, gxn) + q(gyn–, gyn)

]
+ k

[
q(gxn, gxn+) + q(gyn, gyn+)

]
+ k

[
q(gxn–, gxn) + q(gxn, gxn+) – q(gxn, gxn) + q(gyn–, gyn) + q(gyn, gyn+)

– q(gyn, gyn)
]
+ k

[
q(gxn, gxn+) + q(gyn, gyn+)

]
≤ (k + k + k)

[
q(gxn–, gxn) + q(gyn–, gyn)

]
+ (k + k + k)

[
q(gxn, gxn+) + q(gyn, gyn+)

]
≤ (k + k + k)

[
q(gxn–, gxn) + q(gyn–, gyn)

]
+ (k + k + k)

[
q(gxn, gxn+) + q(gyn, gyn+)

]
,
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which implies that

q(gxn, gxn+) + q(gyn, gyn+) ≤ k + k + k
 – k – k – k

[
q(gxn–, gxn) + q(gyn–, gyn)

]
. (.)

Put k = k+k+k
–k–k–k

. Obviously,  ≤ k < . By repetition of the above inequality (.) n times,
we get

q(gxn, gxn+) + q(gyn, gyn+) ≤ kn
[
q(gx, gx) + q(gy, gy)

]
. (.)

Next, we shall prove that {gxn} and {gyn} are Cauchy sequences in g(X).
In fact, for each n,m ∈N,m > n, from (QPM) and (.) we have

q(gxn, gxm) + q(gyn, gym) ≤
m–∑
i=n

[
q(gxi, gxi+) + q(gyi, gyi+)

]

≤
m–∑
i=n

ki
[
q(gx, gx) + q(gy, gy)

]

≤ kn

 – k
[
q(gx, gx) + q(gy, gy)

]
. (.)

This implies that

lim
n,m→∞

[
q(gxn, gxm) + q(gyn, gym)

]
= ,

and so

lim
n,m→∞q(gxn, gxm) =  and lim

n,m→∞q(gyn, gym) = . (.)

By similar arguments as above, we can show that

lim
n,m→∞q(gxm, gxn) =  and lim

n,m→∞q(gym, gyn) = . (.)

Hence {gxn} and {gyn} are Cauchy sequences in (gX,q). Since (gX,q) is complete, there
exist gx, gy ∈ g(X) such that {gxn} and {gyn} converge to gx and gy with respect to τq , that
is,

q(gx, gx) = lim
n→∞q(gx, gxn) = lim

n→∞q(gxn, gx)

= lim
n,m→∞q(gxm, gxn) = lim

n,m→∞q(gxn, gxm) (.)

and

q(gy, gy) = lim
n→∞q(gy, gyn) = lim

n→∞q(gyn, gy)

= lim
n,m→∞q(gym, gyn) = lim

n,m→∞q(gyn, gym). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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Combining (.)-(.), we have

q(gx, gx) = lim
n→∞q(gx, gxn) = lim

n→∞q(gxn, gx)

= lim
n,m→∞q(gxm, gxn) = lim

n,m→∞q(gxn, gxm) =  (.)

and

q(gy, gy) = lim
n→∞q(gy, gyn) = lim

n→∞q(gyn, gy)

= lim
n,m→∞q(gym, gyn) = lim

n,m→∞q(gyn, gym) = . (.)

By (QPM) we obtain

q
(
gxn+,F(x, y)

) ≤ q(gxn+, gx) + q
(
gx,F(x, y)

)
– q(gx, gx)

≤ q(gxn+, gx) + q
(
gx,F(x, y)

)
≤ q(gxn+, gx) + q(gx, gxn+) + q

(
gxn+,F(x, y)

)
– q(gxn+, gxn+)

≤ q(gxn+, gx) + q(gx, gxn+) + q
(
gxn+,F(x, y)

)
.

Letting n → ∞ in the above inequalities and using (.), we have

lim
n→∞q

(
gxn+,F(x, y)

) ≤ q
(
gx,F(x, y)

) ≤ lim
n→∞q

(
gxn+,F(x, y)

)
.

That is,

lim
n→∞q

(
gxn+,F(x, y)

)
= q

(
gx,F(x, y)

)
. (.)

Similarly, using (.) we have

lim
n→∞q

(
gyn+,F(y,x)

)
= q

(
gy,F(y,x)

)
. (.)

Now we prove that F(x, y) = gx and F(y,x) = gy. In fact, it follows from (.) and (.)
that

q
(
gxn+,F(x, y)

)
+ q

(
gyn+,F(y,x)

)
= q

(
F(xn, yn),F(x, y)

)
+ q

(
F(yn,xn)

)
≤ k

[
q(gxn, gx) + q(gyn, gy)

]
+ k

[
q

(
gxn,F(xn, yn)

)
+ q

(
gyn,F(yn,xn)

)]
+ k

[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q

(
gxn,F(x, y)

)
+ q

(
gyn,F(y,x)

)]
+ k

[
q

(
gx,F(xn, yn)

)
+ q

(
gy,F(yn,xn)

)]
= k

[
q(gxn, gx) + q(gyn, gy)

]
+ k

[
q(gxn, gxn+) + q(gyn, gyn+)

]
+ k

[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q

(
gxn,F(x, y)

)
+ q

(
gyn,F(y,x)

)]
+ k

[
q(gx, gxn+) + q(gy, gyn+)

]
≤ k

[
q(gxn, gx) + q(gyn, gy)

]
+ k

[
q(gxn, gxn+) + q(gyn, gyn+)

]
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+ k
[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q

(
gxn,F(x, y)

)
+ q

(
gyn,F(y,x)

)]
+ k

[
q(gx, gxn+) + q(gy, gyn+)

]
.

Letting n → ∞ in the above inequality, using (.)-(.), we obtain

q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

) ≤ (k + k)
[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
. (.)

By (.)we have k+k < .Hence, it follows from (.) that q(gx,F(x, y)) = q(gy,F(y,x)) =
. By Lemma ., we get F(x, y) = gx and F(y,x) = gy. Hence, (gx, gy) is a coupled point of
coincidence of mappings F and g .
Next, we will show that the coupled point of coincidence is unique. Suppose that

(x∗, y∗) ∈ X × X with F(x∗, y∗) = gx∗ and F(y∗,x∗) = gy∗. Using (.), (.), (.), and
(QPM), we obtain

q
(
gx, gx∗) + q

(
gy, gy∗)

= q
(
F(x, y),F

(
x∗, y∗)) + q

(
F(y,x),F

(
y∗,x∗))

≤ k
[
q

(
gx, gx∗) + q

(
gy, gy∗)] + k

[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q

(
gx∗,F

(
x∗, y∗)) + q

(
gy∗,F

(
y∗,x∗))]

+ k
[
q

(
gx,F

(
x∗, y∗)) + q

(
gy,F

(
y∗,x∗))]

+ k
[
q

(
gx∗,F(x, y)

)
+ q

(
gy∗,F(y,x)

)]
= k

[
q

(
gx, gx∗) + q

(
gy, gy∗)] + k

[
q(gx, gx) + q(gy, gy)

]
+ k

[
q

(
gx∗, gx∗) + q

(
gy∗, gy∗)] + k

[
q

(
gx, gx∗) + q

(
gy, gy∗)]

+ k
[
q

(
gx∗, gx

)
+ q

(
gy∗, gy

)]
≤ (k + k)

[
q

(
gx, gx∗) + q

(
gy, gy∗)] + k

[
q(gx, gx) + q(gy, gy)

]
+ k

[
q

(
gx∗, gx∗) + q

(
gy∗, gy∗)] + k

[
q

(
gx∗, gx

)
+ q

(
gy∗, gy

)]
≤ (k + k + k)

[
q

(
gx, gx∗) + q

(
gy, gy∗)]

+ k
[
q

(
gx∗, gx

)
+ q

(
gy∗, gy

)]
.

This implies that

q
(
gx, gx∗) + q

(
gy, gy∗) ≤ k

 – k – k – k
· [q(gx∗, gx

)
+ q

(
gy∗, gy

)]
. (.)

Similarly, we have

q
(
gx∗, gx

)
+ q

(
gy∗, gy

) ≤ k
 – k – k – k

· [q(gx, gx∗) + q
(
gy, gy∗)]. (.)

Substituting (.) into (.), we obtain

q
(
gx, gx∗) + q

(
gy, gy∗) ≤

(
k

 – k – k – k

)

· [q(gx, gx∗) + q
(
gy, gy∗)]. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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Since k
–k–k–k

< , from (.), we must have q(gx, gx∗) = q(gy, gy∗) = . By Lemma .,
we get gx = gx∗ and gy = gy∗, which implies the uniqueness of the coupled point of coinci-
dence of F and g , that is, (gx, gy).
Next, we will show that gx = gy. In fact, from (.), (.), and (.) we have

q(gx, gy) + q(gy, gx)

= q
(
F(x, y),F(y,x)

)
+ q

(
F(y,x),F(x, y)

)
≤ k

[
q(gx, gy) + q(gy, gx)

]
+ k

[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q

(
gy,F(y,x)

)
+ q

(
gx,F(x, y)

)]
+ k

[
q

(
gx,F(y,x)

)
+ q

(
gy,F(x, y)

)]
+ k

[
q

(
gy,F(x, y)

)
+ q

(
gx,F(y,x)

)]
= k

[
q(gx, gy) + q(gy, gx)

]
+ k

[
q(gx, gx) + q(gy, gy)

]
+ k

[
q(gy, gy) + q(gx, gx)

]
+ k

[
q(gx, gy) + q(gy, gx)

]
+ k

[
q(gy, gx) + q(gx, gy)

]
≤ k

[
q(gx, gy) + q(gy, gx)

]
+ k

[
q(gx, gx) + q(gy, gy)

]
+ k

[
q(gy, gy) + q(gx, gx)

]
+ k

[
q(gx, gy) + q(gy, gx)

]
+ k

[
q(gy, gx) + q(gx, gy)

]
= (k + k + k)

[
q(gx, gy) + q(gy, gx)

]
. (.)

Since k + k + k < , we have q(gx, gy) = q(gy, gx) = . By Lemma ., we get gx = gy.
Finally, assume that g and F are w-compatible. Let u = gx, then we have u = gx = F(x, y) =

gy = F(y,x), so that

gu = ggx = g
(
F(x, y)

)
= F(gx, gy) = F(u,u). (.)

Consequently, (u,u) is a coupled coincidence point of F and g , and therefore (gu, gu) is a
coupled point of coincidence of F and g , and by its uniqueness, we get gu = gx. Thus, we
obtain F(u,u) = gu = u. Therefore, (u,u) is the unique common coupled fixed point of F
and g . This completes the proof of Theorem .. �

In Theorem ., if we take q(x, y) = q(x, y) for all x, y ∈ X, then we get the following.

Corollary . Let (X,q) be a quasi-partial metric space, F : X ×X → X and g : X → X be
two mappings. Suppose that there exist k, k, k, k and k in [, ) with k + k + k + k +
k <  such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

)
≤ k

[
q(gx, gu) + q(gy, gv)

]
+ k

[
q
(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ k

[
q
(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

)]
+ k

[
q
(
gx,F(u, v)

)
+ q

(
gy,F(v,u)

)]
+ k

[
q
(
gu,F(x, y)

)
+ q

(
gv,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:

http://www.fixedpointtheoryandapplications.com/content/2014/1/19


Gu and Wang Fixed Point Theory and Applications 2014, 2014:19 Page 9 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/19

(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Remark . Corollary . improve and extend Theorem . of Shatanawi and Pitea [];
the contractive condition defined by (.) is replaced by the new contractive condition
defined by (.).

Corollary . Let q and q be two quasi-metrics on X such that q(x, y)≤ q(x, y), for all
x, y ∈ X, and F : X×X → X, g : X → X be twomappings. Suppose that there exist ai ∈ [, )
(i = , , , . . . , ) with

a + a + a + a + a + a + (a + a) + a + a <  (.)

such that the condition

q
(
F(x, y),F(u, v)

)
≤ aq(gx, gu) + aq(gy, gv) + aq

(
gx,F(x, y)

)
+ aq

(
gy,F(y,x)

)
+ aq

(
gu,F(u, v)

)
+ aq

(
gv,F(v,u)

)
+ aq

(
gx,F(u, v)

)
+ aq

(
gy,F(v,u)

)
+ aq

(
gu,F(x, y)

)
+ aq

(
gv,F(y,x)

)
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Proof Given x, y,u, v ∈ X. It follows from (.) that

q
(
F(x, y),F(u, v)

)
≤ aq(gx, gu) + aq(gy, gv) + aq

(
gx,F(x, y)

)
+ aq

(
gy,F(y,x)

)
+ aq

(
gu,F(u, v)

)
+ aq

(
gv,F(v,u)

)
+ aq

(
gx,F(u, v)

)
+ aq

(
gy,F(v,u)

)
+ aq

(
gu,F(x, y)

)
+ aq

(
gv,F(y,x)

)
(.)

and

q
(
F(y,x),F(v,u)

)
≤ aq(gy, gv) + aq(gx, gu) + aq

(
gy,F(y,x)

)
+ aq

(
gx,F(x, y)

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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+ aq
(
gv,F(v,u)

)
+ aq

(
gu,F(u, v)

)
+ aq

(
gy,F(v,u)

)
+ aq

(
gx,F(u, v)

)
+ aq

(
gv,F(y,x)

)
+ aq

(
gu,F(x, y)

)
. (.)

Adding inequality (.) to inequality (.), we get

q
(
q

(
F(x, y),F(u, v)

)
+ F(y,x),F(v,u)

)
≤ (a + a)

[
q(gx, gu) + q(gy, gv)

]
+ (a + a)

[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
+ (a + a)

[
q

(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

)]
+ (a + a)

[
q

(
gx,F(u, v)

)
+ q

(
gy,F(v,u)

)]
+ (a + a)

[
q

(
gu,F(x, y)

)
+ q

(
gv,F(y,x)

)]
. (.)

Therefore, the result follows from Theorem .. �

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X and a = a = a = a = , then
Corollary . is reduced to Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and F : X×X → X, g : X → X be twomappings. Suppose that there exists k ∈ [, )
such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q(gx, gu) + q(gy, gv)

]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X, then Corollary . is reduced to
Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y)≤ q(x, y), for all
x, y ∈ X, and F : X×X → X, g : X → X be twomappings. Suppose that there exists k ∈ [, )
such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
gx,F(x, y)

)
+ q

(
gy,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X, then Corollary . is reduced to
Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and F : X×X → X, g : X → X be twomappings. Suppose that there exists k ∈ [, )
such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
gu,F(u, v)

)
+ q

(
gv,F(v,u)

)]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X, then Corollary . is reduced to
Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for
all x, y ∈ X, and F : X × X → X, g : X → X be two mappings. Suppose that there exists
k ∈ [,  ) such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
gx,F(u, v)

)
+ q

(
gy,F(v,u)

)]
(.)

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and F : X×X → X, g : X → X be twomappings. Suppose that there exists k ∈ [, )
such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
gu,F(x, y)

)
+ q

(
gv,F(y,x)

)]
(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/19


Gu and Wang Fixed Point Theory and Applications 2014, 2014:19 Page 12 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/19

holds for all x, y,u, v ∈ X. Also, suppose we have the following hypotheses:
(i) F(X ×X) ⊂ g(X).
(ii) g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x, y) satisfying gx = F(x, y) = F(y,x) =
gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled
fixed point of the form (u,u).
Let g = IX (the identity mapping) in Theorem . and Corollaries .-.. Then we have

the following results.

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and F : X ×X → X be a mapping. Suppose that there exist k, k, k, k, and k in
[, ) with k + k + k + k + k <  such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

)
≤ k

[
q(x,u) + q(y, v)

]
+ k

[
q

(
x,F(x, y)

)
+ q

(
y,F(y,x)

)]
+ k

[
q

(
u,F(u, v)

)
+ q

(
v,F(v,u)

)]
+ k

[
q

(
x,F(u, v)

)
+ q

(
y,F(v,u)

)]
+ k

[
q

(
u,F(x, y)

)
+ q

(
v,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space, then the map-
ping F has a unique coupled fixed point of the form (u,u).

Corollary . Let (X,q) be a complete quasi-partial metric space, F : X × X → X be a
mapping. Suppose that there exist k, k, k, k, and k in [, )with k +k +k +k +k < 
such that the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

)
≤ k

[
q(x,u) + q(y, v)

]
+ k

[
q
(
x,F(x, y)

)
+ q

(
y,F(y,x)

)]
+ k

[
q
(
u,F(u, v)

)
+ q

(
v,F(v,u)

)]
+ k

[
q
(
x,F(u, v)

)
+ q

(
y,F(v,u)

)]
+ k

[
q
(
u,F(x, y)

)
+ q

(
v,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. Then F has a unique coupled fixed point of the form (u,u).

Remark . Corollary . improve and extend Corollary . of Shatanawi and Pitea [],
the contractive condition is replaced by the new contractive condition defined by (.).

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for
all x, y ∈ X, and F : X × X → X be a mapping. Suppose that there exist ai ∈ [, ) (i =
, , , . . . , ) with

a + a + a + a + a + a + (a + a) + a + a <  (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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such that the condition

q
(
F(x, y),F(u, v)

)
≤ aq(x,u) + aq(y, v) + aq

(
x,F(x, y)

)
+ aq

(
y,F(y,x)

)
+ aq

(
u,F(u, v)

)
+ aq

(
v,F(v,u)

)
+ aq

(
x,F(u, v)

)
+ aq

(
y,F(v,u)

)
+ aq

(
u,F(x, y)

)
+ aq

(
v,F(y,x)

)
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space. Then the map-
ping F has a unique coupled fixed point of the form (u,u).

Remark .
() If we take q(x, y) = q(x, y) for all x, y ∈ X and a = a = a = a = , then

Corollary . is reduced to Corollary . of Shatanawi and Pitea [].
() If we take q(x, y) = q(x, y) for all x, y ∈ X and ai =  (i = ,, , . . . , ), then

Corollary . extends Theorem . of Aydi [] on the class of quasi-partial metric
spaces.

() If we take q(x, y) = q(x, y) for all x, y ∈ X , a = a and ai =  (i = ,, , . . . , ), then
Corollary . extends the Corollary . of Aydi [] on the class of quasi-partial
metric spaces.

() If we take q(x, y) = q(x, y) for all x, y ∈ X and ai =  (i = , , , , , , , ), then
Corollary . extends Theorem . of Aydi [] on the class of quasi-partial metric
spaces.

() If we take q(x, y) = q(x, y) for all x, y ∈ X and ai =  (i = , , , , , , , ), then
Corollary . extends Theorem . of Aydi [] on the class of quasi-partial metric
spaces.

() If we take q(x, y) = q(x, y) for all x, y ∈ X , a = a and ai =  (i = , , , , , , , ),
then Corollary . extends Corollary . of Aydi [] on the class of quasi-partial
metric spaces.

() If we take q(x, y) = q(x, y) for all x, y ∈ X , a = a and ai =  (i = , , , , , , , ),
then Corollary . extends Corollary . of Aydi [] on the class of quasi-partial
metric spaces.

Corollary . Let q and q be two quasi-metrics on X such that q(x, y)≤ q(x, y), for all
x, y ∈ X, and F : X ×X → X be a mapping. Suppose that there exists k ∈ [, ) such that the
condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q(x,u) + q(y, v)

]
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space. Then the map-
ping F has a unique coupled fixed point of the form (u,u).

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X, then Corollary . is reduced to
Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y)≤ q(x, y), for all
x, y ∈ X, and F : X ×X → X be a mapping. Suppose that there exists k ∈ [, ) such that the

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
x,F(x, y)

)
+ q

(
y,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space, then the map-
ping F has a unique coupled fixed point of the form (u,u).

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X, then Corollary . is reduced to
Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and F : X ×X → X be a mapping. Suppose that there exists k ∈ [, ) such that the
condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
u,F(u, v)

)
+ q

(
v,F(v,u)

)]
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space, then the map-
ping F has a unique coupled fixed point of the form (u,u).

Remark . If we take q(x, y) = q(x, y) for all x, y ∈ X, then Corollary . is reduced to
Corollary . of Shatanawi and Pitea [].

Corollary . Let q and q be two quasi-metrics on X such that q(x, y)≤ q(x, y), for all
x, y ∈ X, and F : X × X → X be a mapping. Suppose that there exists k ∈ [,  ) such that
the condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
x,F(u, v)

)
+ q

(
y,F(v,u)

)]
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space, then the map-
ping F has a unique coupled fixed point of the form (u,u).

Corollary . Let q and q be two quasi-metrics on X such that q(x, y) ≤ q(x, y), for all
x, y ∈ X, and F : X ×X → X be a mapping. Suppose that there exists k ∈ [, ) such that the
condition

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x),F(v,u)

) ≤ k
[
q

(
u,F(x, y)

)
+ q

(
v,F(y,x)

)]
(.)

holds for all x, y,u, v ∈ X. If (X,q) is a complete quasi-partial metric space, then the map-
ping F has a unique coupled fixed point of the form (u,u).

Now, we introduce an example to support our results.

Example . Let X = [, ], and two quasi-partial metrics q, q on X be given as

q(x, y) = |x – y| + x and q(x, y) =


(|x – y| + x

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/19
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for all x, y ∈ X. Also, define F : X ×X → X and g : X → X as

F(x, y) =
x + y


and gx =
x


for all x, y ∈ X. Then
() (X,q) is a complete quasi-partial metric space.
() F(X ×X) ⊂ X .
() F and g is w-compatible.
() For any x, y,u, v ∈ X , we have

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x) + F(v,u)

) ≤ 

(
q(gx, gu) + q(gy, gv)

)
.

Proof Theproofs of (), (), and () are clear. Nextwe show that (). In fact, for x, y,u, v ∈ X,
we have

q
(
F(x, y),F(u, v)

)
+ q

(
F(y,x) + F(v,u)

)

= q
(
x + y


,
u + v


)
+ q

(
y + x


,
v + u


)

=


(∣∣x + y – (u + v)

∣∣ + (x + y)
)

=



(∣∣∣∣  (x + y) –


(u + v)

∣∣∣∣ + 

(x + y)

)

≤ 


(∣∣∣∣ x –


u
∣∣∣∣ + 


x +

∣∣∣∣ y –


v
∣∣∣∣ + 


y
)

=


(
q(gx, gu) + q(gy, gv)

)
.

Thus, F and g satisfy all the hypotheses of Corollary .. So, F and g have a unique common
coupled fixed point. Here (, ) is the unique common coupled fixed point of F and g .
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25. Samet, B, Rajović, M, Lazović, R, Stoijković, R: Common fixed point results for nonlinear contractions in ordered partial

metric spaces. Fixed Point Theory Appl. 2011, Article ID 71 (2011). doi:10.1186/1687-1812-2011-71
26. Shatanawi, W, Nashine, HK: A generalization of Banach’s contraction principle of nonlinear contraction in a partial

metric spaces. J. Nonlinear Sci. Appl. 5, 37-43 (2012)
27. Shatanawi, W, Nashine, HK, Tahat, N: Generalization of some coupled fixed point results on partial metric spaces. Int.

J. Math. Math. Sci. 2012, Article ID 686801 (2012)
28. Shatanawi, W, Samet, B, Abbas, M: Coupled fixed point theorems for mixed monotone mappings in ordered partial

metric spaces. Math. Comput. Model. 55, 680-687 (2012)
29. Shatanawi, W, Postolache, M: Coincidence and fixed point results for generalized weak contractions in the sense of

Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, Article ID 54 (2013). doi:10.1186/1687-1812-2013-54
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