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Abstract
The purpose of this paper is to investigate the problem of finding an approximate
point of the common set of solutions of an equilibrium problem and a hierarchical
fixed point problem in the setting of real Hilbert spaces. We establish the strong
convergence of the proposed method under some mild conditions. Several special
cases are also discussed. Numerical examples are presented to illustrate the proposed
method and convergence result. The results presented in this paper extend and
improve some well-known results in the literature.
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1 Introduction
LetH be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed convex subset of H and F : C × C → R be a
bifunction. The equilibrium problem (in short, EP) is to find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

The solution set of EP (.) is denoted by EP(F).
The equilibrium problem provides a unified, natural, innovative and general framework

to study a wide class of problems arising in finance, economics, network analysis, trans-
portation, elasticity and optimization. The theory of equilibrium problems has witnessed
an explosive growth in theoretical advances and applications across all disciplines of pure
and applied sciences; see [–] and the references therein.
If F(x, y) = 〈Ax, y – x〉, where A : C →H is a nonlinear operator, then EP (.) is equiva-

lent to find a vector x ∈ C such that

〈y – x,Ax〉 ≥ , ∀y ∈ C. (.)

It is a well-known classical variational inequality problem.We now have a variety of tech-
niques to suggest and analyze various iterative algorithms for solving variational inequal-
ities and the related optimization problems; see [–] and the references therein.
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The fixed point problem for the mapping T : C →H is to find x ∈ C such that

Tx = x. (.)

We denote by F(T) the set of solutions of (.). It is well known that F(T) is closed and
convex, and PF (T) is well defined.
Let S : C → H be a nonexpansive mapping, that is, ‖Sx – Sy‖ ≤ ‖x – y‖ for all x, y ∈ C.

The hierarchical fixed point problem (in short, HFPP) is to find x ∈ F(T) such that

〈x – Sx, y – x〉 ≥ , ∀y ∈ F(T). (.)

It is linked with some monotone variational inequalities and convex programming prob-
lems; see []. Various methods have been proposed to solve HFPP (.); see, for example,
[–] and the references therein. In , Yao et al. [] studied the following iterative
algorithm to solve HFPP (.):

yn = βnSxn + ( – βn)xn,

xn+ = PC
[
αnf (xn) + ( – αn)Tyn

]
, ∀n≥ ,

(.)

where f : C → H is a contraction mapping and {αn} and {βn} are sequences in (, ). Un-
der certain restrictions on the parameters, They proved that the sequence {xn} generated
by (.) converges strongly to z ∈ F(T), which is also a unique solution of the following
variational inequality:

〈
(I – f )z, y – z

〉 ≥ , ∀y ∈ F(T). (.)

In , Ceng et al. [] investigated the following iterative method:

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ , (.)

where U is a Lipschitzian mapping, and F is a Lipschitzian and strongly monotone map-
ping. They proved that under some approximate assumptions on the operators and pa-
rameters, the sequence {xn} generated by (.) converges strongly to a unique solution of
the variational inequality:

〈
ρU(z) –μF(z),x – z

〉 ≥ , ∀x ∈ Fix(T).

In this paper, motivated by the work of Ceng et al. [, ], Yao et al. [], Bnouhachem
[] and others, we propose an iterative method for finding an approximate element of the
common set of solutions of EP (.) and HFPP (.) in the setting of real Hilbert spaces.
We establish a strong convergence theorem for the sequence generated by the proposed
method. The proposed method is quite general and flexible and includes several known
methods for solving of variational inequality problems, equilibrium problems, and hier-
archical fixed point problems; see, for example, [, , , , , ] and the references
therein.
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2 Preliminaries
We present some definitions which will be used in the sequel.

Definition . A mapping T : C → H is said to be k-Lipschitz continuous if there exists
a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C.

• If k = , then T is called nonexpansive.
• If k ∈ (, ), then T is called contraction.

Definition . A mapping T : C →H is said to be
(a) monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈ C;

(b) strongly monotone if there exists an α >  such that

〈Tx – Ty,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C;

(c) α-inverse strongly monotone if there exists an α >  such that

〈Tx – Ty,x – y〉 ≥ α‖Tx – Ty‖, ∀x, y ∈ C.

It is easy to observe that every α-inverse strongly monotone mapping is monotone and
Lipschitz continuous. Also, for every nonexpansive mapping T :H →H , we have

〈(
x – T(x)

)
–

(
y – T(y)

)
,T(y) – T(x)

〉 ≤ 

∥∥(
T(x) – x

)
–

(
T(y) – y

)∥∥, (.)

for all (x, y) ∈H ×H . Therefore, for all (x, y) ∈H × Fix(T), we have

〈
x – T(x), y – T(x)

〉 ≤ 

∥∥T(x) – x

∥∥. (.)

The following lemma provides some basic properties of the projection onto C.

Lemma . Let PC denote the projection of H onto C. Then we have the following inequal-
ities:
(a) 〈z – PC[z],PC[z] – v〉 ≥ , ∀z ∈H , v ∈ C;
(b) 〈u – v,PC[u] – PC[v]〉 ≥ ‖PC[u] – PC[v]‖, ∀u, v ∈ H ;
(c) ‖PC[u] – PC[v]‖ ≤ ‖u – v‖, ∀u, v ∈ H ;
(d) ‖u – PC[z]‖ ≤ ‖z – u‖ – ‖z – PC[z]‖, ∀z ∈H , u ∈ C.

Assumption . [] Let F : C ×C → R be a bifunction satisfying the following assump-
tions:

(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, that is, F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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(A) For each x, y, z ∈ C, limt→ F(tz + ( – t)x, y) ≤ F(x, y);
(A) For each x ∈ C, y → F(x, y) is convex and lower semicontinuous.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H and F :
C×C →R satisfy conditions (A)-(A). For r >  and x ∈ H , define a mapping Tr :H → C
as

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then the following statements hold:
(i) Tr is nonempty single-valued;
(ii) Tr is firmly nonexpansive, that is,

∥∥Tr(x) – Tr(y)
∥∥ ≤ 〈

Tr(x) – Tr(y),x – y
〉
, ∀x, y ∈ H ;

(iii) F(Tr) = EP(F);
(iv) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . If T :
C → C is a nonexpansivemapping with Fix(T) 
= ∅, then themapping I–T is demiclosed at
, that is, if {xn} is a sequence in C converges weakly to x and {(I –T)xn} converges strongly
to , then (I – T)x = .

Lemma . [] Let U : C → H be a τ -Lipschitzian mapping and F : C → H be a k-
Lipschitzian and η-strongly monotone mapping. Then, for  ≤ ρτ < μη, μF – ρU is (μη –
ρτ )-strongly monotone, that is,

〈
(μF – ρU)x – (μF – ρU)y,x – y

〉 ≥ (μη – ρτ )‖x – y‖, ∀x, y ∈ C.

Lemma . [] Let λ ∈ (, ), μ > , and F : C → H be an k-Lipschitzian and η-strongly
monotone operator. In association with a nonexpansive mapping T : C → C, define amap-
ping Tλ : C →H by

Tλx = Tx – λμFT(x), ∀x ∈ C.

Then Tλ is a contraction provided μ < η
k , that is,

∥∥Tλx – Tλy
∥∥ ≤ ( – λν)‖x – y‖, ∀x, y ∈ C,

where ν =  –
√
 –μ(η –μk).

Lemma . [] Let C be a closed convex subset of a real Hilbert space H and {xn} be a
bounded sequence in H . Assume that

(i) the weak w-limit set ww(xn) ⊂ C, where ww(xn) = {x : xni ⇀ x}
(ii) for each z ∈ C, limn→∞ ‖xn – z‖ exists.

Then the sequence {xn} is weakly convergent to a point in C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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Lemma . [] Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – υn)an + δn,

where {υn} is a sequence in (, ) and δn is a sequence such that
(i)

∑∞
n= υn =∞;

(ii) lim supn→∞ δn/υn ≤  or
∑∞

n= |δn| <∞.
Then limn→∞ an = .

3 An iterative method and strong convergence results
In this section, we propose and analyze an iterative method for finding the common solu-
tions of EP (.) and HFPP (.).
Let C be a nonempty closed convex subset of a real Hilbert spaceH . Let F : C×C →R

be a bifunction that satisfy conditions (A)-(A), and let S,T : C → C be nonexpansive
mappings such that F(T) ∩ EP(F) 
= ∅. Let F : C → C be a k-Lipschitzian mapping and
η-strongly monotone, and let U : C → C be a τ -Lipschitzian mapping.

Algorithm . For any given x ∈ C, let the iterative sequences {un}, {xn}, and {yn} be
generated by

⎧⎪⎨
⎪⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C;
yn = βnSxn + ( – βn)un;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)(T(yn))], ∀n≥ .

(.)

Suppose that the parameters satisfy  < μ < η
k and  ≤ ρτ < ν , where ν =  –√

 –μ(η –μk). Also, {γn}, {αn}, {βn}, and {rn} are sequences in (, ) satisfying the fol-
lowing conditions:
(a) limn→∞ γn = , γn + αn < ,
(b) limn→∞ αn =  and

∑∞
n= αn =∞,

(c) limn→∞(βn/αn) = ,
(d)

∑∞
n= |αn– – αn| < ∞,

∑∞
n= |γn– – γn| < ∞ and

∑∞
n= |βn– – βn| <∞,

(e) lim infn→∞ rn >  and
∑∞

n= |rn– – rn| < ∞.

Remark . Algorithm . can be viewed as an extension and improvement for some
well-known methods.
• If γn = , then the proposed method is an extension and improvement of a method
studied in [, ].

• If U = f , F = I , ρ = μ = , and γn = , then we obtain an extension and improvement of
a method considered in [].

• The contractive mapping f with a coefficient α ∈ [, ) in other papers [, , ] is
extended to the cases of the Lipschitzian mapping U with a coefficient constant
γ ∈ [,∞).

Lemma . Let x∗ ∈ F(T)∩ EP(F). Then {xn}, {un}, and {yn} are bounded.

Proof It follows from Lemma . that un = Trn (xn). Let x∗ ∈ F(T) ∩ EP(F), then x∗ =
Trn (x∗). Define Vn = αnρU(xn) + γnxn + (( – γn)I – αnμF)(T(yn)).

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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We prove that the sequence {xn} is bounded. Without loss of generality, we can assume
that βn ≤ αn for all n≥ . From (.), we have

∥∥xn+ – x∗∥∥
=

∥∥PC[Vn] – PC
[
x∗]∥∥

≤ ∥∥αnρU(xn) + γnxn +
(
( – γn)I – αnμF

)(
T(yn)

)
– x∗∥∥

=
∥∥αn

(
ρU(xn) –μF

(
x∗)) + γn

(
xn – x∗) + (

( – γn)I – αnμF
)(
T(yn)

)
–

(
( – γn)I – αnμF

)(
T

(
x∗))∥∥

≤ αn
∥∥ρU(xn) –μF

(
x∗)∥∥ + γn

∥∥xn – x∗∥∥
+ ( – γn)×

∥∥∥∥
(
I –

αnμ

 – γn
F
)(

T(yn)
)
–

(
I –

αnμ

 – γn
F
)
T

(
x∗)∥∥∥∥

= αn
∥∥ρU(xn) – ρU

(
x∗) + (ρU –μF)x∗∥∥ + γn

∥∥xn – x∗∥∥
+ ( – γn)×

∥∥∥∥
(
I –

αnμ

 – γn
F
)(

T(yn)
)
–

(
I –

αnμ

 – γn
F
)
T

(
x∗)∥∥∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU –μF)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn)
(
 –

αnν

 – γn

)∥∥yn – x∗∥∥
= αnρτ

∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥ + γn

∥∥xn – x∗∥∥
+ ( – γn – αnν)

∥∥βnSxn + ( – βn)un – x∗∥∥
≤ αnρτ

∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥ + γn

∥∥xn – x∗∥∥
+ ( – γn – αnν)

(
βn

∥∥Sxn – Sx∗∥∥ + βn
∥∥Sx∗ – x∗∥∥

+ ( – βn)
∥∥Trn (xn) – x∗∥∥)

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU –μF)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn – αnν)
(
βn

∥∥Sxn – Sx∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥xn – x∗∥∥)
≤ αnρτ

∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥ + γn

∥∥xn – x∗∥∥
+ ( – γn – αnν)

(
βn

∥∥xn – x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥xn – x∗∥∥)
=

(
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥

+ ( – γn – αnν)βn
∥∥Sx∗ – x∗∥∥

≤ (
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥ + βn

∥∥Sx∗ – x∗∥∥
≤ (

 – αn(ν – ρτ )
)∥∥xn – x∗∥∥ + αn

(∥∥(ρU –μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)

=
(
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ +
αn(ν – ρτ )

ν – ρτ

(∥∥(ρU –μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)

≤max

{∥∥xn – x∗∥∥, 
ν – ρτ

(∥∥(ρU –μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)}

,

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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where the third inequality follows from Lemma .. By induction on n, we obtain

∥∥xn – x∗∥∥ ≤max

{∥∥x – x∗∥∥, 
ν – ρτ

(∥∥(ρU –μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)}

,

for n≥  and x ∈ C. Hence, {xn} is bounded, and consequently, we deduce that {un}, {yn},
{S(xn)}, {T(yn)}, {F(T(yn))}, and {U(xn)} are bounded. �

Lemma . Let x∗ ∈ F(T) ∩ EP(F) and {xn} be a sequence generated by Algorithm ..
Then the following statements hold.
(a) limn→∞ ‖xn+ – xn‖ = .
(b) The weak w-limit set ww(xn) = {x : xni ⇀ x} ⊂ F(T).

Proof From the definition of the sequence {yn} in Algorithm ., we have

‖yn – yn–‖
≤ ∥∥βnSxn + ( – βn)un –

(
βn–Sxn– + ( – βn–)un–

)∥∥
=

∥∥βn(Sxn – Sxn–) + (βn – βn–)Sxn–

+ ( – βn)(un – un–) + (βn– – βn)un–
∥∥

≤ βn‖xn – xn–‖ + ( – βn)‖un – un–‖
+ |βn – βn–|

(‖Sxn–‖ + ‖un–‖
)
. (.)

Since un = Trn (xn) and un– = Trn– (xn–), we have

F(un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C, (.)

and

F(un–, y) +


rn–
〈y – un–,un– – xn–〉 ≥ , ∀y ∈ C. (.)

Take y = un– in (.) and y = un in (.), we get

F(un,un–) +

rn

〈un– – un,un – xn〉 ≥ , (.)

and

F(un–,un) +


rn–
〈un – un–,un– – xn–〉 ≥ . (.)

Adding (.) and (.), and using the monotonicity of F, we obtain

〈
un – un–,

un– – xn–
rn–

–
un – xn

rn

〉
≥ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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which implies that

 ≤
〈
un – un–,

rn
rn–

(un– – xn–) – (un – xn)
〉

=
〈
un– – un,un – un– +

(
 –

rn
rn–

)
un– – xn +

rn
rn–

xn–
〉

=
〈
un– – un,

(
 –

rn
rn–

)
un– – xn +

(
rn
rn–

)
xn–

〉

– ‖un – un–‖

=
〈
un– – un,

(
 –

rn
rn–

)
(un– – xn–) + (xn– – xn)

〉

– ‖un – un–‖

≤ ‖un– – un‖
{∣∣∣∣ – rn

rn–

∣∣∣∣‖un– – xn–‖ + ‖xn– – xn‖
}

– ‖un – un–‖,

and then

‖un– – un‖ ≤
∣∣∣∣ – rn

rn–

∣∣∣∣‖un– – xn–‖ + ‖xn– – xn‖.

Without loss of generality, assume that there exists a real number χ such that rn > χ > 
for all positive integers n. Then we get

‖un– – un‖ ≤ ‖xn– – xn‖ + 
χ

|rn– – rn|‖un– – xn–‖. (.)

It follows from (.) and (.) that

‖yn – yn–‖

≤ βn‖xn – xn–‖ + ( – βn)
{
‖xn – xn–‖ + 

χ
|rn – rn–|‖un– – xn–‖

}

+ |βn – βn–|
(‖Sxn–‖ + ‖un–‖

)
= ‖xn – xn–‖ + ( – βn)

{

χ

|rn – rn–|‖un– – xn–‖
}

+ |βn – βn–|
(‖Sxn–‖ + ‖un–‖

)
. (.)

Next, we estimate that

‖xn+ – xn‖ =
∥∥PC[Vn] – PC[Vn–]

∥∥
≤

∥∥∥∥αnρ
(
U(xn) –U(xn–)

)
+ (αn – αn–)ρU(xn–) + γn(xn – xn–)

+ (γn – γn–)xn–

+ ( – γn)×
[(

I –
αnμ

 – γn
F
)(

T(yn)
)
–

(
I –

αnμ

 – γn
F
)
T(yn–)

]

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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+
(
( – γn)I – αnμF

)(
T(yn–)

)
–

(
( – γn–)I – αn–μF

)(
T(yn–)

)∥∥∥∥
≤ αnρτ‖xn – xn–‖ + γn‖xn – xn–‖ + ( – γn)

(
 –

αnν

 – γn

)
‖yn – yn–‖

+ |γn – γn–|
(‖xn–‖ + ∥∥T(yn–)∥∥)

+ |αn – αn–|
(∥∥ρU(xn–)

∥∥ +
∥∥μF

(
T(yn–)

)∥∥)
, (.)

where the second inequality follows from Lemma .. From (.) and (.), we have

‖xn+ – xn‖
≤ αnρτ‖xn – xn–‖ + γn‖xn – xn–‖

+ ( – γn – αnν)
{
‖xn – xn–‖ + 

χ
|rn – rn–|‖un– – xn–‖

+ |βn – βn–|
(‖Sxn–‖ + ‖un–‖

)}
+ |γn – γn–|

(‖xn–‖ + ∥∥T(yn–)∥∥)
+ |αn – αn–|

(∥∥ρU(xn–)
∥∥ +

∥∥μF
(
T(yn–)

)∥∥)
≤ (

 – (ν – ρτ )αn
)‖xn – xn–‖ + 

χ
|rn – rn–|‖un– – xn–‖

+ |βn – βn–|
(‖Sxn–‖ + ‖un–‖

)
+ |γn – γn–|

(‖xn–‖ + ∥∥T(yn–)∥∥)
+ |αn – αn–|

(∥∥ρU(xn–)
∥∥ +

∥∥μF
(
T(yn–)

)∥∥)
≤ (

 – (ν – ρτ )αn
)‖xn – xn–‖

+M
(

χ

|rn– – rn| + |βn – βn–| + |γn – γn–| + |αn – αn–|
)
, (.)

where

M = max
{
sup
n≥

‖un– – xn–‖, sup
n≥

(‖Sxn–‖ + ‖un–‖
)
, sup
n≥

(‖xn–‖ + ∥∥T(yn–)∥∥)
,

sup
n≥

(∥∥ρU(xn–)
∥∥ +

∥∥μF
(
T(yn–)

)∥∥)}
.

It follows from conditions (b), (d), (e) of Algorithm ., and Lemma . that

lim
n→∞‖xn+ – xn‖ = .

Next, we show that limn→∞ ‖un – xn‖ = . Since Trn is firmly nonexpansive, we have

∥∥un – x∗∥∥ =
∥∥Trn (xn) – Trn

(
x∗)∥∥

≤ 〈
un – x∗,xn – x∗〉

=


{∥∥un – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥un – x∗ –

(
xn – x∗)∥∥}.

Hence, we get

∥∥un – x∗∥∥ ≤ ∥∥xn – x∗∥∥ –
∥∥un – xn

∥∥.
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From above inequality, we have

∥∥xn+ – x∗∥∥

=
〈
PC[Vn] – x∗,xn+ – x∗〉

=
〈
PC[Vn] –Vn,PC[Vn] – x∗〉 + 〈

Vn – x∗,xn+ – x∗〉
≤ 〈

αn
(
ρU(xn) –μF

(
x∗)) + γn

(
xn – x∗) + (

( – γn)I – αnμF
)(
T(yn)

)
–

(
( – γn)I – αnμF

)(
T

(
x∗)),xn+ – x∗〉

=
〈
αnρ

(
U(xn) –U

(
x∗)),xn+ – x∗〉 + αn

〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
〈
γn

(
xn – x∗),xn+ – x∗〉

+ ( – γn)
〈(

I –
αnμ

 – γn
F
)(

T(yn)
)
–

(
I –

αnμ

 – γn
F
)(

T
(
x∗)),xn+ – x∗

〉

≤ (αnρτ + γn)
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn

〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+ ( – γn – αnν)
∥∥yn – x∗∥∥∥∥xn+ – x∗∥∥

≤ γn + αnρτ


(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥) + αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)


(∥∥yn – x∗∥∥ +

∥∥xn+ – x∗∥∥)
≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +

γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)


(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥un – x∗∥∥)

≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)


{
βn

∥∥Sxn – x∗∥∥ + ( – βn)
(∥∥xn – x∗∥∥ – ‖un – xn‖

)}
, (.)

which implies that

∥∥xn+ – x∗∥∥

≤ γn + αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
( – γn – αnν)( – βn)

 + αn(ν – ρτ )
{∥∥xn – x∗∥∥ – ‖un – xn‖

}
≤ γn + αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥
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+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
∥∥xn – x∗∥∥ –

( – γn – αnν)( – βn)
 + αn(ν – ρτ )

‖un – xn‖.

Hence,

( – γn – αnν)( – βn)
 + αn(ν – ρτ )

‖un – xn‖

≤ γn + αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

≤ γn + αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – γn – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)‖xn+ – xn‖.

Since limn→∞ ‖xn+ – xn‖ = , αn → , βn → , we have

lim
n→∞‖un – xn‖ = . (.)

Since T(xn) ∈ C, we have

∥∥xn – T(xn)
∥∥

≤ ‖xn – xn+‖ +
∥∥xn+ – T(xn)

∥∥
= ‖xn – xn+‖ +

∥∥PC[Vn] – PC
[
T(xn)

]∥∥
≤ ‖xn – xn+‖ +

∥∥αn
(
ρU(xn) –μF

(
T(yn)

))
+ γn

(
xn – T(yn)

)
+ T(yn) – T(xn)

∥∥
≤ ‖xn – xn+‖ + αn

∥∥ρU(xn) –μF
(
T(yn)

)∥∥ + γn
∥∥xn – T(yn)

∥∥ + ‖yn – xn‖
≤ ‖xn – xn+‖ + αn

∥∥ρU(xn) –μF
(
T(yn)

)∥∥ + γn
∥∥xn – T(yn)

∥∥
+

∥∥βnSxn + ( – βn)un – xn
∥∥

≤ ‖xn – xn+‖ + αn
∥∥ρU(xn) –μF

(
T(yn)

)∥∥ + γn
∥∥xn – T(yn)

∥∥
+ βn‖Sxn – xn‖ + ( – βn)‖un – xn‖.
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Since limn→∞ ‖xn+ – xn‖ = , γn → , αn → , βn → , and ‖ρU(xn) – μF(T(yn))‖ and
‖Sxn – xn‖ are bounded, and limn→∞ ‖un – xn‖ = , we obtain

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

Since {xn} is bounded, without loss of generality, we can assume that xn ⇀ x∗ ∈ C. It fol-
lows from Lemma . that x∗ ∈ F(T). Therefore, ww(xn) ⊂ F(T). �

Theorem . The sequence {xn} generated by Algorithm . converges strongly to z ∈
F(T)∩ EP(F), which is also a unique solution of the variational inequality:

〈
ρU(z) –μF(z),x – z

〉 ≤ , ∀x ∈ F(T)∩ EP(F). (.)

Proof From Lemma ., we have w ∈ F(T) since {xn} is bounded and xn ⇀ w. We show
that w ∈ EP(F). Since un = Trn (xn), we have

F(un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C.

It follows from the monotonicity of F that


rn

〈y – un,un – xn〉 ≥ F(y,un), ∀y ∈ C,

and
〈
y – unk ,

unk – xnk
rnk

〉
≥ F(y,unk ), ∀y ∈ C. (.)

Since limn→∞ ‖un–xn‖ =  and xn ⇀ w, it is easy to observe that unk → w. For any  < t ≤ 
and y ∈ C, let yt = ty + ( – t)w. Then we have yt ∈ C, and from (.) we obtain

 ≥ –
〈
yt – unk ,

unk – xnk
rnk

〉
+ F(yt ,unk ). (.)

Since unk → w, it follows from (.) that

 ≥ F(yt ,w). (.)

Since F satisfies (A)-(A), it follows from (.) that

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt ,w) ≤ tF(yt , y), (.)

which implies that F(yt , y) ≥ . Letting t → +, we have

F(w, y) ≥ , ∀y ∈ C,

which implies that w ∈ EP(F). Thus, we have

w ∈ F(T)∩ EP(F).
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Observe that the constants satisfy  ≤ ρτ < ν and

k ≥ η ⇐⇒ k ≥ η

⇐⇒  – μη +μk ≥  – μη +μη

⇐⇒
√
 –μ

(
η –μk

) ≥  –μη

⇐⇒ μη ≥  –
√
 –μ

(
η –μk

)
⇐⇒ μη ≥ ν,

therefore, from Lemma ., the operator μF – ρU is μη – ρτ strongly monotone, and
we get the uniqueness of the solution of variational inequality (.), and denote it by
z ∈ F(T)∩ EP(F).
Next, we claim that lim supn→∞〈ρU(z) –μF(z),xn – z〉 ≤ . Since {xn} is bounded, there

exists a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
ρU(z) –μF(z),xn – z

〉
= lim sup

k→∞

〈
ρU(z) –μF(z),xnk – z

〉
=

〈
ρU(z) –μF(z),w – z

〉 ≤ .

Next, we show that xn → z. We have

‖xn+ – z‖

=
〈
PC[Vn] – z,xn+ – z

〉
=

〈
PC[Vn] –Vn,PC[Vn] – z

〉
+ 〈Vn – z,xn+ – z〉

≤
〈
αn

(
ρU(xn) –μF(z)

)
+ γn(xn – z)

+ ( – γn)
[(

I –
αnμ

 – γn
F
)(

T(yn)
)
–

(
I –

αnμ

 – γn
F
)(

T(z)
)]
,xn+ – z

〉

=
〈
αnρ

(
U(xn) –U(z)

)
,xn+ – z

〉
+ αn

〈
ρU(z) –μF(z),xn+ – z

〉
+ γn〈xn – z,xn+ – z〉

+ ( – γn)
〈(

I –
αnμ

 – γn
F
)(

T(yn)
)
–

(
I –

αnμ

 – γn
F
)(

T(z)
)
,xn+ – z

〉

≤ (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – γn – αnν)‖yn – z‖‖xn+ – z‖

≤ (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – γn – αnν)

{
βn‖Sxn – Sz‖ + βn‖Sz – z‖

+ ( – βn)‖un – z‖}‖xn+ – z‖
= (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn

〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – γn – αnν)

{
βn‖Sxn – Sz‖ + βn‖Sz – z‖

+ ( – βn)
∥∥Trn (xn) – z

∥∥}‖xn+ – z‖
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≤ (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – γn – αnν)

{
βn‖xn – z‖ + βn‖Sz – z‖ + ( – βn)‖xn – z‖}‖xn+ – z‖

=
(
 – αn(ν – ρτ )

)‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – γn – αnν)βn‖Sz – z‖‖xn+ – z‖

≤  – αn(ν – ρτ )


(‖xn – z‖ + ‖xn+ – z‖) + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – γn – αnν)βn‖Sz – z‖‖xn+ – z‖,

which implies that

‖xn+ – z‖

≤  – αn(ν – ρτ )
 + αn(ν – ρτ )

‖xn – z‖ + αn

 + αn(ν – ρτ )
〈
ρU(z) –μF(z),xn+ – z

〉

+
( – γn – αnν)βn

 + αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

≤ (
 – αn(ν – ρτ )

)‖xn – z‖

+
αn(ν – ρτ )
 + αn(ν – ρτ )

{


ν – ρτ

〈
ρU(z) –μF(z),xn+ – z

〉

+
( – γn – αnν)βn

αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

}
.

Let υn = αn(ν – ρτ ) and

δn =
αn(ν – ρτ )
 + αn(ν – ρτ )

{


ν – ρτ

〈
ρU(z) –μF(z),xn+ – z

〉

+
( – γn – αnν)βn

αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

}
.

We have
∑∞

n= αn =∞ and

lim sup
n→∞

{


ν – ρτ

〈
ρU(z) –μF(z),xn+ – z

〉
+
( – γn – αnν)βn

αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

}
≤ .

It follows that

∞∑
n=

υn =∞ and lim sup
n→∞

δn

υn
≤ .

Thus, all the conditions of Lemma . are satisfied. Hence, we deduce that xn → z. This
completes the proof. �

Putting γn =  in Algorithm ., we obtain the following result, which can be viewed as
an extension and improvement of the method studied in [].

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C × C → R be a bifunction that satisfies (A)-(A) and S,T : C → C be nonexpansive
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mappings such that F(T) ∩ EP(F) 
= ∅. Let F : C → C be a k-Lipschitzian mapping and
η-strongly monotone, and let U : C → C be a τ -Lipschitzian mapping. For a given x ∈ C,
let the iterative sequences {un}, {xn} and {yn} be generated by

F(un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C;

yn = βnSxn + ( – βn)un;

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ ,

where {rn}, {αn} ⊂ (, ), {βn} ⊂ (, ). Suppose that the parameters satisfy  < μ < η
k ,

 ≤ ρτ < ν , where ν =  –
√
 –μ(η –μk). Also, {αn}, {βn}, and {rn} are sequences satis-

fying conditions (b)-(e) of Algorithm .. Then the sequence {xn} converges strongly to some
element z ∈ F(T)∩ EP(F), which is also a unique solution of the variational inequality:

〈
ρU(z) –μF(z),x – z

〉 ≤ , ∀x ∈ F(T)∩ EP(F).

Putting U = f , F = I , ρ = μ = , and γn = , we obtain an extension and improvement of
the method considered in [].

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C × C → R be a bifunction that satisfies (A)-(A) and S,T : C → C be nonexpansive
mappings such that F(T) ∩ EP(F) 
= ∅. Let f : C → C be a τ -Lipschitzian mapping. For a
given x ∈ C, let the iterative sequences {un}, {xn}, and {yn} be generated by

F(un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C;

yn = βnSxn + ( – βn)un;

xn+ = PC
[
αnf (xn) + ( – αn)T(yn)

]
, ∀n≥ ,

where {rn}, {αn}, {βn} are sequences in (, )which satisfy conditions (b)-(e) of Algorithm ..
Then the sequence {xn} converges strongly to some element z ∈ F(T)∩ EP(F) which is also
a unique solution of the variational inequality:

〈
f (z) – z,x – z

〉 ≤ , ∀x ∈ F(T)∩ EP(F).

4 Examples
To illustrate Algorithm . and the convergence result, we consider the following exam-
ples.

Example . Let αn = 
n , γn =


n , βn = 

n and rn = n
n+ . Then we have αn + γn = 

n < ,

lim
n→∞αn = lim

n→∞γn =



lim
n→∞


n
= ,

and

∞∑
n=

αn =



∞∑
n=


n
=∞.
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The sequences {αn} and {γn} satisfy conditions (a) and (b). Since

lim
n→∞

βn

αn
= lim

n→∞

n
= ,

condition (c) is satisfied. We compute

αn– – αn =



(


n – 
–

n

)
=


n(n – )

.

It is easy to show
∑∞

n= |αn– – αn| < ∞. Similarly, we can show
∑∞

n= |γn– – γn| < ∞ and∑∞
n= |βn– – βn| < ∞. The sequences {αn}, {γn}, and {βn} satisfy condition (d). We have

lim inf
n→∞ rn = lim inf

n→∞
n

n + 
= ,

and

∞∑
n=

|rn– – rn| =
∞∑
n=

∣∣∣∣n – 
n

–
n

n + 

∣∣∣∣
=

∞∑
n=


n(n + )

≤
∞∑
n=


n

< ∞.

Then the sequence {rn} satisfies condition (e).
Let the mappings T ,F ,S,U :R →R be defined as

T(x) =
x

, ∀x ∈R,

F(x) =
x + 


, ∀x ∈R,

S(x) =
x

, ∀x ∈R,

U(x) =
x


, ∀x ∈R,

and let the mapping F :R×R →R be defined by

F(x, y) = –x + xy + y, ∀(x, y) ∈R×R.

It is easy to show that T and S are nonexpansive mappings, F is -Lipschitzian and 
 -

strongly monotone and U is 
 -Lipschitzian. It is clear that

EP(F)∩ F(T) = {}.
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From the definition of F, we have

 ≤ F(un, y) +

rn

〈y – un,un – xn〉

= –un + uny + y +

rn
(y – un)(un – xn).

Then

 ≤ rn
(
–un + uny + y

)
+

(
yun – yxn – un + unxn

)
= rny + (rnun + un – xn)y – rnun – un + unxn.

Let B(y) = rny + (rnun + un – xn)y – rnun – un + unxn. Then B(y) is a quadratic function
of y with coefficient a = rn, b = rnun + un – xn, c = –rnun – un + unxn. We determine the
discriminant � of B as follows:

� = b – ac

= (rnun + un – xn) – rn
(
–rnun – un + unxn

)
= un + rnun + unr


n – xnun – xnunrn + xn

= (un + unrn) – xn(un + unrn) + xn

= (un + unrn – xn).

We have B(y)≥ , ∀y ∈R. If it has at most one solution in R, then � = , and we obtain

un =
xn

 + rn
. (.)

For every n≥ , from (.), we rewrite (.) as follows:

{
yn = xn

n + ( – 
n )

xn
(+rn) ;

xn+ = ρ xn
n +

xn
n + ( – 

n )
yn
 –μ

yn+
n .

In all the tests we take ρ = 
 , μ = 

 , and N =  for Algorithm .. In this example η = 
 ,

k = , τ = 
 . It is easy to show that the parameters satisfy  < μ < η

k ,  ≤ ρτ < ν , where
ν =  –

√
 –μ(η –μk).

The values of {un}, {yn}, and {xn}with different n are reported in Tables  and . All codes
were written in Matlab.

Remark . Table  and Figure  show that the sequences {un}, {yn}, and {xn} converge
to , where {} = F(T)∩ EP(F).

Example . In this example we take the same mappings and parameters as in Exam-
ple . except T and Fi.
Let T : [, ] → [, ] be defined by

T(x) =
x + 


, ∀x ∈ [, ],
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Table 1 The values of {un}, {yn}, and {xn} with initial values x1 = –40 and x1 = 40

x1 = –40 x1 = 40

un yn xn un yn xn
n = 1 –11.428571 –13.333333 –40.000000 11.428571 13.333333 40.000000
n = 2 –5.382261 –5.980290 –23.323129 5.368132 5.964591 23.261905
n = 3 –1.702305 –1.812640 –8.085951 1.691401 1.801028 8.034153
n = 4 –0.422676 –0.440288 –2.113381 0.415900 0.433229 2.079500
n = 5 –0.089920 –0.092518 –0.464586 0.085540 0.088011 0.441955
n = 6 –0.017830 –0.018208 –0.094246 0.014702 0.015013 0.077709
n = 7 –0.003964 –0.004028 –0.021308 0.001537 0.001562 0.008260
n = 8 –0.001427 –0.001445 –0.007767 –0.000562 –0.000569 –0.003058
n = 9 –0.000907 –0.000917 –0.004990 –0.000779 –0.000787 –0.004284
n = 10 –0.000741 –0.000748 –0.004112 –0.000723 –0.000729 –0.004011

Figure 1 The convergence of {un}, {yn}, and {xn}
with initial values x1 = –40 and x1 = 40.

and F : [, ]× [, ]→R be defined by

F(x, y) = (y – x)(y + x – ), ∀(x, y) ∈ [, ]× [, ].

It is clear to see that

EP(F)∩ F(T) = {}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/194
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By the definition of F, we have

 ≤ F(un, y) +

rn

〈y – un,un – xn〉 = (y – un)(y + un – ) +

rn
(y – un)(un – xn).

Then

 ≤ rn(y – un)(y + un – ) +
(
yun – yxn – un + unxn

)
= rny + (rnun + un – xn – rn)y + rnun – un – rnun + unxn.

Let A(y) = rny + (rnun +un–xn–rn)y+rnun –un–rnun +unxn. ThenA(y) is a quadratic
function of y with coefficient a = rn, b = rnun + un – xn – rn, c = rnun – un – rnun + unxn.
We determine the discriminant � of A as follows:

� = b – ac

= (rnun + un – xn – rn) – rn
(
rnun – un – rnun + unxn

)
= rn – rnun – rnun + un + rnun + rnu


n + rnxn – unxn – rnunxn + xn

= (un – rn + unrn – xn).

We have A(y) ≥ , ∀y ∈R. If it has at most one solution in R, then � = , we obtain

un =
xn + rn
 + rn

. (.)

For every n≥ , from (.), we rewrite (.) as follows:

{
yn = xn

n + ( – 
n )(

xn+rn
+rn );

xn+ = P[,][ρ xn
n +


nxn + ( – 

n )
(yn+)

 –μ
yn+
n ].

(.)

Remark . Table  and Figure  show that the sequences {un}, {yn}, and {xn} converge
to , where {} = F(T)∩ EP(F).

Table 2 The values of {un}, {yn}, and {xn} with initial value x1 = 30

un yn xn
n = 1 12.600000 10.000000 30.000000
n = 2 6.919218 6.752551 18.757653
n = 3 3.347083 3.294741 8.628019
n = 4 1.789318 1.754229 3.683683
n = 5 1.233421 1.208311 1.816975
n = 6 1.059453 1.041249 1.212331
n = 7 1.010462 0.996901 1.037925
n = 8 1.000000 0.989583 1.000000
n = 9 1.000000 0.991770 1.000000
n = 10 1.000000 0.993333 1.000000
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Figure 2 The convergence of {un}, {yn}, and {xn}
with initial value x1 = 30.

5 Conclusions
In this paper, we suggested and analyzed an iterative method for finding an element of
the common set of solutions of (.) and (.) in real Hilbert spaces. This method can
be viewed as a refinement and improvement of some existing methods for solving vari-
ational inequality problem, equilibrium problem and a hierarchical fixed point problem.
Some existing methods, for example, [, , , , , ], can be viewed as special cases
of Algorithm .. Therefore, Algorithm . is expected to be widely applicable. In the hi-
erarchical fixed point problem (.), if S = I – (ρU – μF), then we can get the variational
inequality (.). In (.), if U =  then we get the variational inequality 〈F(z),x – z〉 ≥ ,
∀x ∈ F(T)∩ EP(F), which just is a variational inequality studied by Suzuki [].
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