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Abstract
In this paper, we introduce an iterative process which converges strongly to a
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quasi-φ-nonexpansive mapping in the intermediate sense and the solution set of
generalized equilibrium problem in Banach spaces. Our theorems improve,
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1 Introduction
Let E be a real Banach space with the dual space E∗. Let C be a nonempty closed convex
subset of E. Let T : C → C be a nonlinear mapping. We denote by F(T) the set of fixed
points of T .
A mapping T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂

[,∞) with kn →  as n→ ∞ such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C,n ≥ .

The class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [] in . In uniformly convex Banach spaces, they proved that if C is nonempty,
bounded, closed, and convex, then every asymptotically nonexpansive self-mapping T on
C has a fixed point. Further, the fixed point set of T is closed and convex.
A mapping T is said to be asymptotically nonexpansive in the intermediate sense (see

[]) if it is continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ≤ . (.)

If F(T) �= φ and (.) holds for all x ∈ K , y ∈ F(T), then T is called asymptotically quasi-
nonexpansive in the intermediate sense. It is well known that if C is a nonempty closed
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convex bounded subset of a uniformly convex Banach space E and T is a self-mapping
of C which is asymptotically nonexpansive in the intermediate sense, then T has a fixed
point (see []). It is worth mentioning that the class of mappings which are asymptoti-
cally nonexpansive in the intermediate sense contains properly the class of asymptotically
nonexpansive mappings.
Iterative approximation of a fixed point for asymptotically nonexpansive mappings in

Hilbert or Banach spaces has been studied extensively by many authors (see [–] and the
references therein).
Let E be a smooth Banach space. The function φ : E × E →R defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E,

is studied by Alber []. It follows from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), ∀x, y ∈ E. (.)

Remark .
(i) If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,

φ(x, y) =  if and only if x = y.
(ii) If E is a real Hilbert space, then φ(x, y) = ‖x – y‖.

Let E be reflexive, strictly convex and smooth Banach space. The generalized projection
mapping, introduced by Alber [], is a mapping �C : E → C that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(y,x), that is, �Cx = x, where is x is the
solution to the minimization problem

φ(x,x) = inf
y∈C φ(y,x).

A point p in C is said to be an asymptotic fixed point of T if C contains a sequence {xn}
which converges weakly to p such that limn→∞ ‖xn –Txn‖ = . The set of asymptotic fixed
points of T will be denoted by F̃(T). A mapping T is called relatively nonexpansive (see
[]) if F̃(T) = F(T) and φ(p,Tx) ≤ φ(p,x) for all x ∈ C and p ∈ F(T).
Recently, Matsushita and Takahashi [] proved strong convergence theorems for ap-

proximation of fixed points of relatively nonexpansive mappings in a uniformly convex
and uniformly smooth Banach space. More precisely, they proved the following theorem.

Theorem . Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty closed convex subset of E, let T be a relatively nonexpansivemapping fromC into
itself and let {αn} be a sequence of real numbers such that  ≤ αn ≤  and lim supn→∞ αn < .
Suppose that {xn} is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,

yn = J–(αnJxn + ( – αn)JTxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z,xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Hn∩Wnx, n = , , , . . . ,

(.)
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where J is the normalized duality mapping on E. If F(T) is nonempty, then {xn} converges
strongly to �F(T)x.

In [], Hao introduced the following iterative scheme for approximating a fixed point
of asymptotically quasi-φ-nonexpansivemappings in the intermediate sense in a reflexive,
strictly convex and smooth Banach space E: x ∈ E, C = C, x =�Cx,

⎧⎪⎪⎨
⎪⎪⎩
yn = J–(αnJxn + ( – αn)JTnxn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + ξn},
xn+ =�Cn+x, n = , , . . . ,

where ξn =max{, supp∈F(T),x∈C(φ(p,Tnx) – φ(p,x))}.
Motivated and inspired by the works mentioned above, in this paper, we introduce a

new iterative scheme of the generalized f -projection operator for finding a common ele-
ment of the set of fixed points of asymptotically quasi-φ-nonexpansive mappings in the
intermediate sense and the solution set of generalized equilibrium problem in a uniformly
smooth and strictly convex Banach space with the Kadec-Klee property.

2 Preliminaries
Let E be a real Banach space with the norm ‖ · ‖ and let E∗ be the dual space of E. The
normalized duality mapping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}.

By the Hahn-Banach theorem, J(x) is nonempty.
A Banach space E is called strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ U with x �= y, where
U = {x ∈ E : ‖x‖ = } is the unit sphere of E. A Banach space E is called smooth if the limit

lim
t→∞

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ U . It is also called uniformly smooth if the limit exists uniformly for
all x, y ∈ U . In this paper, we denote the strong convergence and weak convergence of a
sequence {xn} by xn → x and xn ⇀ x, respectively.

Remark . The basic properties of a Banach space E related to the normalized duality
mapping J are as follows (see []):
() If E is a smooth Banach space, then J is single-valued and semicontinuous;
() If E is a uniformly smooth Banach space, then J is uniformly norm-to-norm

continuous on each bounded subset of E;
() If E is a uniformly smooth Banach space, then E is smooth and reflexive;
() If E is a reflexive and strictly convex Banach space, then J– is

norm-weak∗-continuous;
() E is a uniformly smooth Banach space if and only if E∗ is uniformly convex.

Recall that a Banach space E has the Kadec-Klee property if for any sequence {xn} ⊂ E
and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞. It is well known
that if E is a uniformly convex Banach space, then E has the Kadec-Klee property.
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Definition . A mapping T : C → C is said to be
() quasi-φ-nonexpansive if F(T) �= φ and

φ(p,Tx) ≤ φ(p,x)

for all x ∈ C and p ∈ F(T);
() asymptotically quasi-φ-nonexpansive in the intermediate sense if F(T) �= φ and

lim sup
n→∞

sup
p∈F(T),x∈C

(
φ
(
p,Tnx

)
– φ(p,x)

) ≤ 

put

ξn =max
{
, sup

p∈F(T),x∈C

(
φ
(
p,Tnx

)
– φ(p,x)

)}
.

Remark . From the definition of asymptotically quasi-φ-nonexpansiveness in the in-
termediate sense, it is obvious that ξn →  as n→ ∞ and

φ
(
p,Tnx

) ≤ φ(p,x) + ξn, ∀p ∈ F(T),x ∈ C.

Recall that T is said to be asymptotically regular on C if for any bounded subset K of C,

lim sup
n→∞

{∥∥Tn+x – Tnx
∥∥ : x ∈ K

}
= .

Definition . A mapping T : C → C is said to be closed if for any sequence {xn} ⊂ C
with xn → x and Txn → y, Tx = y.

Following Alber [], the generalized projection �C : E → C is defined by

�C(x) =
{
u ∈ C : φ(u,x) =min

y∈C φ(y,x)
}
, ∀x ∈ E.

In ,Wu andHuang [] introduced a generalized f -projection operator in a Banach
space, which extends the definition of the generalized projection �C . Let G : C × E∗ →
R∪ {+∞} be a functional defined as follows:

G(y,w) = ‖y‖ – 〈y,w〉 + ‖w‖ + ρf (y)

for all (y,w) ∈ C × E∗, where ρ is a positive number and f : C → R ∪ {+∞} is proper,
convex, and lower semicontinuous. From the definition ofG, it is easy to see the following
properties:

(i) G(y,w) is convex and continuous with respect to w when y is fixed;
(ii) G(y,w) is convex and lower semicontinuous with respect to y when w is fixed.

Definition . ([]) Let E be a real smooth Banach space and letC be a nonempty closed
and convex subset of E. We say that �

f
C : E → C is a generalized f -projection operator if

�
f
Cx =

{
u ∈ C :G(u, Jx) = inf

y∈CG(y, Jx),∀x ∈ E
}
.
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Lemma . ([]) Let E be a Banach space and f : E → R ∪ {+∞} be a lower semicontin-
uous and convex function. Then there exist x∗ ∈ E∗ and α ∈R such that

f (x)≥ 〈
x,x∗〉 + α

for all x ∈ E.

Lemma. ([]) Let E be a reflexive smooth Banach space and let C be a nonempty closed
convex subset of E. The following statements hold:
() �

f
Cx is a nonempty closed convex subset of C for all x ∈ E;

() For all x ∈ F , x ∈ �
f
Cx if and only if

〈x – y, Jx – Jx〉 + ρf (y) – ρf (x) ≥ 

for all y ∈ C;
() If E is strictly convex, then �

f
C is a single-valued mapping.

Let θ be a bifunction from C × C to R, where R denotes the set of real numbers. The
equilibrium problem is to find x ∈ C such that

θ (x, y) ≥  (.)

for all y ∈ C. The set of solutions of (.) is denoted by EP(θ ).
For solving the equilibrium problem for a bifunction θ : C ×C → R, let us assume that

θ satisfies the following conditions:
(A) θ (x,x) =  for all x ∈ C;
(A) θ is monotone; i.e., θ (x, y) + θ (y,x) ≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C,

lim
t↓ θ

(
tz + ( – t)x, y

) ≤ θ (x, y);

(A) for all x ∈ C, y �→ θ (x, y) is convex and lower semicontinuous.

Lemma . ([]) Let C be a closed convex subset of a uniformly smooth, strictly convex,
and reflexive Banach space E and let θ be a bifunction from C × C to R satisfying the
conditions (A)-(A). For all r >  and x ∈ E, define a mapping Tθ

r : E → C as follows:

Tθ
r x =

{
z ∈ C : θ (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
.

Then the following conclusions hold:
() Tθ

r is single-valued;
() Tθ

r is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈
Tθ
r x – Tθ

r y, JT
θ
r x – JTθ

r y
〉 ≤ 〈

Tθ
r x – Tθ

r y, Jx – Jy
〉
;

() F(Tθ
r ) = EP(θ ) is closed and convex;

http://www.fixedpointtheoryandapplications.com/content/2014/1/199
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() Tθ
r is quasi-φ-nonexpansive;

() φ(q,Tθ
r x) + φ(Tθ

r x,x)≤ φ(q,x), ∀q ∈ F(Tθ
r ).

Lemma . ([]) Let E be a reflexive, strictly convex and smooth Banach space such that
both E and E∗ have the Kadec-Klee property. Let C be a nonempty closed convex subset
of E. Let T : C → C be a closed and asymptotically quasi-φ-nonexpansive mapping in the
intermediate sense. Then F(T) is a closed convex subset of C.

Lemma . ([]) Let E be a real reflexive smooth Banach space and let C be a nonempty
closed and convex subset of E. Then, for any x ∈ E and x ∈ �

f
Cx,

φ(y,x) +G(x, Jx) ≤G(y, Jx)

for all y ∈ C.

3 Main results
Theorem . Let E be a uniformly smooth and strictly convex Banach space with the
Kadec-Klee property. Let C be a nonempty closed convex subset of E. Let θ be a bifunc-
tion from C × C to R satisfying the conditions (A)-(A). Let T : C → C be a closed and
asymptotically quasi-φ-nonexpansive mapping in the intermediate sense. Assume that T
is asymptotically regular on C, F = F(T) ∩ EP(θ ) is nonempty, and F(T) is bounded. Let
f : E →R

+ be a convex and lower semicontinuous function with C ⊂ int(D(f )) and f () = .
Let {αn} be a sequence in [, ] and {βn}, {γn} be sequences in (, ) satisfying the following
conditions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

yn = J–(αnJx + βnJTnxn + γnJxn),

un ∈ C such that θ (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn :G(z, Jun) ≤ αnG(z, Jx) + ( – αn)G(z, Jxn) + ξn},
xn+ =�

f
Cn+

x, ∀n≥ ,

(.)

where ξn = max{, supp∈F(T),x∈C(φ(p,Tnx) – φ(p,x))}, {rn} is a real sequence in [a,∞) for
some a >  and �

f
Cn+

is the generalized f -projection operator. Then {xn} converges strongly
to �

f
Fx.

Proof It follows from Lemma . and Lemma . thatF is a closed convex subset of C, so
that �

f
Fx is well defined for any x ∈ C.

We split the proof into six steps.
Step . We first show that Cn is nonempty, closed, and convex for all n≥ .
In fact, it is obvious that C = C is closed and convex. Suppose that Cn is closed and

convex for some n≥ . For z, z ∈ Cn+, we see that z, z ∈ Cn. It follows that z = tz + ( –

http://www.fixedpointtheoryandapplications.com/content/2014/1/199
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t)z ∈ Cn, where t ∈ (, ). Notice that

G(z, Jun)≤ αnG(z, Jx) + ( – αn)G(z, Jxn) + ξn,

and

G(z, Jun) ≤ αnG(z, Jx) + ( – αn)G(z, Jxn) + ξn.

The above inequalities are equivalent to

αn〈z, Jx〉 + ( – αn)〈z, Jxn〉 – 〈z, Jun〉
≤ αn‖x‖ + ( – αn)‖xn‖ – ‖un‖ + ξn (.)

and

αn〈z, Jx〉 + ( – αn)〈z, Jxn〉 – 〈z, Jun〉
≤ αn‖x‖ + ( – αn)‖xn‖ – ‖un‖ + ξn. (.)

Multiplying t and  – t on both sides of (.) and (.), respectively, we obtain

αn〈z, Jx〉 + ( – αn)〈z, Jxn〉 – 〈z, Jun〉
≤ αn‖x‖ + ( – αn)‖xn‖ – ‖un‖ + ξn.

Hence we have

G(z, Jun) ≤ αnG(z, Jx) + ( – αn)G(z, Jxn) + ξn.

This implies that Cn+ is closed and convex for all n ≥ . This shows that �
f
Cn+

x is well
defined.
Step . We show that F ⊂ Cn for all n≥ .
For n = , we have F ⊂ C = C. Now, assume that F ⊂ Cn for some n ≥ . Let q ∈ F .

Since T is asymptotically quasi-φ-nonexpansive with intermediate sense, we have from
Remark . and Lemma . that

G(q, Jun) =G
(
q, JTθ

rnyn
)

= φ
(
q,Tθ

rnyn
)
+ ρf (q)

≤ φ(q, yn) + ρf (q)

=G(q, Jyn)

=G
(
q,αnJx + βnJTnxn + γnJxn

)
= ‖q‖ – αn〈q, Jx〉 – βn

〈
q, JTnxn

〉
– γn〈q, Jxn〉

+
∥∥αnJx + βnJTnxn + γnJxn

∥∥ + ρf (q)

≤ ‖q‖ – αn〈q, Jx〉 – βn
〈
q, JTnxn

〉
– γn〈q, Jxn〉

http://www.fixedpointtheoryandapplications.com/content/2014/1/199
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+ αn‖Jx‖ + βn
∥∥JTnxn

∥∥ + γn‖Jxn‖ + ρf (q)

= αnG(q, Jx) + βnG
(
q, JTnxn

)
+ γnG(q, Jxn)

= αnG(q, Jx) + βn
{
φ
(
q,Tnxn

)
+ ρf (q)

}
+ γnG(q, Jxn)

≤ αnG(q, Jx) + βn
{
φ(q,xn) + ξn + ρf (q)

}
+ γnG(q, Jxn)

≤ αnG(q, Jx) + βnG(q, Jxn) + γnG(q, Jxn) + ξn

= αnG(q, Jx) + ( – αn)G(q, Jxn) + ξn,

which shows that q ∈ Cn+. This implies that F ⊂ Cn+ and so F ⊂ Cn for all n≥ .
Step . We prove that {xn} is bounded and limn→∞ G(xn, Jx) exists.
By Lemma ., we have the result that there exist x∗ ∈ E∗ and α ∈R such that

f (x)≥ 〈
x,x∗〉 + α.

Since xn ∈ Cn ⊂ E, it follows that

G(xn, Jx) = ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)

≥ ‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρ
〈
xn,x∗〉 + ρα

= ‖xn‖ – 
〈
xn, Jx – ρx∗〉 + ‖x‖ + ρα

≥ ‖xn‖ – ‖xn‖
∥∥Jx – ρx∗∥∥ + ‖x‖ + ρα

=
(‖xn‖ – ∥∥Jx – ρx∗∥∥) + ‖x‖ –

∥∥Jx – ρx∗∥∥ + ρα.

For all q ∈F and xn =�
f
Cnx, we have

G(q, Jx) ≥G(xn, Jx)

≥ (‖xn‖ – ∥∥Jx – ρx∗∥∥) + ‖x‖ –
∥∥Jx – ρx∗∥∥ + ρα.

This implies that the sequence {xn} is bounded and so is {G(xn, Jx)}. From (.) and
Lemma ., we obtain

 ≤ (‖xn+‖ – ‖xn‖
) ≤ φ(xn+,xn)≤G(xn+, Jx) –G(xn, Jx). (.)

This shows that {G(xn, Jx)} is nondecreasing. It follows from the boundedness that
limn→∞ G(xn, Jx) exists.
Step . Next, we prove that xn → x, yn → x, and un → x as n → ∞, where x is some

point in C.
By (.), we obtain

lim
n→∞φ(xn+,xn) = . (.)

Since {xn} is bounded and E is reflexive, wemay assume that xn ⇀ x as n→ ∞. Since Cn is
closed and convex, we find that x ∈ Cn. From the weak lower semicontinuity of the norm

http://www.fixedpointtheoryandapplications.com/content/2014/1/199
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and xn =�
f
Cnx, we obtain

G(x, Jx) = ‖x‖ – 〈x, Jx〉 + ‖x‖ + ρf (x)

≤ lim inf
n→∞

{‖xn‖ – 〈xn, Jx〉 + ‖x‖ + ρf (xn)
}

= lim inf
n→∞ G(xn, Jx)

≤ lim sup
n→∞

G(xn, Jx)

≤G(x, Jx),

which implies that limn→∞ G(xn, Jx) =G(x, Jx). From Lemma ., we obtain

 ≤ (‖x‖ – ‖xn‖
)

≤ φ(x,xn)

≤G(x, Jx) –G(xn, Jx).

Hence we have limn→∞ ‖xn‖ = ‖x‖. In view of the Kadec-Klee property of E, we find that

lim
n→∞xn = x. (.)

And we have

lim
n→∞‖xn – xn+‖ = .

Since J is uniformly norm-to-norm continuous, it follows that

lim
n→∞‖Jxn – Jxn+‖ = .

From xn+ =�
f
Cn+

x ∈ Cn+ ⊂ Cn and (.), we have

G(xn+, Jun) ≤ αnG(xn+, Jx) + ( – αn)G(xn+, Jxn) + ξn.

This is equivalent to the following:

φ(xn+,un) ≤ αnφ(xn+,x) + ( – αn)φ(xn+,xn) + ξn. (.)

Due to (.), (.), the assumption (ii), and Remark ., we have

lim
n→∞φ(xn+,un) = .

By (.), it follows that

‖un‖ → ‖x‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/199
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as n→ ∞. Since J is uniformly norm-to-norm continuous, we obtain

‖Jun‖ → ‖Jx‖ (.)

as n → ∞. This implies that {‖Jun‖} is bounded in E∗. Since E∗ is reflexive, we assume
that Jun ⇀ u ∈ E∗ as n→ ∞. In view of J(E) = E∗, there exists u ∈ E such that Ju = u. This
implies that Jun ⇀ Ju. We have

φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖

= ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖.

Taking lim infn→∞ on both sides of the equality above, this yields

 ≥ ‖x‖ – 〈x,u〉 + ‖u‖

= ‖x‖ – 〈x, Ju〉 + ‖Ju‖

= ‖x‖ – 〈x, Ju〉 + ‖u‖

= φ(x,u),

which shows that x = u and so Jun ⇀ Jx. It follows from (.) and the Kadec-Klee property
of E∗ that Jun → Jx as n → ∞. Since J– is norm-weak-continuous, we have

un ⇀ x. (.)

From (.), (.), and the Kadec-Klee property of E, we have

lim
n→∞un = x. (.)

On the other hand, we see from the weak lower semicontinuity of the norm that

φ(q,x) = ‖q‖ – 〈q, Jx〉 + ‖x‖

≤ lim inf
n→∞

(‖q‖ – 〈q, Jun〉 + ‖un‖
)

= lim inf
n→∞ φ(q,un)

≤ lim sup
n→∞

φ(q,un)

= lim sup
n→∞

(‖q‖ – 〈q, Jun〉 + ‖un‖
)

≤ φ(q,x),

which implies that

lim
n→∞φ(q,un) = φ(q,x). (.)
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By (.) and (.), we obtain limn→∞ ‖xn – un‖ = . The uniform continuity of J on
bounded sets gives

lim
n→∞‖Jxn – Jun‖ = . (.)

Now, using the definition of φ, we have, for all q ∈F ,

φ(q,xn) – φ(q,un) = ‖xn‖ – ‖un‖ – 〈q, Jxn – Jun〉
≤ ‖xn – un‖

(‖xn‖ + ‖un‖
)
+ ‖q‖‖Jxn – Jun‖.

From (.), we obtain

φ(q,xn) – φ(q,un) → 

as n→ ∞. By (.), it follows that

lim
n→∞φ(q,xn) = φ(q,x). (.)

Hence, for any q ∈F ⊂ Cn, it follows from the convexity of ‖ · ‖ and Lemma . that

φ(q,un) = φ
(
q,Tθ

rnyn
)

≤ φ(q, yn)

= φ
(
q, J–

(
αnJx + βnJTnxn + γnJxn

))
= ‖q‖ – 

〈
q,αnJx + βnJTnxn + γnJxn

〉
+

∥∥αnJx + βnJTnxn + γnJxn
∥∥

≤ ‖q‖ – αn〈q, Jx〉 – βn
〈
q, JTnxn

〉
– γn〈q, Jxn〉

+ αn‖Jx‖ + βn
∥∥JTnxn

∥∥ + γn‖Jxn‖

= αnφ(q,x) + βnφ
(
q,Tnxn

)
+ γnφ(q,xn)

≤ αnφ(q,x) + βn
(
φ(q,xn) + ξn

)
+ γnφ(q,xn)

≤ αnφ(q,x) + ( – αn)φ(q,xn) + ξn. (.)

From (.), (.), (.), Remark ., and the assumption (ii), we obtain

lim
n→∞φ(q, yn) = φ(q,x).

From Lemma ., we see that for any q ∈F and un = Tθ
rnyn,

φ(un, yn) = φ
(
Tθ
rnyn, yn

)
≤ φ(q, yn) – φ

(
q,Tθ

rnyn
)

= φ(q, yn) – φ(q,un).
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Taking n→ ∞ on both sides of the inequality above, we have

lim
n→∞φ(un, yn) = .

From (.), we have (‖un‖ – ‖yn‖) →  as n→ ∞. By (.), we have

‖yn‖ → ‖x‖ (.)

as n→ ∞, and so

‖Jyn‖ → ‖Jx‖ (.)

as n → ∞. That is, {‖Jyn‖} is bounded in E∗. Since E∗ is reflexive, we can assume that
Jyn ⇀ y∗ ∈ E∗ as n→ ∞. In view of J(E) = E∗, there exists y ∈ E such that Jy = y∗. It follows
that

φ(un, yn) = ‖un‖ – 〈un, Jyn〉 + ‖yn‖

= ‖un‖ – 〈un, Jyn〉 + ‖Jyn‖.

Taking lim infn→∞ on both sides of the equality above, it follows that

 ≥ ‖x‖ – 
〈
x, y∗〉 + ‖y∗‖

= ‖x‖ – 〈x, Jy〉 + ‖Jy‖

= ‖x‖ – 〈x, Jy〉 + ‖y‖

= φ(x, y).

From Remark ., x = y, i.e., y∗ = Jx. It follows that Jyn ⇀ Jx ∈ E∗ as n → ∞. From (.)
and the Kadec-Klee property of E∗, we have

Jyn → Jx

as n → ∞. Since J– is norm-weak∗-continuous, yn ⇀ x as n → ∞. From (.) and the
Kadec-Klee property of E, we have

lim
n→∞ yn = x.

Step . We show that x ∈F .
By Step , we get

lim
n→∞‖un – yn‖ = .

The uniform continuity of J on bounded sets gives

lim
n→∞‖Jun – Jyn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/199
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From the assumption rn ≥ a and (.), we see that ‖Jun–Jyn‖
rn →  as n→ ∞. But from (A)

and (.), we note that


rn

〈y – un, Jun – Jyn〉 ≥ –θ (un, y) ≥ θ (y,un), ∀y ∈ C

and hence

‖y – un‖‖Jun – Jyn‖
rn

≥ θ (y,un), ∀y ∈ C,

which implied that θ (y,x) ≤  for all y ∈ C. Put yt = ty + ( – t)x for all t ∈ (, ] and y ∈ C.
Then we get yt ∈ C and θ (yt ,x) ≤ . Therefore, from (A) and (A), we obtain

 = θ (yt , yt) ≤ tθ (yt , y) + ( – t)θ (yt ,x)

≤ tθ (yt , y).

Thus, θ (yt , y) ≥  for all y ∈ C. Furthermore, as t → ∞, we have from (A) that θ (x, y) ≥ 
for all y ∈ C. This implies that x ∈ EP(θ ).
Finally, we show that x ∈ F(T). In view of yn = J–(αnJx + βnJTnxn + γnJxn), we find that

Jun – Jyn = αn(Jun – Jx) + βn
(
Jun – JTnxn

)
+ γn(Jun – Jxn).

Hence we have

βn
∥∥Jun – JTnxn

∥∥ ≤ ‖Jun – Jx‖ + ‖Jx – Jyn‖ + αn‖Jun – Jx‖
+ γn‖Jun – Jxn‖.

From the assumptions (ii), (iii), and (.), we have

lim
n→∞

∥∥Jun – JTnxn
∥∥ = . (.)

Notice that

∥∥JTnxn – Jx
∥∥ ≤ ∥∥JTnxn – Jun

∥∥ + ‖Jun – Jx‖.

This implies from (.) that

lim
n→∞

∥∥JTnxn – Jx
∥∥ = . (.)

The demicontinuity of J– : E∗ → E implies that Tnxn ⇀ x as n→ ∞. We have

∣∣∥∥Tnxn
∥∥ – ‖x‖∣∣ = ∣∣∥∥JTnxn

∥∥ – ‖Jx‖∣∣ ≤ ∥∥JTnxn – Jx
∥∥.

With the aid of (.), we see that limn→∞ ‖Tnxn‖ = ‖x‖. Since E has the Kadec-Klee prop-
erty, we find that

lim
n→∞

∥∥Tnxn – x
∥∥ = . (.)
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Jeong Fixed Point Theory and Applications 2014, 2014:199 Page 14 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/199

Since

∥∥Tn+xn – x
∥∥ ≤ ∥∥Tn+xn – Tnxn

∥∥ +
∥∥Tnxn – x

∥∥,
we find from (.) and the asymptotic regularity of T that

lim
n→∞

∥∥Tn+xn – x
∥∥ = ,

i.e., TTnxn–x →  as n→ ∞. It follows from the closedness of T that Tx = x. So, x ∈ F(T)
and hence x ∈F = F(T)∩ EP(θ ).
Step . We show that x =�

f
Fx and so xn → �

f
Fx as n → ∞.

Since F is a closed convex set, it follows from Lemma . that �
f
Fx is single-valued,

which is denoted by x̃. By the definition of xn =�
f
Cnx and x̃ ∈F ⊂ Cn, we also have

G(xn, Jx) ≤G(x̃, Jx)

for all n≥ . By the definition ofG, we know that for any x ∈ E,G(u, Jx) is convex and lower
semicontinuous with respect to u and so

G(x, Jx) ≤ lim inf
n→∞ G(xn, Jx)

≤ lim sup
n→∞

G(xn, Jx)

≤G(x̃, Jx).

From the definition of �
f
Fx and x ∈F , we conclude that

x = x̃ =�
f
Fx

and xn → x = �
f
Fx as n→ ∞. This completes the proof. �

Remark .
(i) If f = , then G(x, Jy) = φ(x, y) and �

f
Cn =�Cn .

(ii) If we take f = , θ = , un = yn, and αn =  for all n ∈N, then the iterative scheme
(.) reduces to the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

yn = J–(βnJTnxn + ( – βn)Jxn),

Cn+ = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn) + ξn},
xn+ = �Cn+x, ∀n≥ ,

where ξn =max{, supp∈F(T),x∈C(φ(p,Tnx) – φ(p,x))}, which is the algorithm
introduced by Hao [] and an improvement to (.).

If T is quasi-φ-nonexpansive, then Theorem . is reduced to following without the
boundedness of F(T) and the asymptotically regularity of T .
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Corollary . Let E be a uniformly smooth and strictly convex Banach space with the
Kadec-Klee property. Let C be a nonempty closed convex subset of E. Let θ be a bifunction
from C ×C to R satisfying the conditions (A)-(A). Let T : C → C be a closed and quasi-
φ-nonexpansive mapping. Assume that F = F(T) ∩ EP(θ ) is nonempty. Let f : E → R

+ be
a convex and lower semicontinuous function with C ⊂ int(D(f )) and f () = . Let {αn} be a
sequence in [, ] and {βn}, {γn} be sequences in (, ) satisfying the following conditions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

C = C,

yn = J–(αnJx + βnJTxn + γnJxn)

un ∈ C such that θ (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn :G(z, Jun) ≤ αnG(z, Jx) + ( – αn)G(z, Jxn)},
xn+ =�

f
Cn+

x, ∀n≥ ,

where {rn} is a real sequence in [a,∞) for some a >  and �
f
Cn+

is the generalized f -
projection operator. Then {xn} converges strongly to �

f
Fx.

Remark .
(i) By Remark ., Theorem . extends Theorem . of Hao [].
(ii) Theorem . generalizes Theorem . of Matsushita and Takahashi [] in the

following respects:
• from the relatively nonexpansive mapping to the asymptotically
quasi-φ-nonexpansive mapping in the intermediate sense;

• from a uniformly convex and uniformly smooth Banach space to a uniformly
smooth and strictly convex Banach space with the Kadec-Klee property;

(iii) in view of the mappings and the frame work of the spaces, Theorem . generalizes
and improves Theorem . of Ma et al. [], Theorem . of Qin et al. [],
Theorem . of Qing and Lv [] and Theorem . of Saewan [].

We now provide a nontrivial family of mappings satisfying the conditions of Theo-
rem ..

Example . Let E = R with the standard norm ‖ · ‖ = | · | and C = [, ]. Let T : C → C
be a mapping defined by

Tx =

⎧⎨
⎩


x, x ∈ [,  ],

, x ∈ (  , ].
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We first show that T is an asymptotically quasi-φ-nonexpansive mapping in the interme-
diate sense with F(T) = {} �= φ. In fact, for p =  ∈ F(T), we have

φ
(
p,Tnx

)
=

∣∣ – Tnx
∣∣

=

n

|x|

≤ | – x| = φ(p,x), ∀x ∈
[
,




]

and

φ
(
p,Tnx

)
=

∣∣ – Tnx
∣∣

= 

≤ | – x| = φ(p,x), ∀x ∈
(


, 

]
.

Therefore, we have

lim sup
n→∞

sup
p∈F(T),x∈C

(
φ
(
p,Tnx

)
– φ(p,x)

) ≤ .

Next, we define a bifunction θ : C ×C →R satisfying the conditions (A)-(A) by

θ (x, y) = y – x.

Then the set of solutions EP(θ ) to the equilibrium problem for θ is obviously {}. Since
F = F(T)∩EP(θ ) �= φ and F(T) is bounded, it follows fromTheorem . that the sequence
defined by (.) converges strongly to �

f
Fx.
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