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Abstract
Let C be a nonempty closed convex subset of a real Hilbert space H with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let T : C → C be a nonexpansive mapping with a
nonempty set of fixed points Fix(T ) and let h : C → C be a Lipschitzian strong
pseudo-contraction. We first point out that the sequence generated by the usual
viscosity approximation method xn+1 = λnh(xn) + (1 – λn)Txn may not converge to a
fixed point of T , even not bounded. Secondly, we prove that if the sequence
(λn)⊂ (0, 1) satisfies the conditions: (i) λn → 0, (ii)

∑∞
n=0 λn = ∞ and

(iii)
∑∞

n=0 |λn+1 – λn| <∞ or limn→∞ λn+1
λn

= 1, then the sequence (xn) generated by a
general alternative regularization method: xn+1 = T (λnh(xn) + (1 – λn)xn) converges
strongly to a fixed point of T , which also solves the variational inequality problem:
finding an element x∗ such that 〈h(x∗) – x∗ , x – x∗〉 ≤ 0 for all x ∈ Fix(T ). Furthermore,
we prove that if T is replaced with the sequence of average mappings (1 – βn)I + βnT
(n ≥ 0) such that 0 < β∗ ≤ βn ≤ β∗ < 1, where β∗ and β∗ are two positive constants,
then the same convergence result holds provided conditions (i) and (ii) are satisfied.
Finally, an algorithm for finding a common fixed point of a family of finite
nonexpansive mappings is also proposed and its strong convergence is proved. Our
results in this paper extend and improve the alternative regularization methods
proposed by HK Xu.
MSC: 47H09; 47H10; 65K10
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1 Introduction
LetC be a nonempty closed convex subset of a real Hilbert spaceH with the inner product
〈·, ·〉 and the norm ‖ · ‖ and let f : C → C be a α-contractive mapping, i.e., there exists a
constant α ∈ [, ) such that ‖f (x)– f (y)‖ ≤ α‖x–y‖ holds for all x, y ∈ C. Let T : C → C be
a nonexpansive mapping, i.e., ‖Tx –Ty‖ ≤ ‖x– y‖ for all x, y ∈ C. Throughout this article,
the set of fixed points of T , indicated by Fix(T)� {x ∈ C | Tx = x}, is always assumed to be
nonempty.
For every nonempty closed convex subset K of H , the metric (or nearest point) projec-

tion indicated by PK fromH onto K can be defined, that is, for each x ∈H , PKx is the only
point in K such that ‖x– PKx‖ = inf{‖x– z‖ | z ∈ K}. It is well known (e.g., see []) that PK

is nonexpansive and a characteristic inequality holds: given x ∈ H and z ∈ K , then z = PKx
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if and only if

〈x – z, y – z〉 ≤ , ∀y ∈ K .

Since Fix(T) is a closed convex subset of H , so the metric projection PFix(T) is valid.
Recall that a mapping h : C → C is said to be L-Lipschitzian, if there exists a positive

constant L such that

∥∥h(x) – h(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C,

and a mapping h : C → C is said to be α-strongly pseudo-contractive, if there exists a
constant α ∈ [, ) such that

〈
h(x) – h(y),x – y

〉 ≤ α‖x – y‖, ∀x, y ∈ C.

In this case, we also call h a α-strong pseudo-contraction.
It is very easy to see that a α-contractivemapping is a α-strongly pseudo-contractive and

α-Lipschitzian mapping, i.e., the class of contractive mappings is a proper subset of the
class of Lipschitzian strong pseudo-contractions. The class of Lipschitzian strong pseudo-
contractions will be used repeatedly in the sequel.
Recall that a mapping F : C → H is said to be η-strongly monotone, if there exists a

positive constant η such that

〈
F(x) – F(y),x – y

〉 ≥ η‖x – y‖, ∀x, y ∈ C.

The variational inequality problem [] canmathematically be formulated as the problem
of finding a point x∗ ∈ K with the property

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ K ,

where K is a nonempty closed convex subset of H and F : K →H is a nonlinear operator.
It is well known that [] if F : K → H is a Lipschitzian and strongly monotone operator,
then the variational inequality problem has a unique solution.
Many iteration processes are often used to approximate a fixed point of a nonexpansive

mapping in a Hilbert space or a Banach space (for example, see [] and [–]). One of
them is now known as Halpern’s iteration process [] and is defined as follows: take an
initial guess x ∈ C arbitrarily and define (xn) recursively by

xn+ = λnu + ( – λn)Txn, n≥ , (.)

where (λn) is a sequence in the interval [, ] and u is some given element in C. For
Halpern’s iteration process, a classical result in the setting of Hilbert spaces is as follows.

Theorem . ([]) If (λn) satisfies the conditions:
(i) λn →  (n→ ∞);
(ii)

∑∞
n= λn =∞;
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(iii)
∑∞

n= |λn+ – λn| <∞ or limn→∞ λn+
λn

= ;
then the sequence (xn) generated by (.) converges strongly to a fixed point x∗ of T such
that x∗ = PFix(T)u, that is,

〈
u – x∗,x – x∗〉 ≤ , x ∈ Fix(T).

Xu [] proposed an alternative regularization method:

xn+ = T
(
λnu + ( – λn)xn

)
, n≥  (.)

and studied its strong convergence in the setting of Hilbert spaces and Banach spaces,
respectively. Indeed, in the setting of Hilbert spaces, one can proved that for algorithm
(.) the same convergence result as that of Theorem . holds under conditions (i)-(iii)
above.
As an extension to Halpern’s iteration process, Moudafi proposed [] the viscosity ap-

proximation method: take an initial guess x ∈ C arbitrarily and define (xn) recursively
by

xn+ = λnf (xn) + ( – λn)Txn, n≥ , (.)

where (λn) is a sequence in the interval [, ]. Moudafi proved the following result in
Hilbert spaces.

Theorem . ([]) If (λn) satisfies the same conditions (i)-(iii) as above, then the sequence
(xn) generated by (.) converges strongly to a fixed point x∗ of T , which also solves the
variational inequality problem: finding an element x∗ ∈ Fix(T) such that

〈
f
(
x∗) – x∗,x – x∗〉 ≤ , x ∈ Fix(T).

Xu studied the viscosity approximation method in the setting of Banach spaces and ob-
tained the strong convergence theorems [].
Similar to algorithm (.), we can naturally consider a general alternative regularization

method: take an initial guess x ∈ C arbitrarily and define (xn) recursively by

xn+ = T
(
λnf (xn) + ( – λn)xn

)
, n≥ , (.)

where (λn) is a sequence in the interval [, ]. In fact, in the setting of Hilbert spaces,
it is not difficult to prove by an argument very similar to the proof of Theorem . that
for algorithm (.) the same result as that of Theorem . holds under conditions (i)-(iii)
above.
The main purpose of this paper is to consider a very natural question: if algorithms

(.) and (.) can be extended to more general cases, more precisely, can we replace a
contractive mapping f with a Lipschitzian strong pseudo-contraction h so that the same
convergence result as that of Theorem . is still guaranteed under conditions (i)-(iii) as
above? The answer to this question is negative for algorithm (.) unfortunately but is sure
for algorithm (.) fortunately. In this sense, it seems reasonable to deem that algorithm
(.) is better that algorithm (.).
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Now we illustrate a fact via a very simple example that if f in algorithm (.) is replaced
with a Lipschitzian and strongly pseudo-contractive mapping h, then strong convergence
(even boundedness) of the iteration sequence (xn) may not be guaranteed, in general. In-
deed, take H =R

, C =R
, and T :R →R

 defined by

(
u
v

)
→

(
 –
 

)(
u
v

)
=

(
–v
u

)
, ∀x =

(
u
v

)
∈ R

.

Noting thatT is just a rotation operator overR, we see that T is a nonexpansivemapping.
Moreover, noting the fact that

〈Tx,x〉 = 

holds for all x ∈ R
, it is easy to see that for any positive constant κ and any α ∈ [, ),

h� κT is a κ-Lipschitzian and α-strongly pseudo-contractive mapping.
If f in algorithm (.) is replaced with h = T (i.e., κ = ), then (.) is of the form:

xn+ = Txn, n≥ . (.)

Since T is a rotation operator over R, the sequence (xn) generated by (.) does not con-
verge to

( 


)
, the unique fixed point of T , unless we take the initial guess x =

( 


)
. On the

other hand, if f in algorithm (.) is replaced with h = T (i.e., κ = ), thus (.) is rendered
in the form

xn+ = ( + λn)Txn, n≥ . (.)

Consequently, noting that ‖Tx‖ = ‖x‖, ∀x ∈R
, we have

‖xn+‖ = ( + λn)‖Txn‖
= ( + λn)‖xn‖
= ( + λn)( + λn–) · · · ( + λ)‖x‖.

Since
∑+∞

n= λn = ∞, limn→∞( + λn)( + λn–) · · · ( + λ) = ∞ holds and thus this implies
that the sequence (xn) generated by (.) is not bounded provided x = ( 



)
.

The rest of this paper is organized as follows. In order to prove our main results, some
useful facts and tools are listed as lemmas in the next section. In Section , we prove that if
a contractive mapping f in algorithm (.) is replaced with a Lipschitzian strong pseudo-
contraction h, then the same convergence result as that of Theorem . is still guaranteed
under conditions (i)-(iii) as above. Furthermore, we prove that if T is replaced with the
sequence of averagemappings (–βn)I+βnT (n≥ ) such that  < β∗ ≤ βn ≤ β∗ < , where
β∗ and β∗ are two positive constants, then the same result still holds provided conditions
(i) and (ii) are satisfied. In the last section, an algorithm for finding a common fixed point
of a family of finite nonexpansive mappings is also proposed and its strong convergence is
proved.
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We will use the notations:
. ⇀ for weak convergence and → for strong convergence.
. ωw(xn) = {x | ∃(xnk ) ⊂ (xn) such that xnk ⇀ x} denotes the weak ω-limit set of (xn).
. A� Bmeans that B is the definition of A.

2 Preliminaries
We need some facts and tools in a real Hilbert spaceH , which are listed as lemmas below.

Lemma . The following relation holds in a real Hilbert space H:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, x, y ∈ H .

Lemma . ([, ]) Assume (an) is a sequence of nonnegative real numbers satisfying the
property

an+ ≤ ( – γn)an + γnδn + σn, n = , ,  . . . .

If (γn)∞n= ⊂ (, ), (δn)∞n= and (σn)∞n= satisfy the conditions:
(i)

∑∞
n= γn =∞,

(ii) limsupn→∞ δn ≤ ,
(iii)

∑∞
n= |σn| <∞,

then limn→∞ an = .

Lemma . ([]) Let C be a closed convex subset of a real Hilbert space H and let T :
C → C be a nonexpansive mapping such that Fix(T) = ∅. If a sequence (xn) in C is such
that xn ⇀ z and ‖xn – Txn‖ → , then z = Tz.

Lemma . For each λ ∈ [, ], the following identity holds in a real Hilbert space H:

∥∥λu + ( – λ)v
∥∥ = λ‖u‖ + ( – λ)‖v‖ – λ( – λ)‖u – v‖, u, v ∈ H .

Lemma . ([]) Assume (sn) is a sequence of nonnegative real numbers such that

sn+ ≤ ( – γn)sn + γnδn, n≥ , (.)

sn+ ≤ sn – ηn + αn, n ≥ , (.)

where (γn) is a sequence in (, ), (ηn) is a sequence of nonnegative real numbers and (δn)
and (αn) are two sequences in R such that

(i)
∑∞

n= γn =∞,
(ii) limn→∞ αn = ,
(iii) limk→∞ ηnk =  implies lim supk→∞ δnk ≤  for any subsequence (nk) ⊂ (n).

Then limn→∞ sn = .

3 Algorithms for onemapping
Throughout this section, we will assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖, C is a closed convex subset of H and h : C → C is a

http://www.fixedpointtheoryandapplications.com/content/2014/1/203
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L-Lipschitzian and α-strongly pseudo-contractive mapping, i.e., there exist positive con-
stants L and α ∈ [, ) such that

∥∥h(x) – h(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C, (.)〈

h(x) – h(y),x – y
〉 ≤ α‖x – y‖, ∀x, y ∈ C. (.)

It is obvious that if h is a α-strong pseudo-contraction, then I – h is a ( – α)-strongly
monotone mapping, i.e.,

〈
(I – h)x – (I – h)y,x – y

〉 ≥ ( – α)‖x – y‖, ∀x, y ∈ C,

where I denotes the identity operator.
Our first result is as follows.

Theorem . Let h : C → C be a L-Lipschitzian and α-strongly pseudo-contractive map-
ping and let T : C → C be a nonexpansive mapping. If the sequence (λn) ⊂ (, ) satisfies
the conditions:

(i) λn →  (n→ ∞);
(ii)

∑∞
n= λn =∞;

(iii)
∑∞

n= |λn+ – λn| <∞ or limn→∞ λn+
λn

= ;
then the sequence (xn) generated by the algorithm

xn+ = T
(
λnh(xn) + ( – λn)xn

)
, n≥ , (.)

where x is selected in C arbitrarily, converges strongly to a fixed point of T , which also
solves the variational inequality problem: finding an element x∗ ∈ Fix(T) such that

〈
x∗ – h

(
x∗),x – x∗〉 ≥ , ∀x ∈ Fix(T). (.)

Proof Noting that I – h is a ( + L)-Lipschitzian and ( – α)-strongly monotone mapping,
so the variational inequality problem (.) has a unique solution, which is denoted by x∗.
Now we try to prove that xn → x∗.
Firstly, we deduce from (.)-(.) that

∥∥xn+ – x∗∥∥ =
∥∥T(

λnh(xn) + ( – λn)xn
)
– Tx∗∥∥

≤ ∥∥λn
(
h(xn) – x∗) + ( – λn)

(
xn – x∗)∥∥

= λ
n
∥∥h(xn) – x∗∥∥ + λn( – λn)

〈
h(xn) – x∗,xn – x∗〉 + ( – λn)

∥∥xn – x∗∥∥

≤ λ
n
[
L

∥∥xn – x∗∥∥ +
∥∥h(x∗) – x∗∥∥]

+ λn( – λn)
(
α
∥∥xn – x∗∥∥ +

〈
h
(
x∗) – x∗,xn – x∗〉)

+ ( – λn)
∥∥xn – x∗∥∥. (.)

Obviously

〈
h
(
x∗) – x∗,xn – x∗〉 ≤ ∥∥h(x∗) – x∗∥∥ · ∥∥xn – x∗∥∥

≤ β
∥∥xn – x∗∥∥ +


β

∥∥h(x∗) – x∗∥∥, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/203
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where β is a positive constant such that α +β < . Thus, the combination of (.) and (.)
leads to

∥∥xn+ – x∗∥∥ ≤
[
 – λn

(
 – λn

(


+ L

)
– ( – λn)(α + β)

)]∥∥xn – x∗∥∥

+ λ
n
∥∥h(x∗) – x∗∥∥ + λn( – λn)


β

∥∥h(x∗) – x∗∥∥

≤
[
 – λn

(
 – λn

(


+ L

)
– ( – λn)(α + β)

)]∥∥xn – x∗∥∥

+ λn

(
 +


β

)∥∥h(x∗) – x∗∥∥. (.)

Noting the fact that λn →  and

lim
n→∞

[
 – λn

(


+ L

)
– ( – λn)(α + β)

]
=  – (α + β) > ,

we assert that there exists some integer n such that λn <  and

 – λn

(


+ L

)
– ( – λn)(α + β) >



(
 – (α + β)

)
(.)

hold for all n≥ n. So we see from (.) and (.) that for all n≥ n, the following relation
holds:

∥∥xn+ – x∗∥∥ ≤ (
 – λn

(
 – (α + β)

))∥∥xn – x∗∥∥

+ λn
(
 – (α + β)

) 
 – (α + β)

(
 +


β

)∥∥h(x∗) – x∗∥∥. (.)

Consequently

∥∥xn+ – x∗∥∥ ≤max

{∥∥xn – x∗∥∥,


 – (α + β)

(
 +


β

)∥∥h(x∗) – x∗∥∥
}
, n≥ n,

and inductively

∥∥xn – x∗∥∥ ≤max

{∥∥xn – x∗∥∥,


 – (α + β)

(
 +


β

)∥∥h(x∗) – x∗∥∥
}
, n≥ n.

This means that (xn) is bounded, so is (h(xn)).
From (.), we have

‖xn+ – Txn‖ =
∥∥λn

(
h(xn) – xn

)∥∥
≤ λn

(∥∥h(xn)∥∥ + ‖xn‖
) →  (n→ ∞) (.)

due to the boundedness of (xn) and (h(xn)). Now we show that ‖xn+ – xn‖ → . Setting
un = ( – λn)xn – ( – λn–)xn–, vn = λnh(xn) – λn–h(xn–), we derive from Lemma ., (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/203
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and (.) that

‖un‖ =
∥∥( – λn)xn – ( – λn–)xn–

∥∥

=
∥∥( – λn)(xn – xn–) – (λn – λn–)xn–

∥∥

≤ ( – λn)‖xn – xn–‖ – (λn – λn–)
〈
xn–, ( – λn)xn – ( – λn–)xn–

〉
≤ ( – λn)‖xn – xn–‖ + |λn – λn–|

(‖xn–‖ + ‖xn–‖ · ‖xn‖
)
, (.)

‖vn‖ =
∥∥λnh(xn) – λn–h(xn–)

∥∥

=
∥∥λn

(
h(xn) – h(xn–)

)
+ (λn – λn–)h(xn–)

∥∥

≤ λ
n
∥∥h(xn) – h(xn–)

∥∥ + (λn – λn–)
〈
h(xn–),λnh(xn) – λn–h(xn–)

〉
≤ λ

nL
‖xn – xn–‖ + |λn – λn–|

(∥∥h(xn–)∥∥

+
∥∥h(xn–)∥∥ · ∥∥h(xn)∥∥)

, (.)

and

〈un, vn〉 =
〈
( – λn)(xn – xn–) – (λn – λn–)xn–,λn

(
h(xn) – h(xn–)

)
+ (λn – λn–)h(xn–)

〉
≤ λn( – λn)α‖xn – xn–‖ + |λn – λn–|‖xn–‖

(∥∥h(xn)∥∥
+

∥∥h(xn–)∥∥)
+ |λn – λn–|

(‖xn‖ · ∥∥h(xn–)∥∥
+ ‖xn–‖ · ∥∥h(xn–)∥∥)

+ |λn – λn–|‖xn–‖ · ∥∥h(xn–)∥∥. (.)

Noting the boundedness of (xn) and (h(xn)), it follows from (.)-(.) that

‖xn+ – xn‖ ≤ ‖un + vn‖

≤ ‖un‖ + ‖vn‖ + 〈un, vn〉
≤ [ – γn] · ‖xn – xn–‖ + |λn – λn–|M,

where γn = λn( – λn( + L) – ( – λn)α) and M is a positive constant independent on n.
Observing that

lim
n→∞

[
 – λn

(
 + L

)
– ( – λn)α

]
= ( – α) > ,

we get from conditions (i) and (ii) that γn →  and
∑∞

n= γn =∞ hold. Hence, this together
with condition (iii) allows us to assert ‖xn+ – xn‖ →  by using Lemma .. From this
together with (.) one concludes that ‖xn – Txn‖ →  and hence we obtain ω(xn) ⊂
Fix(T) by using Lemma ..
Finally, we prove xn → x∗ (n→ ∞). Again using (.), we also have

∥∥xn+ – x∗∥∥ ≤ [
 – λn

(
 – λn

(
 + L

)
– ( – λn)α

)]∥∥xn – x∗∥∥

+ λ
n
∥∥h(x∗) – x∗∥∥ + λn( – λn)

〈
h
(
x∗) – x∗,xn – x∗〉

� ( – γn)
∥∥xn – x∗∥∥ + γnδn, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/203
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where γn = λn( – λn( + L) – ( – λn)α) and

δn =
λn‖h(x∗) – x∗‖ + ( – λn)〈h(x∗) – x∗,xn – x∗〉

 – λn( + L) – ( – λn)α
.

Take a subsequence (xnk ) such that

lim sup
n→∞

〈
h
(
x∗) – x∗,xn – x∗〉 = lim

k→∞
〈
h
(
x∗) – x∗,xnk – x∗〉.

Without loss of the generality, we assume that there exists some x̄ ∈ Fix(T) (noting that
ω(xn) ⊂ Fix(T) holds) such that xnk ⇀ x̄ (otherwise, we may select some subsequence of
(xnk ) with this property). Hence, we have

lim sup
n→∞

〈
h
(
x∗) – x∗,xn – x∗〉 = lim

k→∞
〈
h
(
x∗) – x∗,xnk – x∗〉

=
〈
h
(
x∗) – x∗, x̄ – x∗〉 ≤  (.)

noting that x∗ is the unique solution of the variational inequality (.). Consequently, it
is easy to verify that lim supn→∞ δn ≤  by using (.). This together with γn →  and∑∞

n= γn =∞ allows us to use Lemma . to (.) to obtain

∥∥xn – x∗∥∥ →  (n→ ∞). �

Theorem . Let h : C → C be a L-Lipschitzian and α-strongly pseudo-contractive map-
ping and let T : C → C be a nonexpansive mapping. Let Tn = ( – βn)I + βnT , where
(βn) ⊂ (, ). Take x ∈ C arbitrarily and define a sequence (xn) by the process

xn+ = Tn
(
λnh(xn) + ( – λn)xn

)
, n≥ , (.)

where (λn) ⊂ (, ). If (λn) and (βn) satisfy the conditions:
(i) λn →  (n→ ∞);
(ii)

∑∞
n= λn =∞;

(iii) there exist two constants β∗ and β∗ such that  < β∗ ≤ βn ≤ β∗ <  for all n≥ ,
then the sequence (xn) converges strongly to a fixed point of T , which also solves the varia-
tional inequality problem: finding a point x∗ ∈ Fix(T) such that

〈
x∗ – h

(
x∗),x – x∗〉 ≥ , ∀x ∈ Fix(T).

Proof Firstly, noting that

∥∥xn+ – x∗∥∥ ≤ ( – βn)
∥∥(

λnh(xn) + ( – λn)xn
)
– x∗∥∥

+ βn
∥∥T(

λnh(xn) + ( – λn)xn
)
– Tx∗∥∥

≤ ∥∥λnh(xn) + ( – λn)xn – x∗∥∥, (.)
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we assert that (xn) is bounded by an argument similar to the proof of Theorem .. More-
over, in a way similar to getting (.), we have from (.)

∥∥xn+ – x∗∥∥ ≤ ∥∥λn
(
h(xn) – x∗) + ( – λn)

(
xn – x∗)∥∥

≤ [
 – λn

(
 – λn

(
 + L

)
– ( – λn)α

)]∥∥xn – x∗∥∥

+ λ
n
∥∥h(x∗) – x∗∥∥ + λn( – λn)

〈
h
(
x∗) – x∗,xn – x∗〉. (.)

Secondly, setting zn = λnh(xn) + ( – λn)xn and using Lemma ., we have from (.) and
(.)

∥∥xn+ – x∗∥∥

=
∥∥( – βn)

(
zn – x∗) + βn

(
Tzn – x∗)∥∥

= ( – βn)
∥∥zn – x∗∥∥ + βn

∥∥Tzn – x∗∥∥ – βn( – βn)‖zn – Tzn‖

≤ ∥∥zn – x∗∥∥ – βn( – βn)‖zn – Tzn‖

≤ ∥∥xn – x∗∥∥ – βn( – βn)‖zn – Tzn‖

+ λ
n
∥∥h(x∗) – x∗∥∥ + λn( – λn)

∥∥h(x∗) – x∗∥∥ · ∥∥xn – x∗∥∥. (.)

Setting

sn =
∥∥xn – x∗∥∥, γn = λn

(
 – λn

(
 + L

)
– ( – λn)α

)
,

δn =


 – λn( + L) – ( – λn)α
[
λn

∥∥h(x∗) – x∗∥∥

+ ( – λn)
〈
h
(
x∗) – x∗,xn – x∗〉],

ηn = βn( – βn)‖zn – Tzn‖,
αn = λ

n
∥∥h(x∗) – x∗∥∥ + λn( – λn)

∥∥h(x∗) – x∗∥∥ · ∥∥xn – x∗∥∥,
thus (.) and (.) can be rewritten as the form

sn+ ≤ ( – γn)sn + γnsn, (.)

sn+ ≤ sn – ηn + αn. (.)

Since γn → ,
∑∞

n= γn =∞ (limn→∞(–λn(+L)–(–λn)α) = (–α) > ) and αn → 
hold obviously, so in order to complete the proof by using Lemma ., it suffices to verify
that ηnk →  (k → ∞) implies that

lim
k→∞

δnk ≤ 

for any subsequence (nk)⊂ (n).
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Indeed, ηnk →  (k → ∞) implies that ‖znk – Tznk‖ →  due to condition (iii). Further-
more, the relation

‖xnk – Txnk‖ ≤ ‖xnk – znk‖ + ‖znk – Tznk‖ + ‖Tznk – Txnk‖
≤ ‖xnk – znk‖ + ‖znk – Tznk‖ (.)

together with the fact that

‖xn – zn‖ ≤ λn
[∥∥h(xn)∥∥ + ‖xn‖

] → 

allows us to get ‖xnk – Txnk‖ →  (k → ∞). Using Lemma ., we get ω(xnk ) ⊂ Fix(T).
Thus we have

lim
k→∞

〈
h
(
x∗) – x∗,xnk – x∗〉 ≤ 

and hence limk→∞δnk ≤  holds. �

4 Algorithm for several mappings
In this section, we turn to considering an algorithm for finding a common fixed point of a
family of finite nonexpansive mappings.
Let H be a real Hilbert space and let C be a closed convex subset of H . Let N be an

integer such thatN ≥  and letTi : C → C (i = , , . . . ,N ) be a family of finite nonexpansive
mappings. Set

Tn
i =

(
 – βn

i
)
I + βn

i Ti, n ≥ , i = , , . . . ,N ,

where (βn
i )⊂ (, ) for all n ≥  and i = , , . . . ,N .

Our main result in this section is as follows.

Theorem . Let h : C → C be a L-Lipschitzian and α-strongly pseudo-contractive map-
ping. Take a initial guess x ∈ C arbitrarily and define a sequence (xn) by

xn+ = Tn
NT

n
N– · · ·Tn


(
λnh(xn) + ( – λn)xn

)
, n ≥ , (.)

where (λn) ⊂ (, ) and Tn
i is given as above. If (λn) and (βn

i ) satisfy the conditions:
(i) λn →  (n→ ∞);
(ii)

∑∞
n= λn =∞;

(iii) there exist two constants β∗ and β∗ such that  < β∗ ≤ βn
i ≤ β∗ <  for all n≥  and

i = , , . . . ,N ,
then the sequence (xn) generated by (.) converges strongly to a common fixed point of
T,T, . . . ,TN ,which also solves the variational inequality problem: finding an element x∗ ∈⋂N

i= Fix(Ti) such that

〈
x∗ – h

(
x∗),x – x∗〉 ≥ , ∀x ∈

N⋂
i=

Fix(Ti). (.)
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Proof Without loss of the generality, we only give the proof for the case where N = .
It is clear that the variational inequality (.) has a unique solution, which is denoted by

x∗ in the sequel. An argument very similar to the proof of Theorem . allows us to verify
that (xn) is bounded (so is (h(xn))) and the following relation holds:

∥∥xn+ – x∗∥∥

≤ [
 – λn

(
 – λn

(
 + L

)
– ( – λn)α

)]∥∥xn – x∗∥∥

+ λ
n
∥∥h(x∗) – x∗∥∥ + λn( – λn)

〈
h
(
x∗) – x∗,xn – x∗〉. (.)

On the other hand, setting zn = λnh(xn) + ( – λn)xn, we have, by using Lemma .,

∥∥xn+ – x∗∥∥

=
∥∥(
 – βn


)(
Tn
 zn – x∗) + βn


(
TTn

 zn – x∗)∥∥

=
(
 – βn


)∥∥Tn

 zn – x∗∥∥ + βn

∥∥TTn

 zn – x∗∥∥

– βn

(
 – βn


)∥∥TTn

 zn – Tn
 zn

∥∥

≤ ∥∥Tn
 zn – x∗∥∥ – βn


(
 – βn


)∥∥TTn

 zn – Tn
 zn

∥∥

=
(
 – βn


)∥∥zn – x∗∥∥ + βn


∥∥Tzn – x∗∥∥

– βn

(
 – βn


)‖zn – Tzn‖ – βn


(
 – βn


)∥∥Tn

 zn – TTn
 zn

∥∥

≤ ∥∥zn – x∗∥∥ – βn

(
 – βn


)‖zn – Tzn‖

– βn

(
 – βn


)∥∥Tn

 zn – TTn
 zn

∥∥. (.)

Similar to (.), it is easy to verify that

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + λ
n
∥∥h(x∗) – x∗∥∥

+ λn( – λn)
∥∥h(x∗) – x∗∥∥ · ∥∥xn – x∗∥∥. (.)

Combining (.) and (.), we derive that

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – βn

(
 – βn


)‖zn – Tzn‖

– βn

(
 – βn


)∥∥Tn

 zn – TTn
 zn

∥∥ + λ
n
∥∥h(x∗) – x∗∥∥

+ λn( – λn)
∥∥h(x∗) – x∗∥∥ · ∥∥xn – x∗∥∥. (.)

Setting

sn =
∥∥xn – x∗∥∥, γn = λn

[
 – λn

(
 – λn

(
 + L

)
– ( – λn)α

)]
,

δn =


 – λn( – λn( + L) – ( – λn)α)
[
λn

∥∥h(x∗) – x∗∥∥

+ ( – λn)
〈
h
(
x∗) – x∗,xn – x∗〉],

ηn = βn

(
 – βn


)‖zn – Tzn‖ + βn


(
 – βn


)∥∥Tn

 zn – TTn
 zn

∥∥,
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αn = λ
n
∥∥h(x∗) – x∗∥∥ + λn( – λn)

∥∥h(x∗) – x∗∥∥ · ∥∥xn – x∗∥∥,
thus (.) and (.) can be rewritten in the following forms, respectively:

sn+ ≤ ( – γn)sn + γnsn, (.)

sn+ ≤ sn – ηn + αn. (.)

By using Lemma ., in order to complete the proof, it suffices to show that ηnk →  (k →
∞) implies that

lim
k→∞

δnk ≤ .

In fact, noting condition (iii), we get from ηnk → , ‖znk – Tznk‖ →  and ‖Tnk
 znk –

TT
nk
 znk‖ →  all hold. Consequently, ‖xnk – Txnk‖ →  follows from the inequality

‖xnk – Txnk‖ ≤ ‖xnk – znk‖ + ‖znk – Tznk‖ + ‖Tznk – Txnk‖
≤ ‖xnk – znk‖ + ‖znk – Tznk‖

and the fact that ‖xn – zn‖ →  (n → ∞) and hence ω(xnk ) ⊂ Fix(T) holds. On the other
hand, using ‖znk – Tznk‖ → , ‖Tnk

 znk – TT
nk
 znk‖ →  and the relation

‖xnk – Txnk‖ ≤ ‖xnk – znk‖ +
∥∥znk – Tnk

 znk
∥∥ +

∥∥Tnk
 znk – TT

nk
 znk

∥∥
+

∥∥TT
nk
 znk – Tznk

∥∥ + ‖Tznk – Txnk‖
≤ ‖xnk – znk‖ + ‖znk – Tznk‖ +

∥∥Tnk
 znk – TT

nk
 znk

∥∥,
we conclude that ‖xnk –Txnk‖ →  and this means that ω(xnk ) ⊂ Fix(T) also holds. Thus
we have proved that

ω(xnk ) ⊂ Fix(T)∩ Fix(T). (.)

Moreover, we have

lim
k→∞

〈
h
(
x∗) – x∗,xn – x∗〉 ≤ ,

and hence

lim
k→∞

δnk ≤ . �
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