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Abstract
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1 Introduction
We begin with the concept of C∗-algebras.
Suppose that A is a unital algebra with the unit I . An involution on A is a conjugate-

linear map a �→ a∗ on A such that a∗∗ = a and (ab)∗ = b∗a∗ for all a,b ∈ A. The pair (A,∗)
is called a ∗-algebra. A Banach ∗-algebra is a ∗-algebra A together with a complete sub-
multiplicative norm such that ‖a∗‖ = ‖a‖ (∀a ∈ A). A C∗-algebra is a Banach ∗-algebra
such that ‖a∗a‖ = ‖a‖ [, ].
Notice that the seeming mild requirement on a C∗-algebra above is in fact very strong.

Moreover, the existence of the involution C∗-algebra theory can be thought of as infinite-
dimensional real analysis. Clearly that under the norm topology, L(H), the set of all
bounded linear operators on a Hilbert space H , is a C∗-algebra.
As we have known, the Banach contraction principle is a very useful, simple and clas-

sical tool in modern analysis. Also it is an important tool for solving existence problems
in many branches of mathematics and physics. In general, the theorem has been gener-
alized in two directions. On the one side, the usual contractive (expansive) condition is
replaced by weakly contractive (expansive) condition. On the other side, the action spaces
are replaced by metric spaces endowed with an ordered or partially ordered structure. In
recent years, O’Regan and Petrusel [] started the investigations concerning a fixed point
theory in ordered metric spaces. Later, many authors followed this research by introduc-
ing and investigating the different types of contractive mappings. For example in [] Ca-
ballero et al. considered contractive like mapping in ordered metric spaces and applied
their results in ordinary differential equations. In , Huang and Zhang [] introduced
the concept of cone metric space, replacing the set of real numbers by an ordered Banach
space. Later, many authors generalized their fixed point theorems on different type ofmet-
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ric spaces [–]. In [], the authors studied the operator-valued metric spaces and gave
some fixed point theorems on the spaces. In this paper, we introduce a new type of metric
spaces which generalize the concepts of metric spaces and operator-valuedmetric spaces,
and give some related fixed point theorems for self-maps with contractive or expansive
conditions on such spaces.
The paper is organized as follows: Based on the concept and properties of C∗-algebras,

we first introduce a concept of C∗-algebra-valued metric spaces. Moreover, some fixed
point theorems for mappings satisfying the contractive or expansive conditions on
C∗-algebra-valued metric spaces are established. Finally, as applications, existence and
uniqueness results for a type of integral equation and operator equation are given.

2 Main results
To begin with, let us start from some basic definitions, which will be used later.
Throughout this paper, A will denote an unital C∗-algebra with a unit I . Set Ah = {x ∈

A : x = x∗}. We call an element x ∈ A a positive element, denote it by x � θ , if x ∈ Ah

and σ (x) ⊂ R+ = [,∞), where σ (x) is the spectrum of x. Using positive elements, one
can define a partial ordering � on Ah as follows: x � y if and only if y – x � θ , where θ

means the zero element in A. From now on, by A+ we denote the set {x ∈ A : x � θ} and
|x| = (x∗x)  .

Remark . When A is a unital C∗-algebra, then for any x ∈A+ we have x� I ⇔ ‖x‖ ≤ 
[, ].

With the help of the positive element in A, one can give the definition of a C∗-algebra-
valued metric space.

Definition . Let X be a nonempty set. Suppose the mapping d : X ×X →A satisfies:
() θ � d(x, y) for all x, y ∈ X and d(x, y) = θ ⇔ x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a C∗-algebra-valued metric on X and (X,A,d) is called a C∗-algebra-
valued metric space.

It is obvious that C∗-algebra-valued metric spaces generalize the concept of metric
spaces, replacing the set of real numbers by A+.

Definition . Let (X,A,d) be a C∗-algebra-valued metric space. Suppose that {xn} ⊂ X
and x ∈ X. If for any ε >  there isN such that for all n >N , ‖d(xn,x)‖ ≤ ε, then {xn} is said
to be convergent with respect to A and {xn} converges to x and x is the limit of {xn}. We
denote it by limn→∞ xn = x.
If for any ε >  there is N such that for all n,m >N , ‖d(xn,xm)‖ ≤ ε, then {xn} is called a

Cauchy sequence with respect to A.
We say (X,A,d) is a complete C∗-algebra-valued metric space if every Cauchy sequence

with respect to A is convergent.
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It is obvious that if X is a Banach space, then (X,A,d) is a complete C∗-algebra-valued
metric space if we set

d(x, y) = ‖x – y‖I.

The following are nontrivial examples of complete C∗-algebra-valued metric space.

Example . Let X = L∞(E) and H = L(E), where E is a Lebesgue measurable set. By
L(H) we denote the set of bounded linear operators on Hilbert space H . Clearly L(H) is a
C∗-algebra with the usual operator norm.
Define d : X ×X → L(H) by

d(f , g) = π|f –g| (∀f , g ∈ X),

where πh :H →H is the multiplication operator defined by

πh(ϕ) = h · ϕ,

for ϕ ∈ H . Then d is a C∗-algebra-valuedmetric and (X,L(H),d) is a complete C∗-algebra-
valued metric space.
Indeed, it suffices to verity the completeness. Let {fn}∞n= in X be a Cauchy sequence with

respect to L(H). Then for a given ε > , there is a natural number N(ε) such that for all
n,m ≥N(ε),

∥∥d(fn, fm)∥∥ = ‖π|fn–fm|‖ = ‖fn – fm‖∞ ≤ ε,

then {fn}∞n= is a Cauchy sequence in the space X. Thus, there is a function f ∈ X and a
natural number N(ε) such that ‖fn – f ‖∞ ≤ ε if n≥N.
It follows that

∥∥d(fn, f )∥∥ = ‖π|fn–f |‖ = ‖fn – f ‖∞ ≤ ε.

Therefore, the sequence {fn}∞n= converges to the function f in X with respect to L(H), that
is, (X,L(H),d) is complete with respect to L(H).

Example . Let X =R and A =M(R). Define

d(x, y) = diag
(|x – y|,α|x – y|),

where x, y ∈ R and α ≥  is a constant. It is easy to verify d is a C∗-algebra-valued metric
and (X,M(R),d) is a complete C∗-algebra-valued metric space by the completeness of R.

Now we give the definition of a C∗-algebra-valued contractive mapping on X.

Definition . Suppose that (X,A,d) is a C∗-algebra-valuedmetric space.We call a map-
ping T : X → X is a C∗-algebra-valued contractive mapping on X, if there exists an A ∈A

with ‖A‖ <  such that

d(Tx,Ty) � A∗d(x, y)A, ∀x, y ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2014/1/206
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Theorem . If (X,A,d) is a complete C∗-algebra-valuedmetric space and T is a contrac-
tive mapping, there exists a unique fixed point in X.

Proof It is clear that if A = θ , T maps the X into a single point. Thus without loss of gen-
erality, one can suppose that A �= θ .
Choose x ∈ X and set xn+ = Txn = Tn+x, n = , , . . . . For convenience, by Bwe denote

the element d(x,x) in A.
Notice that in a C∗-algebra, if a,b ∈A+ and a � b, then for any x ∈A both x∗ax and x∗bx

are positive elements and x∗ax� x∗bx []. Thus

d(xn+,xn) = d(Txn,Txn–)� A∗d(xn,xn–)A

� (
A∗)d(xn–,xn–)A

� · · ·
� (

A∗)nd(x,x)An

=
(
A∗)nBAn.

So for n +  >m,

d(xn+,xm) � d(xn+,xn) + d(xn,xn–) + · · · + d(xm+,xm)

� (
A∗)nBAn + · · · + (

A∗)mBAm

=
n∑

k=m

(
A∗)kBAk

=
n∑

k=m

(
A∗)kB 

B

Ak

=
n∑

k=m

(
B


Ak)∗(B 

Ak)

=
n∑

k=m

∣∣B 
Ak∣∣

�
∥∥∥∥∥

n∑
k=m

∣∣B 
Ak∣∣

∥∥∥∥∥I

�
n∑

k=m

∥∥B 

∥∥∥∥Ak∥∥I

� ∥∥B 

∥∥

n∑
k=m

‖A‖kI

� ∥∥B 

∥∥ ‖A‖m

 – ‖A‖ I → θ (m → ∞).

Therefore {xn} is a Cauchy sequence with respect to A. By the completeness of (X,A,d),
there exists an x ∈ X such that limn→∞ xn = limn→∞ Txn– = x.
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Since

θ � d(Tx,x)� d(Tx,Txn) + d(Txn,x)

� A∗d(x,xn)A + d(xn+,x) → θ (n→ ∞),

hence, Tx = x, i.e., x is a fixed point of T .
Now suppose that y ( �= x) is another fixed point of T , since

θ � d(x, y) = d(Tx,Ty) � A∗d(x, y)A,

we have

 ≤ ∥∥d(x, y)∥∥ =
∥∥d(Tx,Ty)∥∥

≤ ∥∥A∗d(x, y)A
∥∥

≤ ∥∥A∗∥∥∥∥d(x, y)∥∥‖A‖
= ‖A‖∥∥d(x, y)∥∥
<

∥∥d(x, y)∥∥.
It is impossible. So d(x, y) = θ and x = y, which implies that the fixed point is unique. �

Similar to the concept of contractive mapping, we have the concept of an expansive
mapping and furthermore have the related fixed point theorem.

Definition . Let X be a nonempty set. We call a mapping T is a C∗-algebra-valued
expansion mapping on X, if T : X → X satisfies:
() T(X) = X ;
() d(Tx,Ty) � A∗d(x, y)A, ∀x, y ∈ X ,

where A ∈A is an invertible element and ‖A–‖ < .

Theorem . Let (X,A,d) be a complete C∗-algebra-valued metric space. Then for the
expansion mapping T , there exists a unique fixed point in X.

Proof Firstly, T is injective. Indeed, for any x, y ∈ X with x �= y, if Tx = Ty, we have

θ = d(Tx,Ty) � A∗d(x, y)A.

Since A∗d(x, y)A ∈A+, A∗d(x, y)A = θ . Also A is invertible, d(x, y) = θ , which is impossible.
Thus T is injective.
Next, we will show T has a unique fixed point in X. In fact, since T is invertible and for

any x, y ∈ X,

d(Tx,Ty) � A∗d(x, y)A.

In the above formula, substitute x, y with T–x, T–y, respectively, and we get

d(x, y) � A∗d
(
T–x,T–y

)
A.

http://www.fixedpointtheoryandapplications.com/content/2014/1/206
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This means

(
A∗)–d(x, y)A– � d

(
T–x,T–y

)
,

and thus

(
A–)∗d(x, y)A– � d

(
T–x,T–y

)
.

Using Theorem ., there exists a unique x such that T–x = x, which means there has a
unique fixed point x ∈ X such that Tx = x. �

Before introducing another fixed point theorem, we give a lemma first. Such a result can
be found in [, ].

Lemma . Suppose that A is a unital C∗-algebra with a unit I .
() If a ∈A+ with ‖a‖ < 

 , then I – a is invertible and ‖a(I – a)–‖ < ;
() suppose that a,b ∈A with a,b � θ and ab = ba, then ab� θ ;
() by A′ we denote the set {a ∈A : ab = ba,∀b ∈A}. Let a ∈A

′, if b, c ∈ A with b � c� θ

and I – a ∈A
′
+ is a invertible operator, then

(I – a)–b � (I – a)–c.

Notice that in aC∗-algebra, if θ � a,b, one cannot conclude that θ � ab. Indeed, consider
theC∗-algebraM(C) and set a =

(  
 

)
, b =

(  –
– 

)
, then ab =

( – 
– 

)
. Clearly a,b ∈M(C)+,

while ab is not.

Theorem . Let (X,A,d) be a complete C∗-valued metric space. Suppose the mapping
T : X → X satisfies for all x, y ∈ X

d(Tx,Ty) � A
(
d(Tx, y) + d(Ty,x)

)
,

where A ∈A
′
+ and ‖A‖ < 

 . Then there exists a unique fixed point in X.

Proof Without loss of generality, one can suppose that A �= θ . Notice that A ∈ A
′
+,

A(d(Tx, y) + d(Ty,x)) is also a positive element.
Choose x ∈ X, set xn+ = Txn = Tn+x, n = , , . . . , by B we denote the element d(x,x)

in A. Then

d(xn+,xn) = d(Txn,Txn–)

� A
(
d(Txn,xn–) + d(Txn–,xn)

)
= A

(
d(Txn,Txn–) + d(Txn–,Txn–)

)
� A

(
d(Txn,Txn–) + d(Txn–,Txn–)

)
= Ad(Txn,Txn–) +Ad(Txn–,Txn–)

= Ad(xn+,xn) +Ad(xn,xn–).
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Thus,

(I –A)d(xn+,xn) � Ad(xn,xn–).

Since A ∈ A
′
+ with ‖A‖ < 

 , one have (I – A)– ∈ A
′
+ and furthermore A(I – A)– ∈ A

′
+

with ‖A(I –A)–‖ <  by Lemma .. Therefore,

d(xn+,xn) � A(I –A)–d(xn,xn–) = td(xn,xn–),

where t = A(I –A)–.
For n +  >m,

d(xn+,xm) � d(xn+,xn) + d(xn,xn–) + · · · + d(xm+,xm)

� (
tn + tn– + · · · + tm

)
d(x,x)

=
n∑

k=m

t
k
 t

k
B


B




=
n∑

k=m

B

 t

k
 t

k
B




=
n∑

k=m

(
t
k
B



)∗(t kB 


)

=
n∑

k=m

∣∣t kB 

∣∣

�
∥∥∥∥∥

n∑
k=m

∣∣t kB 

∣∣

∥∥∥∥∥I

�
n∑

k=m

∥∥B 

∥∥∥∥t k ∥∥I

� ∥∥B 

∥∥

n∑
k=m

‖t‖kI

� ∥∥B 

∥∥ ‖t‖m

 – ‖t‖ I → θ (m → ∞).

This implies that {xn} is a Cauchy sequence with respect to A. By the completeness of
(X,A,d), there exists x ∈ X such that limn→∞ xn = x, i.e. limn→∞ Txn– = x. Since

d(Tx,x) � d(Tx,Txn) + d(Txn,x)

� A
(
d(Tx,xn) + d(Txn,x)

)
+ d(xn+,x)

� A
(
d(Tx,x) + d(x,xn) + d(xn+,x)

)
+ d(xn+,x).

This is equivalent to

(I –A)d(Tx,x)� A
(
d(x,xn) + d(xn+,x)

)
+ d(xn+,x).
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Then

∥∥d(Tx,x)∥∥ ≤ ∥∥A(I –A)–
∥∥(∥∥d(x,xn)∥∥ +

∥∥d(xn+,x)∥∥)
+

∥∥(I –A)–
∥∥∥∥d(xn+,x)∥∥

→  (n→ ∞).

This implies that Tx = x i.e., x is a fixed point of T .
Now if y ( �= x) is another fixed point of T , then

θ � d(x, y) = d(Tx,Ty)

� A
(
d(Tx, y) + d(Ty,x)

)
= A

(
d(x, y) + d(y,x)

)

i.e.,

d(x, y) � A(I –A)–d(x, y).

Since ‖A(I –A)–‖ < ,

 ≤ ∥∥d(x, y)∥∥ =
∥∥d(Tx,Ty)∥∥

≤ ∥∥A(I –A)–d(x, y)
∥∥

≤ ∥∥A(I –A)–
∥∥∥∥d(x, y)∥∥

<
∥∥d(x, y)∥∥.

This means that

d(x, y) = θ ⇔ x = y.

Therefore the fixed point is unique and the proof is complete. �

3 Applications
As applications of contractive mapping theorem on complete C∗-algebra-valued metric
spaces, existence and uniqueness results for a type of integral equation and operator equa-
tion are given.

Example . Consider the integral equation

x(t) =
∫
E
K

(
t, s,x(s)

)
ds + g(t), t ∈ E,

where E is a Lebesgue measurable set.
Suppose that
() K : E × E ×R →R and g ∈ L∞(E);

http://www.fixedpointtheoryandapplications.com/content/2014/1/206
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() there exists a continuous function ϕ : E × E →R and k ∈ (, ) such that

∣∣K (t, s,u) –K (t, s, v)
∣∣ ≤ k

∣∣ϕ(t, s)(u – v)
∣∣,

for t, s ∈ E and u, v ∈R;
() supt∈E

∫
E |ϕ(t, s)|ds ≤ .

Then the integral equation has a unique solution x∗ in L∞(E).

Proof Let X = L∞(E) and H = L(E). Set d as Example ., then d is a C∗-algebra-valued
metric and (X,L(H),d) is a completeC∗-algebra-valuedmetric space with respect to L(H).
Let T : L∞(E)→ L∞(E) be

Tx(t) =
∫
E
K

(
t, s,x(s)

)
ds + g(t), t ∈ E.

Set A = kI , then A ∈ L(H)+ and ‖A‖ = k < . For any h ∈ H ,

∥∥d(Tx,Ty)∥∥ = sup
‖h‖=

(π|Tx–Ty|h,h)

= sup
‖h‖=

∫
E

[∣∣∣∣
∫
E

(
K

(
t, s,x(s)

)
–K

(
t, s, y(s)

))
ds

∣∣∣∣
]
h(t)h(t) dt

≤ sup
‖h‖=

∫
E

[∫
E

∣∣K(
t, s,x(s)

)
–K

(
t, s, y(s)

)∣∣ds
]∣∣h(t)∣∣ dt

≤ sup
‖h‖=

∫
E

[∫
E

∣∣kϕ(t, s)(x(s) – y(s)
)∣∣ds

]∣∣h(t)∣∣dt

≤ k sup
‖h‖=

∫
E

[∫
E

∣∣ϕ(t, s)∣∣ds
]∣∣h(t)∣∣ dt · ‖x – y‖∞

≤ k sup
t∈E

∫
E

∣∣ϕ(t, s)∣∣ds · sup
‖h‖=

∫
E

∣∣h(t)∣∣ dt · ‖x – y‖∞

≤ k‖x – y‖∞

= ‖A‖∥∥d(x, y)∥∥.

Since ‖A‖ < , the integral equation has a unique solution x∗ in L∞(E). �

Example. Suppose thatH is aHilbert space, L(H) is the set of linear boundedoperators
on H . Let A,A, . . . ,An ∈ L(H), which satisfy

∑∞
n= ‖An‖ <  and X ∈ L(H), Q ∈ L(H)+.

Then the operator equation

X –
∞∑
n=

A∗
nXAn =Q

has a unique solution in L(H).

Proof Set α =
∑∞

n= ‖An‖. Clear that if α = , then the An = θ (n ∈ N), and the equation
has a unique solution in L(H). Without loss of generality, one can suppose that α > .

http://www.fixedpointtheoryandapplications.com/content/2014/1/206
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Choose a positive operator T ∈ L(H). For X,Y ∈ L(H), set

d(X,Y ) = ‖X – Y‖T .

It is easy to verify that d(X,Y ) is a C∗-algebra-valued metric and (L(H),d) is complete
since L(H) is a Banach space.
Consider the map F : L(H)→ L(H) defined by

F(X) =
∞∑
n=

A∗
nXAn +Q.

Then

d
(
F(X),F(Y )

)
=

∥∥F(X) – F(Y )
∥∥T

=

∥∥∥∥∥
∞∑
n=

A∗
n(X – Y )An

∥∥∥∥∥T

�
∞∑
n=

‖An‖‖X – Y‖T

= αd(X,Y )

=
(
α


 I

)∗d(X,Y )
(
α


 I

)
.

Using Theorem ., there exists a unique fixed point X in L(H). Furthermore, since∑∞
n=A∗

nXAn +Q is a positive operator, the solution is a Hermitian operator. �

As a special case of Example ., one can consider the following matrix equation, which
can also be found in []:

X –A∗
XA – · · · –A∗

mXAm =Q,

where Q is a positive definite matrix and A, . . . ,Am are arbitrary n × n matrices. Using
Example ., there exists a unique Hermitian matrix solution.
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